
A NEW AXIOMATIC FOR MASURES

AUGUSTE HÉBERT

Abstract. Masures are generalizations of Bruhat-Tits buildings. They were

introduced by Gaussent and Rousseau to study Kac-Moody groups over ul-

trametric fields, which generalize reductive groups. Rousseau gave an ax-
iomatic definition of these spaces. We propose an equivalent axiomatic, which

is shorter, more practical and closer to the axiomatic of Bruhat-Tits buildings.

Our main tool to prove the equivalence of the axiomatics is the study of the
convexity properties in masures.

1. Introduction

An important tool to study a split reductive group G over a non-archimedean
local field is its Bruhat-Tits building defined by Bruhat and Tits in [BT72] and
[BT84]. Kac-Moody groups are interesting infinite dimensional (if not reductive)
generalizations of reductive groups. In order to study them over fields endowed
with a discrete valuation, Gaussent and Rousseau introduced masures (also known
as hovels) in [GR08], which are analogs of Bruhat-Tits buildings. Charignon and
Rousseau generalized this construction in [Cha10], [Rou17] and [Rou16]: Charignon
treated the almost split case and Rousseau suppressed restrictions on the base field
and on the group. Rousseau also defined an axiomatic of masures in [Rou11].
Recently, Freyn, Hartnick, Horn and Köhl made an analog construction in the
archimedean case (see [FHHK17]): to each split real Kac-Moody group, they as-
sociate a space on which the group acts, generalizing the notion of riemannian
symmetric space.

Masures enable to obtain results on the arithmetic of (almost)-split Kac-Moody
groups over non-archimedean local fields. Let us survey them briefly. Let G be such
a group and I be its masure. In [GR08], Gaussent and Rousseau use I to prove
a link between the Littlemann’s path model and some kind of Mirković-Vilonen
cycle model of G. In [GR14], Gaussent and Rousseau associate a spherical Hecke
algebra sH to G and they obtain a Satake isomorphism in this setting. These
results generalize works of Braverman and Kazhdan obtained when G is supposed
affine, see [BK11]. In [BPGR16], Bardy-Panse, Gaussent and Rousseau define the
Iwahori-Hecke algebra IH of G. Braverman, Kazhdan and Patnaik had already
done this construction when G is affine in [BKP16]. In [Héb17], we obtain finiteness
results on G enabling to give a meaning to one side of the Gindikin-Karpelevich
formula obtained by Braverman, Garland, Kazhdan and Patnaik in the affine case
in [BGKP14]. In [AH17], together with Abdellatif, we define a completion of IH
and generalize the construction of the Iwahori-Hecke algebra of G: we associate
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Hecke algebras to subgroups of G more general than the Iwahori subgroup, the
analogue of the parahoric subgroups. In [BPGR17], Bardy-Panse, Gaussent and
Rousseau prove a Macdonald’s formula for G: they give an explicit formula for the
image of some basis of sH by the Satake isomorphism. Their formula generalizes
a well-known formula of Macdonald for reductive groups (see [Mac71]) which had
already been extended to affine Kac-Moody groups in [BKP16].

Despite these results some very basic questions are still open in the theory of
masures. In this paper we are interested in questions of enclosure maps and of
convexity in masures. Let us be more precise. The masure is an object similar
to the Bruhat-Tits building. This is a union of subsets called apartments. An
apartment is a finite dimensional affine space equipped with a set of hyperplanes
called walls. The group G acts by permuting these apartments, which are therefore
all isomorphic to one of them called the standard apartment A.

To define the masure I associated to G, Gaussent and Rousseau (following
Bruhat and Tits) first define A. Let us describe it briefly. Suppose that the field of
definition is local. Let Q∨ be the coroot lattice of G and Φ be its set of real roots.
One can consider Q∨ as a lattice of some affine space A and Φ as a set of linear
forms on A. Let Y be a lattice of A containing Q∨ (one can consider Y = Q∨ in a
first approximation). Then the set M of walls of A is the set of hyperplanes contain-
ing an element of Y and whose direction is ker(α) for some α ∈ Φ. The half-spaces
delimited by walls are called half-apartments. Suppose that G is reductive. Then
Φ is finite and I is a building. A well known property of buildings is that if A is
an apartment of I, then A ∩A is a finite intersection of half-apartments and there
exists an isomorphism from A to A fixing A ∩ A (see 2.5.7 and Proposition 2.5.8
of [BT72]). Studying this question for masures seems natural for two reasons: first
masures generalize Bruhat-Tits buildings and have properties similar to them and
second because three of the five axioms of the axiomatic definition of Rousseau are
weak forms of this property.

We study this question in the affine case and in the indefinite case. Let us begin
by the affine case, where we prove that this property is true:

Theorem 1.1. Let I be a masure associated to an affine Kac-Moody group. Let A
be an apartment. Then A ∩ A is a finite intersection of half-apartments of A and
there exists an isomorphism from A to A fixing A ∩A.

We define a new axiomatic of masures and prove that it is equivalent to the one
given by Rousseau (we recall it in 2.2.2), using the theorem above. Our axiomatic
is simpler and closer to the usual geometric axiomatic of Euclidean buildings. To
emphasize this analogy, we first recall one of their definitions in the case where
the valuation is discrete (see Section IV of [Bro89] or Section 6 of [Rou04], our
definition is slightly modified but equivalent).

Definition 1.2. A Euclidean building is a set I equipped with a set A of subsets
called apartments satisfying the following axioms :

(I0) Each apartment is a Euclidean apartment.
(I1) For any two faces F and F ′ there exists an apartment containing F and F ′.
(I2) If A and A′ are apartments, then A ∩ A′ is a finite intersection of half-

apartments and there exists an isomorphism φ : A→ A′ fixing A ∩A′.
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In the statement of the next theorem, we use the notion of chimney. They are
some kind of thickened sector faces. The word “splayed” will be explained later.
We prove the following theorem:

Theorem 1.3. Suppose G is an affine Kac-Moody group. Let A be the apartment
associated to the root system of G. Let (I,A) be a couple such that I is a set and
A is a set of subsets of I called apartments. Then (I,A) is a masure of type A in
the sense of [Rou11] if and only if it satisfies the following axioms:

(MA af i) Each apartment is an apartment of type A.
(MA af ii ) If A and A′ are two apartments, then A ∩A′ is a finite intersection

of half-apartments and there exists an isomorphism φ : A→ A′ fixing A ∩A′.
(MA af iii) If R is the germ of a splayed chimney and F is a face or a germ of

a chimney, then there exists an apartment containing R and F .

We now turn to the general (not necessarily affine) case. Similarly to buildings,
we can still define a fundamental chamber Cvf in the standard apartment A. This

enables one to define the Tits cone T =
⋃
w∈Wv w.Cvf , where W v is the Weyl group

of G. An important difference between buildings and masures is that when G is
reductive, T = A and when G is not reductive, T 6= A is only a convex cone. This
defines a preorder on A by saying that x, y ∈ A satisfy x ≤ y if y ∈ x + T . This
preorder extends to a preorder on I - the Tits preorder - by using isomorphisms
of apartments. Convexity properties in I were known only on preordered pairs of
points. If A,A′ are apartments and contain two points x, y such that x ≤ y then
A∩A′ contains the segment in A between x and y and there exists an isomorphism
from A to A′ fixing this segment (this is Proposition 5.4 of [Rou11]).

A ray (half-line) of I is said to be generic if its direction meets the interior T̊ of
T . A chimney is splayed if it contains a generic ray. The main result of this paper
is the following theorem:

Theorem 1.4. Let A be an apartment such that A ∩ A contains a generic ray of
A. Then A ∩ A is a finite intersection of half-apartments of A and there exists an
isomorphism from A to A fixing A ∩A.

Using this theorem, we prove that the axiomatic definition of Rousseau is equiv-
alent to a simpler one:

Theorem 1.5. Let A be the apartment associated to the root system of G. Let
(I,A) be a couple such that I is a set and A is a set of subsets of I called apart-
ments. Then (I,A) is a masure of type A in the sense of [Rou11] if and only if it
satisfies the following axioms:

(MA i) Each apartment is an apartment of type A.
(MA ii) If two apartments A and A′ are such that A ∩ A′ contains a generic

ray, then A ∩ A′ is a finite intersection of half-apartments and there exists an
isomorphism φ : A→ A′ fixing A ∩A′.

(MA iii) If R is the germ of a splayed chimney and F is a face or a germ of a
chimney, then there exists an apartment containing R and F .

The axiom (MA iii) (very close to the axiom (MA3) of Rousseau) corresponds
to the existence parts of Iwasawa, Bruhat and Birkhoff, decompositions in G, re-
spectively for F a face and R a sector-germ, F and R two sector-germs of the
same sign and F and R two opposite sector-germs. The axiom (MA ii), which
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implies the axiom (MA4) of Rousseau, corresponds to the uniqueness part of these
decompositions.

The fact that if x, y ∈ I are such that x ≤ y, the segment between x and y does
not depend on the apartment containing {x, y} was an axiom of masures (axiom
(MAO)). A step of our proof of Theorem 1.5 is to show that (MAO) is actually a
consequence of the other axioms of masures (see Proposition 5.3).

To define faces and chimneys, Rousseau uses enclosure maps (see 2.1.5 for a
precise definition). When G is a reductive group over a local field, the enclosure of a
set P of A is the intersection of the half-apartments of A containing P . WhenG is no
more reductive M can be dense in A. Consequently, Gaussent and Rousseau define
the enclosure of a subset to be a filter and no more necessarily a set (which is already
the case for buildings when the valuation of the base field is not discrete). Moreover,
there are several natural choices of enclosure maps: one can use all the roots (real
and imaginary) or only the real roots, one can allow arbitrary intersections of
half-apartments or only finite intersections of half-apartments ... This leads to
lots of definitions and notations in [Rou17]. The theorem above proves that all
these choices of enclosure maps lead to the same definition of masure; therefore the
“good” enclosure map is the biggest one, which involves only real roots and finite
intersections.

