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Abstract. — We present some results of [4] concerning the nonlinear Schrödinger
equation with harmonic potential. First we show how to construct a Gibbs
measure for the nonlinear problem. Then we give some estimates which can
be useful to show that the equation is almost surely well-posed on the support
of the measure.

1. Introduction

In this paper we consider the following defocusing equation

(1.1)

{
i∂tu+ ∂2

xu− x2u = |u|k−1u, (t, x) ∈ R× R,
u(0, x) = f(x),

where k ≥ 3 is an odd integer.

The equation (1.1) has been intensively studied since it is a model to de-
scribe the Bose-Einstein condensates. See e.g. R. Fukuizumi [10], K. Yajima
- G. Zhang [20], R. Carles [8], for results related to this problem.
In this note, we present some of the results we obtained in [4]. In our work,
we first construct a Gibbs measure ρ associated to the Hamiltonian equation
(1.1). Then we show that there is a large set Σ of rough initial conditions
leading to global solutions. Finally we prove that the measure ρ is invariant
under the flow of (1.1) (which is well defined on Σ).
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The construction of the measure is quite straightforward, but the main diffi-
culty is to prove a local existence theorem for (1.1), as this problem is L2(R)
supercritical : we have to gain 1/2 derivative (for k large), and to find a space
which is stable by the almost surely well-defined flow, so that we can prove
global existence.
Here we show in particular that the square of the free Schrödinger solution
with initial condition in Σ is (almost surely) more regular than the solution
itself. This can give an idea why a result on the nonlinear Schrödinger equa-
tion can be true.

In the following, H will stand for the operator H = −∂2
x + x2. The oper-

ator H has a self-adjoint extension on L2(R) (still denoted by H) and has
eigenfunctions

(
hn
)
n≥1

which form an Hilbertian basis of L2(R) and satisfy
Hhn = λ2

nhn, n ≥ 0, with λn =
√

2n+ 1 −→ +∞, when n −→ +∞.
For 1 ≤ p ≤ +∞ and s ∈ R, we define the space Ws,p(R) via the norm

‖u‖Ws,p(R) = ‖Hs/2u‖Lp(R) .

In the case p = 2 we write Ws,2(R) = Hs(R) and if

u =
∞∑
n=0

cnhn we have ‖u‖2Hs =
∞∑
n=0

λ2s
n |cn|2 .

Let (Ω,F ,p) be a probability space and
(
gn(ω)

)
n≥0

a sequence of independent
complex normalised gaussians, gn ∈ NC(0, 1).

1.1. Hamiltonian formulation. —

The equations (1.1) has the following Hamiltonian

J(u) =
1
2

∫ ∞
−∞
|H1/2u(x)|2 dx+

1
k + 1

∫ ∞
−∞
|u(x)|k+1 dx.

Write u =
∞∑
n=0

cnhn , then in the coordinates c = (cn) the Hamiltonian reads

J(c) =
1
2

∞∑
n=0

λ2
n|cn|2 +

1
k + 1

∫ ∞
−∞

∣∣∣ ∞∑
n=0

cnhn(x)
∣∣∣k+1

dx.
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Let us define the complex vector space EN by EN = span(h0, h1, · · · , hN ).
Then we introduce the spectral projector ΠN on EN by

ΠN

( ∞∑
n=0

cnhn

)
=

N∑
n=0

cnhn .

Let χ0 ∈ C∞0 (−1, 1), 0 ≤ χ ≤ 1 so that χ0 = 1 on [−1
2 ,

1
2 ] and let SN be the

operator

SN

( ∞∑
n=0

cnhn

)
=
∞∑
n=0

χ0(
n

N
)cnhn .

It is clear that ‖SN‖L2→L2 ≤ ‖ΠN‖L2→L2 and we have

SN ΠN = ΠN SN = SN , and S∗N = SN .

In fact, SN is a smooth version of ΠN , and this operator is needed for technical
reasons. In particular we use that for 1 ≤ p ≤ +∞, SN : Lp −→ Lp is
continuous.
1.2. Definition of the Gibbs measure. —

Now write cn = an + ibn. For N ≥ 1, consider the probability measure on
R2(N+1) defined by

dµN = dN

N∏
n=0

e−
λ2
n
2

(a2
n+b2n)dandbn,

where dN is such that

1
dN

=
N∏
n=0

∫
R2

e−
λ2
n
2

(a2
n+b2n)dandbn = (2π)N+1

N∏
n=0

1
λ2
n

= (2π)N+1
N∏
n=0

1
2n+ 1

.