Actually we do not limit our study to masures associated to Kac-Moody groups:
for us a masure is a set satisfying the axioms of [Rou11] and whose apartments
are associated to a root generating system (and thus to a Kac-Moody matrix). We
do not assume that there exists a group acting strongly transitively on it. We do
not either make any discreteness hypothesis for the standard apartment: if M is a
wall, the set of walls parallel to it is not necessarily discrete; this enables to handle
masures associated to split Kac-Moody groups over any ultrametric field.

The paper is organized as follows.
In Section 2, we describe the general framework and recall the definition of

masures.
In Section 3 we study the intersection of two apartments A and B, without

assuming that A ∩ B contains a generic ray. We prove that A ∩ B can be written
as a union of enclosed subsets and that A ∩ B is enclosed when it is convex. If
P ⊂ A∩B, we give a sufficient condition of existence of an isomorphism from A to
B fixing P .

In Section 4, we study the intersection of two apartments sharing a generic ray
and prove Theorem 1.4, which is stated as Theorem 4.22. The reader only interested
in masures associated to affine Kac-Moody groups can skip this Section and replace
Theorem 4.22 by Lemma 5.20, which is far more easy to prove.

In Section 5, we deduce new axiomatics of masures: we show Theorem 1.5 and
Theorem 1.3, which correspond to Theorem 5.1 and Theorem 5.18.

Acknowledgement. I thank Stéphane Gaussent for discussions on the subject and
for his advice on the writing of this paper. I thank Guy Rousseau for discussions
on this topic, for his careful reading and comments on a previous version of this
paper.
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2. General framework, Masure

In this section, we define our framework and recall the definition of masures.
Then we recall some notions on masures. References for this section are [Rou11],
Section 1 and 2 and Section 1 of [GR14].

2.1. Standard apartment.

2.1.1. Root generating system. Let A be a Kac-Moody matrix (also known as
generalized Cartan matrix) i.e a square matrix A = (ai,j)i,j∈I with integers coeffi-
cients, indexed by a finite set I and satisfying:

(1) ∀i ∈ I, ai,i = 2
(2) ∀(i, j) ∈ I2|i 6= j, ai,j ≤ 0
(3) ∀(i, j) ∈ I2, ai,j = 0⇔ aj,i = 0.

A root generating system of type A is a 5-tuple S = (A,X, Y, (αi)i∈I , (α∨i )i∈I)
made of a Kac-Moody matrix A indexed by I, of two dual free Z-modules X (of
characters) and Y (of cocharacters) of finite rank rk(X), a family (αi)i∈I (of
simple roots) in X and a family (α∨i )i∈I (of simple coroots) in Y . They have
to satisfy the following compatibility condition: ai,j = αj(α

∨
i ) for all i, j ∈ I. We

also suppose that the family (αi)i∈I is free in X and that the family (α∨i )i∈I is free
in Y .
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Let A = Y ⊗R. Every element of X induces a linear form on A. We will consider
X as a subset of the dual A∗ of A: the αi’s, i ∈ I are viewed as linear forms on A.
For i ∈ I, we define an involution ri of A by ri(v) = v − αi(v)α∨i for all v ∈ A. Its
space of fixed points is kerαi. The subgroup of GL(A) generated by the αi for i ∈ I
is denoted by W v and is called the Weyl group of S. The system (W v, {ri|i ∈ I})
is a Coxeter system. For w ∈ W v, we denote by `(w) the length of w with respect
to {ri|i ∈ I}.

One defines an action of the group W v on A∗ by the following way: if x ∈ A,
w ∈W v and α ∈ A∗ then (w.α)(x) = α(w−1.x). Let Φ = {w.αi|(w, i) ∈W v×I}, Φ
is the set of real roots. Then Φ ⊂ Q, where Q =

⊕
i∈I Zαi. Let Q+ =

⊕
i∈I Nαi,

Φ+ = Q+ ∩ Φ and Φ− = (−Q+) ∩ Φ. Then Φ = Φ+ t Φ−. Let ∆ be the set of all
roots as defined in [Kac94] and ∆im = ∆\Φ. Then (A,W v, (αi)i∈I , (α∨i )i∈I ,∆im)
is a vectorial datum as in Section 1 of [Rou11].

2.1.2. Vectorial faces and Tits cone. Define Cvf = {v ∈ A| αi(v) > 0, ∀i ∈ I}. We

call it the fundamental chamber. For J ⊂ I, one sets F v(J) = {v ∈ A| αi(v) =
0 ∀i ∈ J, αi(v) > 0 ∀i ∈ J\I}. Then the closure Cvf of Cvf is the union of the

F v(J) for J ⊂ I. The positive (resp. negative) vectorial faces are the sets
w.F v(J) (resp. −w.F v(J)) for w ∈ W v and J ⊂ I. A vectorial face is either
a positive vectorial face or a negative vectorial face. We call positive chamber
(resp. negative) every cone of the form w.Cvf for some w ∈ W v (resp. −w.Cvf ).
For all x ∈ Cvf and for all w ∈ W v, w.x = x implies that w = 1. In particular
the action of w on the positive chambers is simply transitive. The Tits cone T is
defined by T =

⋃
w∈Wv w.Cvf . We also consider the negative cone −T . We define

a W v invariant preorder ≤ (resp. ≤̊) on A, the Tits preorder (the Tits open

preorder) by: ∀(x, y) ∈ A2, x ≤ y ⇔ y−x ∈ T (resp. x≤̊y ⇔ y−x ∈ T̊ ∪{0}).

2.1.3. Weyl group of A. We now define the Weyl group W of A. If X is an affine

subspace of A, one denotes by ~X its direction. One equips A with a family M of
affine hyperplanes called real walls such that:

(1) For all M ∈M, there exists αM ∈ Φ such that ~M = ker(αM ).
(2) For all α ∈ Φ, there exists an infinite number of hyperplanes M ∈ M such

that α = αM .
(3) If M ∈M, we denote by rM the reflexion of hyperplane M whose associated

linear map is rαM
. We assume that the group W generated by the rM for

M ∈M stabilizes M.

The group W is the Weyl group of A. A point x is said to be special if every
real wall is parallel to a real wall containing x. We suppose that 0 is special and
thus W ⊃W v.

If α ∈ A∗ and k ∈ R, one sets M(α, k) = {v ∈ A|α(v) + k = 0}. Then for all
M ∈ M, there exists α ∈ Φ and kM ∈ R such that M = M(α, kM ). If α ∈ Φ, one

sets Λα = {kM | M ∈ M and ~M = ker(α)}. Then Λw.α = Λα for all w ∈ W v and
α ∈ Φ.

If α ∈ Φ, one denotes by Λ̃α the subgroup of R generated by Λα. By (3),

Λα = Λα + 2Λ̃α for all α ∈ Φ. In particular, Λα = −Λα and when Λα is discrete,
Λ̃α = Λα is isomorphic to Z.

One sets Q∨ =
⊕

α∈Φ Λ̃αα
∨. This is a subgroup of A stable under the action of

W v. Then one has W = W v nQ∨.
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For a first reading, the reader can consider the situation where the walls are
the φ−1({k}) for φ ∈ Φ and k ∈ Z. We then have Λα = Z for all α ∈ Φ, and
Q∨ =

⊕
i∈I Zα∨i .

2.1.4. Filters.

Definition 2.1. A filter in a set E is a nonempty set F of nonempty subsets of E
such that, for all subsets S, S′ of E, if S, S′ ∈ F then S ∩ S′ ∈ F and, if S′ ⊂ S,
with S′ ∈ F then S ∈ F .

If F is a filter in a set E, and E′ is a subset of E, one says that F contains
E′ if every element of F contains E′. If E′ is nonempty, the set FE′ of subsets
of E containing E′ is a filter. By abuse of language, we will sometimes say that
E′ is a filter by identifying FE′ and E′. If F is a filter in E, its closure F (resp.
its convex envelope) is the filter of subsets of E containing the closure (resp. the
convex envelope) of some element of F . A filter F is said to be contained in an
other filter F ′: F ⊂ F ′ (resp. in a subset Z in E: F ⊂ Z) if and only if any set in
F ′ (resp. if Z) is in F .

If x ∈ A and Ω is a subset of A containing x in its closure, then the germ of Ω
in x is the filter germx(Ω) of subsets of A containing a neighborhood of x in Ω.

A sector in A is a set of the form s = x+Cv with Cv = ±w.Cvf for some x ∈ A
and w ∈W v. A point u such that s = u+ Cv is called a base point of s and Cv

is its direction. The intersection of two sectors of the same direction is a sector of
the same direction.

The sector-germ of a sector s = x+Cv is the filter S of subsets of A containing
an A-translate of s. It only depends on the direction Cv. We denote by +∞ (resp.
−∞) the sector-germ of Cvf (resp. of −Cvf ).

A ray δ with base point x and containing y 6= x (or the interval ]x, y] = [x, y]\{x}
or [x, y] or the line containing x and y) is called preordered if x ≤ y or y ≤ x and

generic if y − x ∈ ±T̊ , the interior of ±T .

2.1.5. Enclosure maps. Let ∆ = Φ∪∆+
im ∪∆−im be the set of all roots. For α ∈ ∆,

and k ∈ R∪{+∞}, let D(α, k) = {v ∈ A|α(v) + k ≥ 0} (and D(α,+∞) = A for all
α ∈ ∆) and D◦(α, k) = {v ∈ A| α(v) + k > 0} (for α ∈ ∆ and k ∈ R ∪ {+∞}). If
α ∈ ∆im, one sets Λα = R. Let [Φ,∆] be the set of sets P satisfying Φ ⊂ P ⊂ ∆.

If X is a set, one denotes by P(X) the set of subsets of X. Let L be the set of
families (Λ′α) ∈P(R)∆ such that for all α ∈ ∆, Λα ⊂ Λ′α and Λ′α = −Λ′−α.

Let F (A) be the set of filters of A. If P ∈ [Φ,∆] and Λ′ ∈ L, one defines the

map clPΛ′ : F (A)→ F (A) as follows. If U ∈ F (A),

clPΛ′(U) = {V ∈ U | ∃(kα) ∈
∏

α∈P
(Λ′α ∪ {+∞})| V ⊃

⋂

α∈P
D(α, kα) ⊃ U}.

If Λ′ ∈ L, let cl#Λ′ : F (A)→ F (A) defined as follows. If U ⊂ A,

cl#Λ′(U) = {V ∈ U | ∃n ∈ N, (βi) ∈ Φn, (ki) ∈
n∏

i=1

Λ′βi
| V ⊃

n⋂

i=1

D(βi, ki) ⊃ U}.

Let CL∞ = {clPΛ′ |P ∈ [Φ,∆] and Λ′ ∈ L}. An element of CL∞ is called an

infinite enclosure map. Let CL# = {cl#Λ′ | Λ′ ∈ L}. An element of CL# is

called a finite enclosure map. Although CL∞ and CL# might not be disjoint (for
example if A is associated to a reductive group over a local field), we define the set
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of enclosure maps CL = CL∞ t CL# : in 2.2.1, the definition of the set of faces
associated to an enclosure map cl depends on if cl is finite or not.

If cl ∈ CL, cl = clPΛ′ with P ∈ [Φ,∆] ∪ {#} and Λ′ ∈ L, then for all α ∈ ∆,

Λ′α = {k ∈ R| cl(D(α, k)) = D(α, k)}. Therefore cl# := cl#Λ′ is well defined. We do

not use exactly the same notation as Rousseau in [Rou17] in which cl# means cl#Λ .

If Λ′ ∈ L, one sets CLΛ′ = {clPΛ′ | P ∈ [Φ,∆]} t {cl#Λ′}.
In order to simplify, the reader can consider the situation where Λα = Λ′α = Z

for all α ∈ Φ, P = ∆ and cl = cl∆Λ , which is the situation of [GR14], [BPGR16] and
[Héb17] for example.

An apartment is a root generating system equipped with a Weyl group W (i.e
with a set M of real walls, see 2.1.3) and a family Λ′ ∈ L. Let A = (S,W,Λ′) be an
apartment. A set of the form M(α, k), with α ∈ Φ and k ∈ Λ′α is called a wall of A
and a set of the form D(α, k), with α ∈ Φ and k ∈ Λ′α is called a half-apartment
of A. A subset X of A is said to be enclosed if there exist k ∈ N, β1, . . . , βk ∈ Φ

and (λ1, . . . , λk) ∈ ∏k
i=1 Λ′βi

such that X =
⋂k
i=1D(βi, λi) (i.e X = cl#Λ′(X)). As

we shall see, if Λ′ ∈ L is fixed, the definition of masures does not depend on the
choice of an enclosure map in CLΛ′ and thus it will be more convenient to choose

cl#Λ′ , see Theorem 5.1 and Theorem 5.2.

Remark 2.2. Here and in the following, we may replace ∆+
im by any W v-stable

subset of
⊕

i∈I R+αi such that ∆+
im∩

⋃
α∈Φ Rα is empty. We then set ∆−im = −∆+

im.
This is useful to include the case of almost split Kac-Moody groups, see 6.11.3 of
[Rou17].

2.2. Masure. In this section, we define masures. They were introduced in [GR08]
for symmetrizable split Kac-Moody groups over ultrametric fields whose residue
field contains C, axiomatized in [Rou11], then developed and generalized to almost-
split Kac-Moody groups over ultrametric fields in [Rou16] and [Rou17].

2.2.1. Definitions of faces, chimneys and related notions. Let A = (S,W,Λ′) be an
apartment. We choose an enclosure map cl ∈ CLΛ′ .

A local-face is associated to a point x and a vectorial face F v in A; it is the filter
F `(x, F v) = germx(x+ F v) intersection of x+ F v and the filter of neighborhoods
of x in A. A face F in A is a filter associated to a point x ∈ A and a vectorial
face F v ⊂ A. More precisely, if cl is infinite (resp. cl is finite), cl = clPΛ′ with

P ∈ [Φ,∆] (resp. cl = cl#Λ′), F (x, F v) is the filter made of the subsets containing
an intersection (resp. a finite intersection) of half-spaces D(α, λα) or D◦(α, λα),
with λα ∈ Λ′α ∪ {+∞} for all α ∈ P (at most one λα ∈ Λα for each α ∈ P) (resp.
Φ).

There is an order on the faces: if F ⊂ F ′ one says that“F is a face of F ′” or “F ′

contains F”. The dimension of a face F is the smallest dimension of an affine space
generated by some S ∈ F . Such an affine space is unique and is called its support.
A face is said to be spherical if the direction of its support meets the open Tits
cone T̊ or its opposite −T̊ ; then its pointwise stabilizer WF in W v is finite.

A chamber (or alcove) is a face of the form F (x,Cv) where x ∈ A and Cv is a
vectorial chamber of A.

A panel is a face of the form F (x, F v), where x ∈ A and F v is a vectorial face
of A spanning a wall.
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A chimney in A is associated to a face F = F (x, F v0 ) and to a vectorial face F v;
it is the filter r(F, F v) = cl(F + F v). The face F is the basis of the chimney and
the vectorial face F v is its direction. A chimney is splayed if F v is spherical, and
is solid if its support (as a filter, i.e., the smallest affine subspace of A containing
r) has a finite pointwise stabilizer in W v. A splayed chimney is therefore solid.

A shortening of a chimney r(F, F v), with F = F (x, F v0 ) is a chimney of the
form r(F (x + ξ, F v0 ), F v) for some ξ ∈ F v. The germ of a chimney r is the filter
of subsets of A containing a shortening of r (this definition of shortening is slightly
different from the one of [Rou11] 1.12 but follows [Rou17] 3.6) and we obtain the
same germs with these two definitions).

2.2.2. Masure. An apartment of type A is a setA with a nonempty set Isom(A, A)
of bijections (called Weyl-isomorphisms) such that if f0 ∈ Isom(A, A) then
f ∈ Isom(A, A) if and only if, there exists w ∈ W satisfying f = f0 ◦ w. We
will say isomorphism instead of Weyl-isomorphism in the sequel. An isomor-
phism between two apartments φ : A→ A′ is a bijection such that (f ∈ Isom(A, A)
if, and only if, φ ◦ f ∈ Isom(A, A′)). We extend all the notions that are preserved
by W to each apartment. Thus sectors, enclosures, faces and chimneys are well
defined in any apartment of type A.

Definition 2.3. A masure of type (A, cl) is a set I endowed with a covering A of
subsets called apartments such that:

(MA1) Any A ∈ A admits a structure of apartment of type A.
(MA2, cl) If F is a point, a germ of a preordered interval, a generic ray or a

solid chimney in an apartment A and if A′ is another apartment containing F , then
A∩A′ contains the enclosure clA(F ) of F and there exists an isomorphism from A
onto A′ fixing clA(F ).

(MA3, cl) If R is the germ of a splayed chimney and if F is a face or a germ of
a solid chimney, then there exists an apartment containing R and F .

(MA4, cl) If two apartments A, A′ contain R and F as in (MA3), then there
exists an isomorphism from A to A′ fixing clA(R ∪ F ).

(MAO) If x, y are two points contained in two apartments A and A′, and if
x ≤A y then the two segments [x, y]A and [x, y]A′ are equal.

In this definition, one says that an apartment contains a germ of a filter if it
contains at least one element of this germ. One says that a map fixes a germ if it
fixes at least one element of this germ.

The main example of masure is the masure associated to an almost-split Kac-
Moody group over an ultrametric field, see [Rou17].

2.2.3. Example: masure associated to a split Kac-Moody group over an ultrametric
field. Let A be a Kac-Moody matrix and S be a root generating system of type
A. We consider the group functor G associated to the root generating system S in
[Tit87] and in Chapitre 8 of [Rém02]. This functor is a functor from the category of
rings to the category of groups satisfying axioms (KMG 1) to (KMG 9) of [Tit87].
When R is a field, G(R) is uniquely determined by these axioms by Theorem 1’ of
[Tit87]. This functor contains a toric functor T, from the category of rings to the
category of commutative groups (denoted T in [Rém02]) and two functors U+ and
U− from the category of rings to the category of groups.

Let K be a field equipped with a non-trivial valuation ω : K → R ∪ {+∞}, O
its ring of integers and G = G(K) (and U+ = U+(K), ...). For all ε ∈ {−,+}, and
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all α ∈ Φε, we have an isomorphism xα from K to a group Uα. For all k ∈ R, one
defines a subgroup Uα,k := xα({u ∈ K| ω(u) ≥ k}). Let I be the masure associated
to G constructed in [Rou16]. Then for all α ∈ Φ, Λα = Λ′α = ω(K)\{+∞} and

cl = cl∆Λ . If moreover K is local, one has (up to renormalization, see Lemma 1.3 of
[GR14]) Λα = Z for all α ∈ Φ. Moreover, we have:

- the fixer of A in G is H = T(O) (by remark 3.2 of [GR08])
- the fixer of {0} in G is Ks = G(O) (by example 3.14 of [GR08]).
- for all α ∈ Φ and k ∈ Z, the fixer of D(α, k) in G is H.Uα,k (by 4.2 7) of

[GR08])
- for all ε ∈ {−,+}, H.U ε is the fixer of ε∞ (by 4.2 4) of [GR08]).

If moreover, K is local, with residue cardinal q, each panel is contained in 1 + q
chambers.

The group G is reductive if and only if W v is finite. In this case, I is the usual
Bruhat-Tits building of G and one has T = A.

2.3. Preliminary notions on masures. In this subsection we recall notions on
masures introduced in [GR08], [Rou11], [Héb17] and [Héb16].

2.3.1. Tits preorder and Tits open preorder on I. As the Tits preorder ≤ and the
Tits open preorder ≤̊ on A are invariant under the action of W v, one can equip each
apartment A with preorders ≤A and ≤̊A. Let A be an apartment of I and x, y ∈ A
such that x ≤A y (resp. x≤̊Ay). Then by Proposition 5.4 of [Rou11], if B is an
apartment containing x and y, then x ≤B y (resp. x≤̊By). This defines a relation
≤ (resp ≤̊) on I. By Théorème 5.9 of [Rou11], this defines a preorder ≤ (resp.
≤̊) on I. It is invariant by isomorphisms of apartments: if A,B are apartments,
φ : A→ B is an isomorphism of apartments and x, y ∈ A are such that x ≤ y (resp.
x≤̊y), then φ(x) ≤ φ(y) (resp. φ(x)≤̊φ(y)). We call it the Tits preorder on I
(resp. the Tits open preorder on I).