The measure µN defines a measure on EN via the map

(an, bn)Nn=0 7−→
N∑
n=0

(an + ibn)hn,

which will still be denoted by µN . Then µN may be seen as the distribution
of the EN valued random variable

ω 7−→
N∑
n=0

√
2

λn
gn(ω)hn(x) ≡ ϕN (ω, x),

where (gn)Nn=0 is a system of independent, centered, L2 normalised complex
gaussians.
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Let σ > 0. Then (ϕN ) is a Cauchy sequence in L2(Ω;H−σ(R)) which defines

(1.2) ϕ(ω, x) =
∞∑
n=0

√
2

λn
gn(ω)hn(x),

as the limit of (ϕN ). Indeed, the map ω 7−→
∞∑
n=0

√
2

λn
gn(ω)hn(x) defines a

(Gaussian) measure on H−σ(R) which will be denoted by µ.

Now, we define the following Gibbs measure on EN

dρ̃N (u) = exp
(
− 1
k + 1

‖SNu‖k+1
Lk+1(R)

)
dµN (u).

If A is a Borel set of H−σ(R) then A∩EN is a Borel set of EN . Now, in each
of the two previous cases, we define ρN which is the natural extension of ρ̃N to
H−σ(R), equipped with the Borel sigma algebra B. More precisely for every
A ∈ B which is a Borel set of H−σ(R), we set

(1.3) ρN (A) ≡ ρ̃N (A ∩ EN ) .

1.3. Statement of the main results. —

We have the following statement defining the Gibbs measure associated to
the equation (1.1).

Theorem 1.1. —
Let k ≥ 3. We define the Gibbs measure by

dρ(u) = exp
(
− 1
k + 1

‖u‖k+1
Lk+1(R)

)
dµ(u),

and the measure is nontrivial. Moreover the sequence ρN converges weakly to
ρ as N tends to infinity.

By (1.2), the measure ρ is supported in
⋂
σ>0

H−σ(R).

There is a large literature on the construction of Gibbs measures for dispersive
equations. See e.g. J. Bourgain [2, 3], P. Zhidkov [22] N. Tzvetkov [19, 18,
17], N. Burq-N. Tzvetkov [5, 7], T. Oh [12, 13], and references therein.

Remark 1.2. — In [4], we also construct a Gibbs measure for the cubic fo-
cusing equation

i∂tu+ ∂2
xu− |x|2u = −|u|2u,

but in this case, the task is much harder, as the weight exp(
1
4
‖u‖4L4) doesn’t

belong to L1(dµ).
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The free Schrödinger group of (1.1) enjoys Strichartz estimates. Therefore, the
deterministic problem (1.1) is well-posed in Hs(R) for s ≥ max (0, 1

2 −
2

k−1)
(see [11]). Let k ≥ 5. For s < 1

2 −
2

k−1 , the problem is Hs(R)-supercritical,
and by [9, 1, 15], it is ill-posed : there is a loss of regularity in the Sobolev
scale ; in particular the equation can not be solved with a usual fixed point
argument.
However, as the support of ρ lies in

⋂
σ>0

H−σ(R), we have to the solve (1.1)

for rough initial conditions, and this will be done with stochastic methods.
Indeed we can combine Theorem 1.1 with a local existence theory for (1.1) to
obtain a global existence result for any k ≥ 3. Then we are able to show that
ρ is invariant.

Theorem 1.3. — Let k ≥ 3 be an odd integer. The Gibbs measure ρ is
invariant under the ρ a.s. well-defined global in time flow Φ(t) of (1.1). More
precisely :
(i) There exists a set Σ ⊂

⋂
σ>0H−σ(R) of full ρ measure and s < 1

2 so that
for every f ∈ Σ the equation (1.1) with initial condition u(0) = f has a unique
global solution in the class

u(t, ·) = e−itHf + C
(
R;Hs(R)

)⋂
L4
loc

(
R;Ws,∞(R)

)
.

Moreover, for all σ > 0 and t ∈ R

‖u(t, ·)‖H−σ(R) ≤ C
(
Λ(f, σ) + ln

(
2 + |t|

) 1
2
)
,

and the constant Λ(f, σ) satisfies the probabilistic bound

p
(
ω ∈ Ω : Λ(f, σ) > λ

)
≤ Ce−cλ

2
.