2.3.2. Retractions centered at sector-germs. Let s be a sector-germ of I and A be
an apartment containing it. Let x ∈ I. By (MA3), there exists an apartment Ax
of I containing x and s. By (MA4), there exists an isomorphism of apartments
φ : Ax → A fixing s. By [Rou11] 2.6, φ(x) does not depend on the choices we made
and thus we can set ρA,s(x) = φ(x).

The map ρA,s is a retraction from I onto A. It only depends on s and A and we
call it the retraction onto A centered at s.

If A and B are two apartments, and φ : A→ B is an isomorphism of apartments

fixing some set X, one writes φ : A
X→ B. If A and B share a sector-germ q, one

denotes by A
A∩B→ B or by A

q→ B the unique isomorphism of apartments from A

to B fixing q (and also A ∩ B). We denote by I q→ A the retraction onto A fixing

q. One denotes by ρ+∞ the retraction I +∞→ A and by ρ−∞ the retraction I −∞→ A.

2.3.3. Parallelism in I and building at infinity. Let us explain briefly the notion of
parallelism in I. This is done more completely in [Rou11] Section 3.

Let us begin with rays. Let δ and δ′ be two generic rays in I. By (MA3) and
[Rou11] 2.2 3) there exists an apartment A containing sub-rays of δ and δ′ and we
say that δ and δ′ are parallel, if these sub-rays are parallel in A. Parallelism is
an equivalence relation and its equivalence classes are called directions. Let S be
a sector of I and A be an apartment containing S. One fixes the origin of A in a
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base point of S. Let ν ∈ S and δ = R+ν. Then δ is a generic ray in I. By Lemma
3.2 of [Héb17], for all x ∈ I, there exists a unique ray x+ δ of direction δ and base
point x. To obtain this ray, one can choose an apartment Ax containing x and a
sub-ray δ′ of δ, which is possible by (MA3) and [Rou11] 2.2 3), and then we take
the translate of δ′ in Ax having x as a base point.

A sector-face f of A, is a set of the form x+F v for some vectorial face F v and
some x ∈ A. The germ F = germ∞(f) of this sector-face is the filter containing
the elements of the form q + f , for some q ∈ F v. The sector-face f is said to be
spherical if F v∩T̊ is nonempty. A sector-panel is a sector-face contained in a wall
and spanning this one as an affine space. A sector-panel is spherical (see [Rou11]
1). We extend these notions to I thanks to the isomorphisms of apartments. Let
us make a summary of the notion of parallelism for sector-faces. This is also more
complete in [Rou11], 3.3.4)).

If f and f ′ are two spherical sector-faces, there exists an apartment B containing
their germs F and F′. One says that f and f ′ are parallel if there exists a vectorial
face F v of B such that F = germ∞(x + F v) and F′ = germ∞(y + F v) for some
x, y ∈ B. Parallelism is an equivalence relation. The parallelism class of a sector-
face germ F is denoted F∞. We denote by I∞ the set of directions of spherical
faces of I.

By Proposition 4.7.1) of [Rou11], for all x ∈ I and all F∞ ∈ I∞, there exists a
unique sector-face x + F∞ of direction F∞ and with base point x. The existence
can be obtained in the same way as for rays.

2.3.4. Distance between apartments. Here we recall the notion of distance between
apartments introduced in [Héb16]. It will often enable us to make inductions and
to restrict our study to apartments sharing a sector. Let q and q′ be two sector
germs of I of the same sign ε. By (MA4), there exists an apartment B containing
q and q′. In B, there exists a minimal gallery between q and q′ and the length of
this gallery is called the distance between q and q′. This does not depend on the
choice of B. If A′ is an apartment of I, the distance d(A′, q) between A′ and q
is the minimal possible distance between a sector-germ of A′ of sign ε and q. If
A and A′ are apartments of I and ε ∈ {−1, 1}, the distance of sign ε between A
and A′ is the minimal possible distance between a sector-germ of sign ε of A and a
sector-germ of sign ε of A′. We denote it dε(A,A

′) or d(A,A′) if the sign is fixed.
Let ε ∈ {−,+}. Then dε is not a distance on the apartments of I because if A

is an apartment, all apartment A′ containing a sector of A of sign ε (and there are
many of them by (MA3)) satisfies dε(A,A

′) = 0.

2.4. Notation. Let X be a finite dimensional affine space. Let C ⊂ X be a convex
set and A′ be its support. The relative interior (resp. relative frontier) of C,
denoted Intr(C) (resp. Frr(C)) is the interior (resp. frontier) of C seen as a subset
of A′. A set is said to be relatively open if it is open in its support.

If X is an affine space and U ⊂ X, one denotes by conv(X) the convex hull of
X. If x, y ∈ A, we denote by [x, y] the segment of A joining x and y. If A is an
apartment and x, y ∈ A, we denote by [x, y]A the segment of A joining x and y.

If X is a topological space and a ∈ X, one denotes by VX(a) the set of open
neighborhoods of a.
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If X is a subset of A, one denotes by X̊ or by Int(X) (depending on the
readability) its interior. One denotes by Fr(X) the boundary (or frontier) of X:

Fr(X) = X\X̊.
If X is a topological space, x ∈ X and Ω is a subset of X containing x in its

closure, then the germ of Ω in x is denoted germx(Ω).
We use the same notation as in [Rou11] for segments and segment-germs in an

affine space X. For example if X = R and a, b ∈ R = R ∪ {±∞}, [a, b] = {x ∈
R| a ≤ x ≤ b}, [a, b[= {x ∈ R| a ≤ x < b}, [a, b) = germa([a, b]) ...

3. General properties of the intersection of two apartments

In this section, we study the intersection of two apartments, without assuming
that their intersection contains a generic ray.

In Subsection 3.1, we extend results obtained for masure on which a group acts
strongly transitively to our framework.

In Subsection 3.2, we write the intersection of two apartments as a finite union
of enclosed subsets.

In Subsection 3.3, we use the results of Subsection 3.2 to prove that if the inter-
section of two apartments is convex, then it is enclosed.

In Subsection 3.4, we study the existence of isomorphisms fixing subsets of an
intersection of two apartments

Let us sketch the proof of Theorem 1.4. The most difficult part is to prove that if
A and B are apartments sharing a generic ray, then A∩B is convex. We first reduce
our study to the case where A∩B has nonempty interior. We then parametrize the
frontier of A and B by a map Fr : U → Fr(A ∩B), where U is an open and convex
set of A. The idea is then to prove that for “almost” all choices of x, y ∈ U , some
map associated to Frx,y : t ∈ [0, 1] 7→ Fr(tx + (1 − t)y) is convex. An important
step in this proof is the fact that Frx,y is piecewise affine and this relies on the
decomposition of Subsection 3.2. The convexity of A ∩ B is obtained by using a
density argument. We then conclude thanks to Subsection 3.3 and Subsection 3.4.

3.1. Preliminaries. In this subsection, we extend some results of [Héb17] and
[Héb16], obtained for a masure on which a group acts strongly transitively to our
framework.

3.1.1. Splitting of apartments. The following lemma generalizes Lemma 3.2 of [Héb16]
to our frameworks:

Lemma 3.1. Let A1 and A2 be two distinct apartments such that A1∩A2 contains
a half-apartment. Then A1 ∩A2 is a half-apartment.

Proof. One identifies A1 and A. By the proof of Lemma 3.2 of [Héb16], D = A1∩A2

is a half-space of the form D(α, k) for some α ∈ Φ and k ∈ R (our terminology is
not the same as in [Héb16] in which a half-apartment is a half-space of the form
D(β, `), with β ∈ Φ and ` ∈ R, whereas now, we ask moreover that ` ∈ Λ′β). Let

F, F ′ be opposed sector-panels of M(α, k). Let S be a sector of D dominating F ,
s its germ and F′ be the germ of F ′. By (MA4), one has A1 ∩ A2 ⊃ cl(F′, s). But
cl(F′, s) ⊃ cl(D) ⊃ D = A1 ∩A2 and thus k ∈ Λ′α: A1 ∩A2 is a half-apartment. �

As a consequence, one can use Lemma 3.6 and Proposition 3.7 of [Héb16] in our
framework. We thus have the following proposition:
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Proposition 3.2. Let A be an apartment, q be a sector-germ of I such that q * A
and n = d(q, A).

(1) One can write A = D1∪D2, where D1 and D2 are opposite half-apartments
of A such that for all i ∈ {1, 2}, there exists an apartment Ai containing
Di and such that d(Ai, q) = n− 1.

(2) There exist k ∈ N, enclosed subsets P1, . . . , Pk of A such that for all i ∈
J1, kK, there exist an apartment Ai containing q ∪ Pi and an isomorphism

φi : A
Pi→ Ai.

Remark 3.3. The choice of the Weyl group W (and thus of Q∨) imposes restric-
tions on the walls that can bound the intersection of two apartments. Let A be an
apartment and suppose that A ∩ A = D(α, k) for some α ∈ Φ and k ∈ Λ′α. Then
k ∈ 1

2α(Q∨). Indeed, let D = A ∩ A, D1 be the half-apartment of A opposed to D
and D2 be the half-apartment of A opposed to D1. By Proposition 2.9 2) of [Rou11]

B = D1∪D2 is an apartment of I. Let f : A D→ A, g : A
D2→ B and h : B

D1→ A: these
isomorphisms exist because two apartments sharing a half-apartment in particular
share a sector, see 2.3.2. Let s : A→ A making the following diagram commute:

A
f //

s

��

A

g

��
A h−1

// B.

The map s fixes M(α, k). Moreover, if x ∈ D̊, then f(x) = x, thus g(f(x)) ∈ D̊1

and hence h−1(g(f(x))) ∈ D̊1. We deduce s 6= Id. The map s is an isomorphism
of apartments and thus s ∈ W . As s fixes M(α, k), the vectorial part ~s of s fixes
M(α, 0). As W = W v nQ∨, one has s = t ◦ ~s, where t is a translation of vector q∨

in Q∨. If y ∈M(α, k), one has α(s(y)) = k = α(q∨)− k and therefore k ∈ 1
2α(Q∨).

This could enable to be more precise in Proposition 3.2.

3.1.2. A characterization of the points of A. The aim of this subsubsection is to
extend Corollary 4.4 of [Héb17] to our framework.

Vectorial distance on I. We recall the definition of the vectorial distance defined
in Section 1.7 of [GR14]. Let x, y ∈ I be such that x ≤ y. Then there exists an
apartment A containing x, y and an isomorphism φ : A→ A. One has φ(y)−φ(x) ∈
T and thus there exists w ∈ W v such that λ = w.(φ(y) − φ(x)) ∈ Cvf . Then
λ does not depend on the choices we made, it is called the vectorial distance
between x and y and denoted dv(x, y). The vectorial distance is invariant under
isomorphism of apartments: if x, y are two points in an apartment A such that
x ≤ y, if B is an apartment and if φ : A → B is an isomorphism of apartments,
then dv(x, y) = dv(φ(x), φ(y)).

Image of a preordered segment by a retraction. In Theorem 6.2 of [GR08], Gaussent
and Rousseau give a very precise description of the image of a preordered segment
by a retraction centered at a sector-germ. However they suppose that a group acts
strongly transitively on I. Without this assumption, they prove a simpler property
of these images. We recall it here.
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Let λ ∈ Cvf . A λ-path π in A is a map π : [0, 1] → A such that there exists

n ∈ N and 0 ≤ t1 < . . . < tn ≤ 1 such that for all i ∈ J1, n − 1K, π is affine on
[ti, ti+1] and π′(t) ∈W v.λ for all t ∈]ti, ti+1[.

Lemma 3.4. Let A be an apartment of I. Let x, y ∈ A be such that x ≤ y and
ρ : I → A be a retraction of I onto A centered at a sector-germ q of A. Let
τ : [0, 1] → A defined by τ(t) = (1 − t)x + ty for all t ∈ [0, 1] and λ = dv(x, y).
Then ρ ◦ τ is a λ-path between ρ(x) and ρ(y).

Proof. We rewrite the proof of the beginning of Section 6 of [GR08]. Let φ : A→ A
be an isomorphism such that φ(y)− φ(x) = λ, which exists by definition of dv. By
the same reasoning as in the paragraph of [GR08] before Remark 4.6, there exist
n ∈ N, apartments A1, . . . , An of I containing q, 0 = t1 < . . . < tn = 1 such that
τ([ti, ti+1]) ⊂ Ai for all i ∈ J1, n− 1K.

Using Proposition 5.4 of [Rou11], for all i ∈ J1, n−1K, one chooses an isomorphism

ψi : A
τ([ti,ti+1])→ Ai. Let φi : Ai

Ai∩A→ A. For all t ∈ [ti, ti+1],

ρ(τ(t)) = φi ◦ ψi(τ(t)).

Moreover, φi ◦ ψi : A→ A and by (MA1), there exists wi ∈W such that φi ◦ ψi =
wi ◦ φ. Therefore for all t ∈]ti, ti+1[, one has (ρ ◦ τ)′(t) = wi.λ, which proves that
ρ ◦ τ is a λ-path. �

The projection yν . Let ν ∈ Cvf and δ = R+ν. By paragraph “Definition of yν and

Tν” of [Héb17], for all x ∈ I, there exists yν(x) ∈ A such that x+δ∩A = yν(x)+δ,
where x+ δ is the closure of x+ δ (defined in 2.3.3) in any apartment containing it.

The Q∨R-order in A. One sets Q∨R,+ =
∑
α∈Φ+ R+α

∨ =
⊕

i∈I R+αi. One has

Q∨R,+ ⊂
⊕

i∈I R+α
∨
i . If x, y ∈ A, one denotes x ≤Q∨ y if y − x ∈ Q∨R,+.

The following lemma is the writing of Proposition 3.12 d) of [Kac94] in our
context.

Lemma 3.5. Let λ ∈ Cvf and w ∈W v. Then w.λ ≤Q∨ λ.

If x ∈ A and λ ∈ Cvf , one defines πaλ : [0, 1]→ A by πaλ(t) = a+tλ for all t ∈ [0, 1].

Lemma 3.6. Let λ ∈ Cvf and a ∈ A. Then the unique λ-path from a to a + λ is
πaλ.

Proof. Let π be a λ-path from a to a + λ. One chooses a subdivision 0 = t1 <
. . . < tn = 1 of [0, 1] such that for all i ∈ J1, n − 1K, there exists wi ∈ W v such
that π′|[ti,ti+1](t) = wi.λ. By Lemma 3.5, wi.λ ≤Q∨ λ for all i ∈ J1, n − 1K. Let

h :
⊕

i∈I Rα∨i → R defined by h(
∑
i∈I uiα

∨
i ) =

∑
i∈I ui for all (ui) ∈ RI . Suppose

that there exists i ∈ J1, n − 1K such that wi.λ 6= λ. Then h(wi.λ − λ) < 0 and
for all j ∈ J1, n − 1K, h(wj .λ − λ) ≤ 0. By integrating, we get that h(0) < 0:
a contradiction. Therefore π(t) = a + tλ = πaλ(t) for all t ∈ [0, 1], which is our
assertion. �

The following proposition corresponds to Corollary 4.4 of [Héb17].

Proposition 3.7. Let x ∈ I be such that ρ+∞(x) = ρ−∞(x). Then x ∈ A.
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Proof. Let x ∈ I such that ρ+∞(x) = ρ−∞(x). Suppose that x ∈ I\A. By
Lemma 3.5 a) of [Héb17], one has x ≤ yν(x) and dv(x, yν(x)) = λ, with λ =
yν(x) − ρ+∞(x) ∈ R∗+ν. Let A be an apartment containing x and +∞, which
exists by (MA3). Let τ : [0, 1] → A be defined by τ(t) = (1 − t)x + tyν(x) for all
t ∈ [0, 1] (this does not depend on the choice of A by Proposition 5.4 of [Rou11])
and π = ρ−∞ ◦ τ . Then by Lemma 3.4, π is a λ-path from ρ−∞(x) = ρ+∞(x) to
yν(x) = ρ+∞(x) + λ.

By Lemma 3.6, π(t) = ρ+∞(x) + tλ for all t ∈ [0, 1]. By Lemma 3.6 of [Héb17],
τ([0, 1]) ⊂ A. Thus x = τ(0) ∈ A: this is absurd. Therefore x ∈ A, which is our
assertion. �

3.1.3. Topological considerations on apartments. The following proposition gener-
alizes Corollary 5.9 (ii) of [Héb16] to our framework.

Proposition 3.8. Let q be a sector-germ of I and A be an apartment of I. Let

ρ : I q→ A. Then ρ|A : A→ A is continuous (for the affine topologies on A and A).

Proof. Using Proposition 3.2 2, one writes A =
⋃n
i=1 Pi where the Pi’s are closed

subsets of A such that for all i ∈ J1, nK, there exists an apartment Ai containing Pi

and q and an isomorphism ψi : A
Pi→ Ai. For all i ∈ J1, nK, one denotes by φi the

isomorphism Ai
q→ A. Then ρ|Pi

= φi ◦ ψi|Pi
for all i ∈ J1, nK.

Let (xk) ∈ AN be a converging sequence and x = limxk. Then for all k ∈ N,
ρ(xk) ∈ {φi ◦ ψi(xk)| i ∈ J1, nK} and thus (ρ(xn)) is bounded. Let (xσ(k)) be a
subsequence of (xk) such that (ρ(xσ(k)) converges. Maybe extracting a subsequence
of (xσ(k)), one can suppose that there exists i ∈ J1, nK such xσ(k) ∈ Pi for all k ∈ N.

One has
(
ρ(xσ(k))

)
= (φi◦ψi(xσ(k))) and thus ρ(xσ(k))→ φi◦ψi(x) = ρ(x) (because

Pi is closed) and thus (ρ(xk)) converges towards ρ(x). Hence ρ|A is continuous. �

The following proposition generalizes Corollary 5.10 of [Héb16] to our context.

Proposition 3.9. Let A be an apartment. Then A ∩ A is closed.

Proof. By Proposition 3.7, A ∩ A = {x ∈ A| ρ+∞(x) = ρ−∞(x)}, which is closed
by Proposition 3.8. �

3.2. Decomposition of the intersection of two apartments into enclosed
subsets. The aim of this subsection is to show that A ∩ A is a finite union of
enclosed subsets of A.

We first suppose that A and A share a sector. One can suppose that +∞ ⊂ A∩A.

By Proposition 3.2, one has A =
⋃k
i=1 Pi, for some k ∈ N, where the Pi’s are

enclosed and Pi,−∞ is contained in some apartment Ai for all i ∈ J1, kK.
Lemma 3.10. Let X be a finite dimensional affine space. Let U ⊂ X be a set such

that U ⊂ Ů and suppose that U =
⋃n
i=1 Ui, where for all i ∈ J1, nK the set Ui is the

intersection of U and of a finite number of half-spaces. Let J = {j ∈ J1, nK|Ůj 6= ∅}.
Then U =

⋃
j∈J Uj.

Proof. Let j ∈ J1, nK. Then Fr(Uj) ∩ Ů is contained in a finite number of hyper-

planes. Therefore, if one chooses a Lebesgue measure on X, the set
⋃
i∈J1,nK Ů ∩

Fr(Ui) has measure 0 and thus Ů\⋃i∈J1,nK Fr(Ui) is dense in Ů and thus in U . Let
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x ∈ U . Let

(xk) ∈ (Ů\
⋃

i∈J1,nK
Fr(Ui))

N

be such that (xk) converges towards x. Extracting a sequence if necessary, one can
suppose that there exists i ∈ J1, nK such that xk ∈ Ui for all k ∈ N. By definition

of the frontier, xk ∈ Ůi for all k ∈ N. As Ui is closed in U , x ∈ Ui and the lemma
follows. �

Lemma 3.11. Let i ∈ J1, kK be such that A ∩ A ∩ Pi has nonempty interior in A.
Then A ∩ A ⊃ Pi.