(ii) For any ρ measurable set A ⊂ Σ, for any t ∈ R, ρ(A) = ρ
(
Φ(t)(A)

)
.

Remark 1.4. — By Yajima-Zhang [20], the equation (1.1) is locally well-
posed in L2(R) when k = 3, 5. Then, by the conservation of the L2 norm, we
infer that the solutions are global in time.

The starting point of this work was the following observation : Let ϕ as in
(1.2), then for all t ∈ R and θ < 1

2

(1.4)
(
e−itHϕ

)2 ∈ Hθ(R), a.s.

Recall that ϕ ∈ L2(Ω;H−σ(R)) and for almost all ω ∈ Ω, ϕ(ω, ·) /∈ L2(R).
Hence there is a gain of 1/2 derivative for the square of ϕ (see Propositions
3.3 and 3.2 for quantitative results). This property is a consequence of good
bilinear estimates on the Hermite functions proved by P.Gérard (see [4] for
the proof).
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However in [4], we found a new proof of Theorem 1.3, which only relies on the
usual linear smoothing effect and a stochastic improvement of it.

Notations. — In this paper c, C denote constants the value of which may
change from line to line. These constants will always be universal, or uni-
formly bounded with respect to the other parameters.
We denote by N the set of the non negative integers, and N∗ = N\{0}.
The notation LpT stands for Lp(−T, T ), whereas Lq = Lq(R), LpTL

q =
Lp(−T, T ;Lq(R)), and Hs = Hs(R).
In all the paper λn =

√
2n+ 1, so that λ2

n is the (n + 1)th eigenvalue of the
operator H. We use this notation to avoid square roots.

2. Proof of Theorem 1.1

First we recall the following Gaussian bound, which is one of the key points
in the study of our random series. See e.g. [6, Lemma 4.2.] for a proof.

Lemma 2.1. — Let
(
gn(ω)

)
n≥0

∈ NC(0, 1) be independent, complex, L2-
normalised gaussians. Then there exists C > 0 such that for all r ≥ 2 and
(cn) ∈ l2(N)

‖
∑
n≥0

gn(ω) cn‖Lr(Ω) ≤ C
√
r
(∑
n≥0

|cn|2
) 1

2
.

We will need the following particular case of the bounds on the eigenfunctions
(hn), proved by K. Yajima and G. Zhang [21]. For every p ≥ 4 there exists
C(p) such that for every n ≥ 0,

‖hn‖Lp(R) ≤ C(p)λ
− 1

6
n .

Thanks to these two ingredients, following [6], we can prove

Lemma 2.2. — Fix p ∈ [4,∞) and s ∈ [0, 1/6). Then

(2.1) ∃C > 0,∃ c > 0, ∀λ ≥ 1, ∀N ≥ 1,

µ
(
u ∈ H−σ : ‖SNu‖Ws,p(R) > λ

)
≤ Ce−cλ2

.

Moreover there exists β(s) > 0 such that

(2.2) ∃C > 0,∃ c > 0, ∀λ ≥ 1, ∀N ≥ N0 ≥ 1,

µ
(
u ∈ H−σ : ‖SNu− SN0u‖Ws,p(R) > λ

)
≤ Ce−cN

β(s)
0 λ2

.
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The assertion (2.1) shows in particular that ‖u‖L4(R) is µ almost surely finite.
Therefore, the measure ρ defined in Theorem 1.1 is nontrivial.
By (2.2), ‖SNu‖Lk+1(R) converges to ‖u‖Lk+1(R) with respect to the measure
µ. Thus when n −→ +∞,

exp
(
− 1
k + 1

‖SNu‖k+1
Lk+1(R)

)
−→ exp

(
− 1
k + 1

‖u‖k+1
Lk+1(R)

)
,

with respect to the measure µ. It is then easy to prove the weak convergence
of dρN to dρ.

3. The gain of 1
2 derivative

In order to prove Theorem 1.3, we first have to develop a local well-posedness
theory for (1.1) for data f in the support of the measure ρ. However, as we
mentioned in the introduction, this problem is supercritical : we have to gain
1
2 −

2
k−1 derivative, i.e. almost 1

2 when k is large. In (2.1) we can see that
we already have gained 1

6 derivative in a probabilistic sense (indeed we even
gain 1

4 derivative with this method, using more precise bounds on Hermite
functions, see e.g. [14]).
We present here the two tools needed to almost reach 1

2 derivative.