Proof. One chooses an apartment Ai containing Pi,−∞ and φi : A
Pi→ Ai . Let

ψi : Ai
Ai∩A→ A (ψi exists and is unique by Subsection 2.3.2). Let x ∈ Pi. By

definition of ρ−∞, one has ρ−∞(x) = ψi(x) and thus ρ−∞(x) = ψi ◦ φi(x).

Let f : A
A∩A→ A. One has ρ+∞(x) = f(x) for all x ∈ A. By Proposition 3.7,

A ∩ A ∩ Pi = {x ∈ Pi|ρ+∞(x) = ρ−∞(x)} = Pi ∩ (f − ψi ◦ φi)−1({0}).
As f − ψi ◦ φi is affine, (f − ψi ◦ φi)−1({0}) is an affine subspace of A and as it

has nonempty interior, (f − ψi ◦ φi)−1({0}) = A. Therefore Pi ⊂ A ∩A.
�

We recall the definition of x +∞, if x ∈ I (see 2.3.3). Let x ∈ I and B be an
apartment containing x and +∞. Let S be a sector of A, parallel to Cvf and such
that S ⊂ A ∩ A. Then x+∞ is the sector of A based at x and parallel to S. This
does not depend on the choice of A.

Lemma 3.12. One has A ∩ A = Int(A ∩ A).

Proof. By Proposition 3.9, A ∩ A is closed and thus Int(A ∩ A) ⊂ A ∩ A.
Let x ∈ A ∩ A. By (MA4), one has x +∞ ⊂ A ∩ A. The fact that there exists

(xn) ∈ Int(x+∞)N such that xn → x proves the lemma. �

Lemma 3.13. Let J = {i ∈ J1, kK| IntA(Pi ∩A∩A) 6= ∅}. Then A∩A =
⋃
j∈J Pj.

Proof. Let U = A ∩ A. Then by Lemma 3.12 and Lemma 3.10, U =
⋃
j∈J U ∩ Pj

and Lemma 3.11 completes the proof. �

We no more suppose that A contains +∞. We say that
⋃k
i=1 Pi is a decompo-

sition of A ∩ A into enclosed subsets if:

(1) k ∈ N and for all i ∈ J1, kK, Pi is enclosed

(2) A ∩ A =
⋃k
i=1 Pi

(3) for all i ∈ J1, kK, there exists an isomorphism φi : A Pi→ A.

Proposition 3.14. Let A be an apartment. Then there exists a decomposition⋃k
i=1 Pi of A ∩ A into enclosed subsets.
As a consequence there exists a finite set M of walls such that Fr(A ∩ A) ⊂⋃
M∈MM .
If moreover A ∩ A is convex, one has A ∩ A =

⋃
j∈J Pj, where J = {j ∈

J1, kK| supp(Pj) = supp(A ∩ A)}.
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Proof. Let n ∈ N and Pn: “for all apartment B such that d(B,A) ≤ n, there

exists a decomposition
⋃`
i=1Qi of A ∩ B into enclosed subsets”. The property P0

is true by Lemma 3.13. Let n ∈ N and suppose that Pn is true. Suppose that
there exists an apartment B such that d(B,A) = n+ 1. Using Proposition 3.2, one
writes B = D1 ∪ D2 where D1, D2 are opposite half-apartments such that for all
i ∈ {1, 2}, Di is contained in a apartment Bi satisfying d(Bi,A) = n. If i ∈ {1, 2},
one writes Bi ∩ A =

⋃`i
j=1Q

i
j , where `i ∈ N, the Qij ’s are enclosed and there exists

an isomorphism ψij : Bi
Qi

j→ A. Then

B ∩ A =

`1⋃

j=1

(D1 ∩Q1
j ) ∪

`2⋃

j=1

(D2 ∩Q2
j ).

If i ∈ {1, 2}, one denotes by f i the isomorphism B
Di→ Bi. Then if j ∈ J1, `iK, the

isomorphism ψij ◦ f i fixes Qij ∩Di and thus Pn+1 is true.

Therefore A ∩ A =
⋃k
i=1 Pi where the Pi’s are enclosed. One has Fr(A ∩ A) ⊂⋃k

i=1 Fr(Pi), which is contained in a finite union of walls.
Suppose that A ∩ A is convex. Let X = supp(A ∩ A). By Lemma 3.10 applied

with U = A ∩ A,

A ∩ A =
⋃

i∈J1,kK, IntX(Pi)6=∅
Pi,

which completes the proof. �

3.3. Encloseness of a convex intersection. In this subsection, we prove Propo-
sition 3.22: if A is an apartment such that A∩A is convex, then A∩A is enclosed.
For this we study the “gauge” of A∩A, which is a map parameterizing the frontier
of A ∩ A.

Lemma 3.15. Let A be a finite dimensional affine space, k ∈ N∗ and D1, . . . , Dk be
half-spaces of A and M1, . . . ,Mk be their hyperplanes. Then their exists J ⊂ J1, kK
(maybe empty) such that supp(

⋂k
i=1Di) =

⋂
j∈JMj

Proof. Let d ∈ N∗ and ` ∈ N. Let Pd,`:“for all affine space X such that dimX ≤ d
and for all half-spaces E1, . . . , E` ofX, there exists J ⊂ J1, `K such that supp(

⋂`
i=1Ei) =⋂

j∈J Hj where for all j ∈ J , Hj is the hyperplane of Ej”.
It is clear that for all ` ∈ N, P1,` is true and that for all d ∈ N, Pd,0 and Pd,1 is

true. Let d ∈ N≥2 and ` ∈ N and suppose that (for all d′ ≤ d− 1 and `′ ∈ N, Pd′,`′
is true) and that (for all `′ ∈ J0, `K, Pd,`′ is true).

Let X be a d dimensional affine space, E1, . . . , E`+1 be half-spaces of X and

H1, . . . ,H`+1 be their hyperplanes. Let L =
⋂`
j=1Ej and S = supp L. Then

E`+1 ∩ S is either S or a half-space of S. In the first case, E`+1 ⊃ S ⊃ L, thus⋂`+1
i=1 Ei = L and thus by Pd,`, supp(

⋂`+1
i=1 Ei) =

⋂
j∈J Hj for some J ⊂ J1, `K.

Suppose that E`+1∩S is a half-space of S. Then either E̊`+1∩L 6= ∅ or E̊`+1∩L =

∅. In the first case, one chooses x ∈ E̊`+1 ∩ L and a sequence (xn) ∈ (Intr(L))N

converging towards x. Then for n � 0, xn ∈ E̊`+1 ∩ Intr(L). Consequently,

L ∩ E`+1 has nonempty interior in S. Thus supp(
⋂`+1
i=1 Ei) = S and by Pd,`,

supp(
⋂`+1
i=1 Ei) =

⋂
j∈J Hj for some J ⊂ J1, `K.
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Suppose now that E̊`+1 ∩L is empty. Then L∩E`+1 ⊂ H`+1, where H`+1 is the

hyperplane of E`+1. Therefore
⋂`+1
i=1 Ei =

⋂`+1
i=1(Ei ∩H`+1) and thus by Pd−1,`+1,

supp(
⋂`+1
i=1 Ei) =

⋂
j∈J Hj for some J ⊂ J1, `+ 1K.

�

Lemma 3.16. Let A be an apartment such that A∩A is convex. Then supp(A∩A)
is enclosed.

Proof. Using Proposition 3.14, one writes A ∩ A =
⋃k
i=1 Pi, where the Pi’s are

enclosed and supp(Pi) = supp(A∩A) for all i ∈ J1, kK. By Lemma 3.15, if i ∈ J1, kK,
then supp(Pi) is a finite intersection of walls, which proves the lemma. �

Gauge of a convex. Let A be a finite dimensional affine space. Let C be a closed
and convex subset of A with nonempty interior. One chooses x ∈ C̊ and one fixes
the origin of A in x. Let jC,x : A→ R+ ∪ {+∞} defined by

jC,x(s) = inf{t ∈ R∗+|s ∈ tC}.
The map jC,x is called the gauge of C based at x. In the sequel, we will fix some

x ∈ C̊ and we will denote jC instead of jC,x. Then by Theorem 1.2.5 of [HUL12]
and discussion at the end of Section 1.2 of loc cit, jC(A) ⊂ R+ and jC is continuous.

The following lemma is easy to prove:

Lemma 3.17. Let C be a convex closed set with nonempty interior. Fix the origin
of A in a point of C̊. Then C = {x ∈ A|jC(x) ≤ 1} and C̊ = {x ∈ A|jC(x) < 1}.
Lemma 3.18. Let C be a convex closed set with nonempty interior. Fix the origin
of A in C̊. Let U = UC = {s ∈ A| jC(s) 6= 0}. Let Fr = FrC : U → Fr(C) defined
by Fr(s) = s

jC(s) for all s ∈ U . Then Fr is well defined, continuous and surjective.

Proof. If s ∈ U , then jC(Fr(s)) = jC(s)
jC(s) = 1 and thus Fr takes it values in Fr(C) by

Lemma 3.17. The continuity of Fr is a consequence of the one of jC .
Let f ∈ Fr(C). Then Fr(f) = f and thus Fr is surjective.

�

Let A be an apartment such that A ∩ A is convex and nonempty. Let X be the
support of A∩A in A. By Lemma 3.16, if A∩A = X, then A∩A is enclosed. One
now supposes that A∩A 6= X. One chooses x0 ∈ IntX(A∩A) and consider it as the
origin of A. One defines U = UA∩A and Fr : U → Frr(A∩A) as in Lemma 3.18. The
set U is open and nonempty. Using Proposition 3.14, one writes A ∩ A =

⋃r
i=1 Pi,

where r ∈ N, the Pi’s are enclosed and supp(Pi) = X for all i ∈ J1, rK. Let

M1, . . . ,Mk be distinct walls not containing X such that Frr(A ∩ A) ⊂ ⋃ki=1Mi,
which exists because the Pi’s are intersections of half-spaces of X and A ∩A 6= X.
Let M = {Mi ∩X|i ∈ J1, kK}. If M ∈M, one sets UM = Fr−1(M).

Lemma 3.19. Let U ′ = {x ∈ U |∃(M,V ) ∈ M× VU (x)|Fr(V ) ⊂ M}. Then U ′ is
dense in U .

Proof. Let M ∈M. By Lemma 3.18, UM is closed in U . Let V ′ ⊂ U be nonempty
and open. Then V ′ =

⋃
M∈M UM ∩ V ′. As M is finite, we can apply Baire’s

Theorem, and there exists M ∈ M such that V ′ ∩ UM has nonempty interior and
hence U ′ is dense in U . �
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Lemma 3.20. Let x ∈ U ′ and V ∈ VU (x) be such that Fr(V ) ⊂ M for some
M ∈M. The wall M is unique and does not depend on V .

Proof. Suppose that Fr(V ) ⊂ M ∩M ′, where M,M ′ are hyperplanes of X. Let
α, α′ ∈ Φ, k, k′ ∈ R be such that M = α−1({k}) and M ′ = α′−1({k′}). By
definition of U , for all y ∈ V , Fr(y) = λ(y)y for some λ(y) ∈ R∗+. Suppose that
k = 0. Then α(y) = 0 for all y ∈ V , which is absurd because α 6= 0. By the same
reasoning, k′ 6= 0.

If y ∈ V \
(
α−1({0}) ∪ α′−1({0})

)
, Fr(y) = λ(y)y for some λ(y) ∈ R∗+ and thus

Fr(y) = k
α(y)y = k′

α′(y)y. As V \
(
α−1({0}) ∪ α′−1({0})

)
is dense in V , kα′(y) =

k′α(y) for all y ∈ V and thus M and M ′ are parallel. Therefore M = M ′. It
remains to show that M does not depend on V . Let V1 ∈ VU (x) be such that
Fr(V1) ⊂ M1 for some M1 ∈ M. By the uniqueness we just proved applied to
V ∩ V1, one has M = M1, which completes the proof. �

If x ∈ U ′, one denotes by Mx the wall defined by Lemma 3.20.

Lemma 3.21. Let x ∈ U ′ and D1, D2 be the two half-spaces of X defined by Mx.
Then either A ∩ A ⊂ D1 or A ∩ A ⊂ D2.

Proof. Let V ∈ VU (x) be such that Fr(V ) ⊂ Mx. Let us prove that Fr(V ) =
R∗+V ∩Mx. As Fr(y) ∈ R∗+y for all y ∈ V , Fr(V ) ⊂ R∗+V ∩Mx. Let f be a linear
form on X such that Mx = f−1({k}) for some k ∈ R. If k = 0, then f(v) = 0 for
all v ∈ V , and thus f = 0: this is absurd. Hence k 6= 0.

Let a ∈ R∗+V ∩Mx. One has a = λFr(v), for some λ ∈ R∗+ and v ∈ V . Moreover
f(Fr(v)) = k = f(a) and as k 6= 0, a = Fr(v) ∈ Fr(V ). Thus Fr(V ) = R∗+V ∩Mx

and Fr(V ) is an open set of Mx. Suppose there exists (x1, x2) ∈ (D̊1 ∩ A ∩ A) ×
(D̊2 ∩A∩A). Then conv(x1, x2,Fr(V )) ⊂ A∩A is an open neighborhood of Fr(V )
in X. This is absurd because Fr takes it values in Frr(A ∩ A). Thus the lemma is
proved. �

If x ∈ U ′, one denotes by Dx the half-space delimited by Mx and containing
A ∩ A.

Proposition 3.22. Let A be an apartment such that A∩A is convex. Then A∩A
is enclosed.

Proof. If u ∈ U ′, then A ∩ A ⊂ Du and thus A ∩ A ⊂ ⋂u∈U ′ Du.
Let x ∈ U ′ ∩ ⋂u∈U ′ Du. One has 0 ∈ A ∩ A and thus 0 ∈ Dx. Moreover

Fr(x) ∈Mx ∩A ∩ A and thus x ∈ [0,Fr(x)] ⊂ A ∩ A. Therefore

U ′ ∩
⋂

x∈U ′
Dx ⊂ A ∩ A.

Let x ∈ IntX(
⋂
u∈U ′ Du). If x /∈ U , then x ∈ A ∩ A. Suppose x ∈ U . Then by

Lemma 3.19, there exists (xn) ∈ (U ′ ∩ IntX(
⋂
u∈U ′ Du))N such that xn → x. But

then for all n ∈ N, xn ∈ A∩A and by Proposition 3.9, x ∈ A∩A. As a consequence,
A ∩ A ⊃ IntX(

⋂
u∈U ′ Du). As A ∩ A is closed,

A ∩ A ⊃ IntX(
⋂

u∈U ′
Du) =

⋂

u∈U ′
Du

because
⋂
u∈U ′ Du is closed, convex with nonempty interior in X. Thus we have

proved A ∩ A =
⋂
u∈U ′ Du.
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Let M ′1, . . . ,M
′
k be walls of A such that for all x ∈ U ′, there exists i(x) ∈

J1, kK such that M ′i(x) ∩ X = Mx. One sets M ′x = M ′i(x) for all x ∈ U ′ and one

denotes by D′x the half-apartment of A delimited by M ′x and containing Dx. Then
X ∩⋂x∈U ′ D′x = A ∩ A. Lemma 3.16 completes the proof.

�

3.4. Existence of isomorphisms of apartments fixing a convex set. Let
A be an apartment and P ⊂ A ∩ A. In this section, we study the existence of

isomorphisms of apartments A P→ A. We give a sufficient condition of existence of

such an isomorphism in Proposition 3.26. The existence of an isomorphism A
A∩A→ A

when A and A share a generic ray will be a particular case of this Proposition, see
Theorem 4.22. In the affine case, this will be a first step to prove that for all

apartment A, there exists an isomorphism A
A∩A→ A.

Lemma 3.23. Let A be an apartment of I and φ : A → A be an isomorphism of
apartments. Let P ⊂ A∩A be a nonempty relatively open convex set, Z = supp(P )

and suppose that φ fixes P . Then φ fixes P +(T ∩ ~Z)∩A, where T is the Tits cone.

Proof. Let x ∈ P + (T ∩ ~Z) ∩ A. Write x = p + t, where p ∈ P and t ∈ T .
Asssume t 6= 0. Let L = p + Rt. Then L is a preordered line in I and φ fixes
L ∩ P . Moreover, p ≤ x and thus by Proposition 5.4 of [Rou11], there exists an

isomorphism ψ : A [p,x]→ A. In particular, φ−1 ◦ ψ : A → A fixes L ∩ P . But then
φ−1 ◦ ψ|L is an affine isomorphism fixing a nonempty open set of L: this is the

identity. Therefore φ−1 ◦ ψ(x) = x = φ−1(x), which shows the lemma. �

Lemma 3.24. Let A be an apartment of I. Let U ⊂ A∩A be a nonempty relatively
open set and X = supp(U). Then there exists a nonempty open subset V of U (in

X) such that there exists an isomorphism φ : A V→ A.

Proof. Let
⋃k
i=1 Pi be a decomposition into enclosed subsets of A∩A. Let i ∈ J1, kK

be such that Pi ∩ U has nonempty interior in X and φ : A Pi→ A. Then φ fixes a
nonempty open set of U , which proves the lemma. �

Lemma 3.25. Let A be an apartment of I and φ : A→ A be an isomorphism. Let
F = {z ∈ A|φ(z) = z}. Then F is closed in A.

Proof. By Proposition 3.8, ρ+∞ ◦ φ : A→ A and ρ−∞ ◦ φ : A→ A are continuous.
Let (zn) ∈ FN be such that (zn) converges in A and z = lim zn.

For all n ∈ N, one has

ρ+∞(φ(zn)) = zn = ρ−∞(φ(zn))→ ρ+∞(φ(z)) = z = ρ−∞(φ(z)).

By Proposition 3.7, z = φ(z), which proves the lemma. �

Proposition 3.26. Let A be an apartment of I and P ⊂ A ∩ A be a convex set.

Let X = supp(P ) and suppose that T ∩ ~X has nonempty interior in ~X. Then there

exists an isomorphism of apartments φ : A P→ A.

Proof. (see Figure 1) Let V ⊂ P be a nonempty open set of X such that there

exists an isomorphism φ : A V→ A (such a V exists by Lemma 3.24). Let us show
that φ fixes Intr(P ).
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Figure 1. Proof of Proposition 3.26

Let x ∈ V . One fixes the origin of A in x and thus X is a vector space. Let
(ej)j∈J be a basis of A such that for some subset J ′ ⊂ J , (ej)j∈J′ is a basis
of X and (x + T ) ∩ X ⊃ ⊕

j∈J′ R∗+ej . For all y ∈ X, y =
∑
j∈J′ yjej with

yj ∈ R for all j ∈ J ′, one sets |y| = maxj∈J′ |yj |. If a ∈ A and r > 0, one sets
B(a, r) = {y ∈ X| |y − a| < r}.

Suppose that φ does not fix Intr(P ). Let y ∈ Intr(P ) be such that φ(y) 6= y. Let

s = sup{t ∈ [0, 1]|∃U ∈ VX([0, ty])| φ fixes U}.

Set z = sy. Then by Lemma 3.25, φ(z) = z.
By definition of z, for all r > 0, φ does not fix B(z, r). Let r > 0 be such

that B(z, 5r) ⊂ IntrP . Let z1 ∈ B(z, r) ∩ [0, z[ and r1 > 0 be such that φ fixes
B(z1, r1) and z′2 ∈ B(z, r) such that φ(z′2) 6= z′2. Let r′2 ∈]0, r[ be such that for
all a ∈ B(z′2, r

′
2), φ(z) 6= z. Let z2 ∈ B(z′2, r

′
2) be such that for some r2 ∈]0, r′2[,

B(z2, r2) ⊂ B(z′2, r
′
2) and such that there exists an isomorphism ψ : A B(z2,r2)→ A

(such z2 and r2 exists by Lemma 3.24). Then |z1 − z2| < 3r.
Let us prove that (z1 + T ∩X) ∩ (z2 + T ∩X) ∩ Intr(P ) contains a nonempty

open set U ⊂ X. One identifies X and RJ′ thanks to the basis (ej)j∈J′ . One has

z2 − z1 ∈]− 3, 3[J
′

and thus

(z1 + T ) ∩ (z2 + T ) = (z1 + T ) ∩ (z1 + z2 − z1 + T ) ⊃ z1+]3, 4[J
′
.