3.1. Linear smoothing effect. —

We have the following statement

Lemma 3.1 (Stochastic smoothing effect). — Let 0 < s < σ < 1
2 and

q ≥ 2. Then there exist C, c > 0 so that for all λ > 0, N ≥ 1 and 0 ≤ T ≤ 2π

ρN
(
u ∈ H−σ :

∥∥∥ 1
〈x〉σ

H
s
2 e−itHu

∥∥∥
LqTL

2(R)
> λ ) ≤ Ce−cλ

2
.

This result is an improvement of the well-known deterministic smoothing
effect, as we can take q ≥ 2 as large as we want. Notice also that we have
slightly modified the indexes, so that the weight has a rate (strictly) less than
1
2 . The proof is quite simple, using Lemma 2.1 and local estimates of the
Hermite functions.

3.2. Bilinear smoothing effect. —
We now state a bilinear estimate on Hermite functions. There exists C > 0 so
that for all 0 ≤ θ ≤ 1 and n,m ∈ N

(3.1) ‖hn hm‖Hθ(R) ≤ C max (n,m)−
1
4

+ θ
2

(
log
(

min (n,m) + 1
)) 1

2
.
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The estimate for θ = 0 is proved by P. Gérard. The case θ = 1 is then
obtained thanks to the recurrence formula of the Hermite functions, and the
general case follows by interpolation. See [4] for the proof.

With (3.1) we can then prove the following large deviation estimate.

Proposition 3.2. — Let 0 ≤ θ < 1
2 , 0 ≤ T ≤ 2π and q ≥ 2. Then there exist

c, C > 0 so that for all λ > 0 and 0 ≤ T ≤ 2π

ρN
(
u ∈ H−σ :

∥∥(e−itHu)2∥∥
LqTHθ(R)

> λ ) ≤ Ce−cλ,

and
ρN
(
u ∈ H−σ :

∥∥∣∣e−itHu∣∣2∥∥
LqTHθ(R)

> λ ) ≤ Ce−cλ.

Recall the notation (1.2) of ϕ(·, ω). We prove the following result, and Propo-
sition 3.2 will follow by the Bienaymé-Tchebychev inequality.

Proposition 3.3. — Let θ < 1
2 , then there exists C > 0 so that for all 2 ≤

q ≤ r and 0 ≤ T ≤ 2π

(3.2)
∥∥( e−itHϕ

)2 ∥∥
Lr(Ω)LqTHθ(R)

≤ C r T
1
q ,

and

(3.3)
∥∥∣∣ e−itHϕ ∣∣2 ∥∥

Lr(Ω)LqTHθ(R)
≤ C r T

1
q .

Proof. — We only prove (3.2), the proof of (3.3) is similar. To avoid too
many subscripts, in the proof we will write e−itHϕ = u. We make the decom-
position u =

∑
N≥0

uN with uN (t, x) =
∑

2N−1≤n≤2(2N−1)

αn(t)hn(x)gn(ω), where

αn(t) =
√

2√
2n+ 1

e−i(2n+1)t.

Denote by Λ = H
1
2 . Let 0 ≤ θ < 1

2 . Then by Cauchy-Schwarz, for all ε > 0∣∣Λθ(u2
)∣∣ =

∣∣ ∑
N,M≥0

Λθ
(
uN uM

)∣∣
=

∣∣ ∑
N,M≥0

max (2N , 2M )
−ε

max (2N , 2M )
ε
Λθ
(
uN uM

)∣∣
≤ C

( ∑
N,M≥0

max (2N , 2M )
2ε|Λθ

(
uN uM

)
|2
) 1

2
.(3.4)

By the definition of uN , we have

Λθ
(
uN uM

)
=

∑
2N−1≤n≤2(2N−1)

2M−1≤m≤2(2M−1)

αn αm gn gm Λθ
(
hn hm

)
,
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therefore by the second order Wiener chaos estimates (see e.g. [17, 16]), there
exists C > 0 such that for all r ≥ 2

(3.5) ‖Λθ
(
uN uM

)
‖Lr(Ω) ≤ Cr ‖Λθ

(
uN uM

)
‖L2(Ω).

Then by (3.4), Minkowski and (3.5)

‖Λθ
(
u2
)
‖Lr(Ω) ≤ C

( ∑
N,M≥0

max (2N , 2M )
2ε‖Λθ

(
uN uM

)
‖2Lr(Ω)

) 1
2

≤ Cr
( ∑
N,M≥0

max (2N , 2M )
2ε‖Λθ

(
uN uM

)
‖2L2(Ω)

) 1
2
.(3.6)

We now estimate ‖Λθ
(
uN uM

)
‖L2(Ω). We make the expansion

|Λθ
(
uN uM

)
|2 =∑

2N−1≤n1,n2≤2(2N−1)

2M−1≤m1,m2≤2(2M−1)

αn1 αn2 αm1 αm2 gn1 gn2 gm1 gm2 Λθ
(
hn1 hm1

)
Λθ
(
hn2 hm2

)
.

The r.v. gn are centred and independent, hence E
[
gn1 gn2 gm1 gm2

]
= 0, unless

(n1 = n2 and m1 = m2) or (n1 = m2 and n2 = m1). This implies that

(3.7) E
[
|Λθ
(
uN uM

)
|2
]
≤ C

∑
2N−1≤n≤2(2N−1)

2M−1≤m≤2(2M−1)

|αn|2|αm|2|Λθ
(
hn hm

)
|2.

We integrate (3.7) in x and by (3.1) we deduce

E
[
‖uN uM‖2Hθ(R)

]
≤ C

∑
2N−1≤n≤2(2N−1)

2M−1≤m≤2(2M−1)

|αn|2|αm|2
∫

R
|Λθ
(
hn hm

)
|2dx

≤ C
∑

2N−1≤n≤2(2N−1)

2M−1≤m≤2(2M−1)

min(N,M) max (2N , 2M )
− 1

2
+θ|αn|2|αm|2.(3.8)

By (3.6) and (3.8), an integration in x and Minkowski yields

‖Λθ
(
u2
)
‖2Lr(Ω)L2(R) ≤ ‖Λ

θ
(
u2
)
‖2L2(R)Lr(Ω)

≤ Cr2
∑

N,M≥0

∑
2N−1≤n≤2(2N−1)

2M−1≤m≤2(2M−1)

max (2N , 2M )
− 1

2
+θ+2ε|αn|2|αm|2

≤ Cr2
( ∑
n≥0

|〈n〉−
1
8

+ θ
4

+ ε
2αn|2

)2
.
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Lastly use that |αn| ≤ 〈n〉−
1
2 to deduce

(3.9) ‖Λθ
(
u2
)
‖Lr(Ω)L2(R) = ‖u2‖Lr(Ω)Hθ(R) ≤ Cr,

for ε > 0 small enough, with C > 0 independent of t ∈ R.
Finally, let 2 ≤ q ≤ r and 0 ≤ T ≤ 1, then by Minkowski and (3.9) we conclude
that

‖u2‖Lr(Ω)LqTHθ(R) ≤ ‖u2‖LqTLr(Ω)Hθ(R) ≤ CrT
1
q ,

which was the claim (3.2).

We refer to [4, Section 7] for the local existence theory for (1.1) with initial
conditions of the form (1.2). The main tool is Proposition 3.1, which shows
that we regain almost 1

2 derivative at the price of a power 〈x〉
1
2 .

4. Global existence for (1.1)

We now give some ideas of the proof the global existence part of Theorem
1.3.
We introduce the following finite dimensional approximation of (1.1)

(4.1) (i∂t −H)u = SN
(
|SNu|k−1SNu

)
, u(0, x) = SN (u(0, x)) ∈ EN ,

which is an ordinary differential equation.

For u ∈ EN , write u =
N∑
n=0

cnhn, then we can check that the equation (4.1) is

a Hamiltonian ODE, with Hamiltonian

J(c0, c0, · · · , cN , cN ) =
1
2

N∑
n=0

λ2
n|cn|2 +

1
k + 1

∫ ∞
−∞

∣∣∣SN( N∑
n=0

cnhn(x)
)∣∣∣k+1

dx.

In particular, we deduce that (4.1) has a well-defined global flow ΦN , and
thanks to Liouville’s theorem, we can state

Proposition 4.1. — The measure ρ̃N as defined in the introduction is in-
variant under the flow ΦN of (4.1).

We can now adapt the strategy of [5, 7] (which uses ideas of Bourgain)
to show that there are many “good” initial conditions in the support of ρ̃N
leading the solutions of (4.1) with bounds independent of N . In some sense,
the invariant measure ρ̃N plays the role of a Lyapunov function and gives a
large time control of the solutions.
Thanks to limiting arguments, we then prove almost sure global existence for
(1.1).
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