As P ⊃ B(z1, 4r), the set (z1 +T ∩X)∩(z2 +T ∩X)∩Intr(P ) contains a nonempty
open set U ⊂ X.

By Lemma 3.23, φ and ψ fix U . Therefore, φ−1 ◦ ψ fixes U and as it is an
isomorphism of affine space of A, φ−1◦ψ fixes X. Therefore φ−1◦ψ(z2) = φ−1(z2) =
z2 and thus φ(z2) = z2: this is absurd. Hence φ fixes Intr(P ). By Lemma 3.25, φ

fixes Intr(P ) = P and thus φ fixes P , which shows the proposition. �
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4. Intersection of two apartments sharing a generic ray

The aim of this section is to prove Theorem 4.22: let A and B be two apartments
sharing a generic ray. Then A ∩ B is enclosed and there exists an isomorphism

φ : A
A∩B→ B.

We first reduce our study to the case where A∩B has nonempty interior by the
following lemma:

Lemma 4.1. Suppose that for all apartments A,B such that A ∩ B contains a
generic ray and has nonempty interior, the set A∩B is convex. Then if A1 and A2

are two apartments containing a generic ray, the set A1 ∩A2 is enclosed and there

exists an isomorphism φ : A1
A1∩A2→ A2.

Proof. Let us prove that A1 ∩A2 is convex. Let δ be the direction of a generic ray
shared by A1 and A2. Let x1, x2 ∈ A1 ∩A2 and F∞ be the vectorial face direction
containing δ. Let F′∞ be the vectorial face direction of A1 opposite to F∞. Let C1

be a chamber of A1 containing x1 and C2 be a chamber of A2 containing x2. Set
r1 = r(C1,F

′∞) ⊂ A1, r2 = r(C2,F
∞) ⊂ A2, R1 = germ(r1) and R2 = germ(r2).

By (MA3) there exists an apartment A3 containing R1 and R2.
Let us prove that A3 contains x1 and x2. One identifies A1 and A. Let F v =

0 + F∞ and F ′v = 0 + F′∞. As A3 ⊃ R1, there exists f ′ ∈ F ′v such that A3 ⊃
x1 +f ′+F ′v. Moreover A3 ⊃ F∞ and thus it contains x1 +f ′+F∞. By Proposition
4.7.1 of [Rou11] x1 + f ′+F∞ = x1 + f ′+F v and thus A3 3 x1. As A3 ⊃ R2, there
exists f ∈ F v such that A3 ⊃ x2 + f . As A3 ⊃ F′∞,

A3 ⊃ x2 + f + F′ = x2 + f + F ′v

by Proposition 4.7.1 of [Rou11]. Thus A3 3 x2.
If i ∈ {1, 2}, each element of Ri has nonempty interior in Ai and thus Ai ∩ A3

has nonempty interior. By hypothesis, A1 ∩ A3 and A2 ∩ A3 are convex. By

Proposition 3.26, there exist φ : A1
A1∩A3→ A3 and ψ : A2

A2∩A3→ A3. Therefore
[x1, x2]A1 = [x1, x2]A3 = [x1, x2]A2 and thus A1 ∩A2 is convex.

The existence of an isomorphism A1
A1∩A2→ A2 is a consequence of Proposi-

tion 3.26 because the direction X of A1 ∩A2 meets T̊ and thus ~X ∩ T spans T .
The fact that A1 ∩A2 is enclosed is a consequence of Proposition 3.22. �

4.1. Definition of the frontier maps. The aim of 4.1 to 4.5 is to prove that if
A and B are two apartments containing a generic ray and such that A ∩ B has
nonempty interior, then A∩B is convex. There is no loss of generality in assuming
that B = A and that the direction R+ν of δ is contained in ±Cvf . As the roles of

Cvf and −Cvf are similar, one supposes that R+ν ⊂ Cvf and that A 6= A. These
hypothesis run until the end of 4.5.

In this subsection, we parametrize Fr(A∩A) by a map and describe A∩A using
the values of this map.

Lemma 4.2. Let V be a bounded subset of A. Then there exists a ∈ R such that
for all u ∈ [a,+∞[ and v ∈ V , v ≤ uν.

Proof. Let a ∈ R∗+ and v ∈ V , then aν − v = a(ν − 1
av). As ν ∈ T̊ and V is

bounded, there exists b > 0 such that for all a > b, ν − 1
av ∈ T̊ , which proves the

lemma because T̊ is a cone. �
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Lemma 4.3. Let y ∈ A ∩ A. Then A ∩ A contains y + R+ν.

Proof. Let x ∈ A such that A ∩ A ⊃ x+ R+ν. The ray x+ R+ν is generic and by
(MA4), if y ∈ A, A ∩ A contains the convex hull of y and x + [a,+∞[ν, for some
a� 0. In particular it contains y + R+ν. �

Let U = {y ∈ A|y + Rν ∩A 6= ∅} = (A ∩ A) + Rν.

Lemma 4.4. The set U is convex.

Proof. Let u, v ∈ U . Let u′ ∈ u+ R+ν ∩ A. By Lemma 4.2 and Lemma 4.3, there
exists v′ ∈ v + R+ν such that u′ ≤ v′. By consequence 2) of Proposition 5.4 of
[Rou11], [u′, v′] ⊂ A ∩ A. By definition of U , [u′, v′] + Rν ⊂ U and in particular
[u, v] ⊂ U , which is the desired conclusion. �

There are two possibilities: either there exists y ∈ A such that y + Rν ⊂ A or
for all y ∈ A, y + Rν * A. The first case is the easiest and we treat it in the next
lemma.

Lemma 4.5. Suppose that for some y ∈ A, y − R+ν ⊂ A ∩ A. Then A ∩ A = U .
In particular, A ∩ A is convex.

Proof. By Lemma 4.3, A∩A = (A∩A)+R+ν. By symmetry and by hypothesis on
A∩A, one has (A∩A) +R−ν = A∩A. Therefore A∩A = (A∩A) +Rν = U . �

Definition of the frontier. Let u ∈ U . Then by Lemma 4.3, u + Rν ∩ A is of the
form a+ R∗+ν or a+ R+ν for some a ∈ A. As A∩A is closed (by Proposition 3.9),
the first case cannot occur. One sets Frν(u) = a ∈ A∩A. One fixes ν until the end
of 4.5 and one writes Fr instead of Frν .

Lemma 4.6. The map Fr takes it values in Fr(A ∩A) and A ∩A =
⋃
x∈U Fr(x) +

R+ν.

Proof. Let u ∈ U . Then Fr(u) + R+ν = (u + Rν) ∩ A. Thus Fr(u) /∈ Int(A ∩ A).
By Proposition 3.9, Fr(u) ∈ Fr(A ∩ A) and hence Fr(U) ⊂ Fr(A ∩ A).

Let u ∈ A ∩ A. One has u ∈ A ∩ (u + Rν) = Fr(u) + R+ν and we deduce that
A ∩A ⊂ ⋃x∈U Fr(x) + R+ν. The reverse inclusion is a consequence of Lemma 4.3,
which finishes the proof. �

Let us sketch the proof of the convexity of A ∩ A (which is Lemma 4.21). If

x, y ∈ Ů , one defines Frx,y : [0, 1] → Fr(A ∩ A) by Frx,y(t) = Fr((1 − t)x + ty)
for all t ∈ [0, 1]. For all t ∈ [0, 1], there exists a unique fx,y(t) ∈ R such that

Frx,y(t) = (1 − t)x + ty + fx,y(t)ν. We prove that for “almost” all x, y ∈ Ů , fx,y
is convex. Let x, y ∈ Ů . We first prove that fx,y is continuous and piecewise
affine. This enables to reduce the study of the convexity of fx,y to the study of
fx,y at the points where the slope changes. LetM be a finite set of walls such that

Fr(Ů) ⊂ ⋃M∈MM , which exists by Proposition 3.14. Using order-convexity, we
prove that if {x, y} is such that for each point u ∈]0, 1[ at which the slope changes,
Frx,y(u) is contained in exactly two walls ofM, then fx,y is convex. We then prove
that there are “enough” such pairs and conclude by an argument of density.
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4.2. Continuity of the frontier. In this subsection, we prove that Fr is contin-
uous on Ů , using order-convexity.

Let λ : U → R such that for all x ∈ U , Fr(x) = x+λ(x)ν. We prove the continuity
of Fr|Ů by proving the continuity of λ|Ů . For this, we begin by dominating λ([x, y])

if x, y ∈ Ů (see Lemma 4.7) by a number depending on x and y. We use it to prove

that if n ∈ N and a1, . . . , an ∈ Ů , then λ
(
conv({a1, . . . , an})

)
is dominated and

then deduce that Fr|Ů is continuous (which is Lemma 4.12).

Lemma 4.7. Let x, y ∈ U , M = max{λ(x), λ(y)} and k ∈ R+ be such that x+kν ≥
y. Then for all u ∈ [x, y], λ(u) ≤ k +M .

Proof. By Lemma 4.3, x+Mν and y+Mν are in A. By hypothesis, x+kν+Mν ≥
y+Mν. Let t ∈ [0, 1] and u = tx+ (1− t)y. By order-convexity t(x+ kν +Mν) +
(1− t)(y+Mν) ∈ A. Therefore λ(u) ≤M+ tk ≤M+k, which is our assertion. �
Lemma 4.8. Let d ∈ N, X be a d dimensional affine space and P ⊂ X. One sets
conv0(P ) = P and for all k ∈ N,

convk+1(P ) = {(1− t)p+ tp′|t ∈ [0, 1] and (p, p′) ∈ convk(P )2}.
Then convd(P ) = conv(P ).

Proof. By induction,

convk(P ) = {
2k∑

i=1

λipi|(λi) ∈ [0, 1]2
k

,
2k∑

i=1

λi = 1 and (pi) ∈ P 2k}.

This is thus a consequence of Carathéodory’s Theorem. �

Lemma 4.9. Let P be a bounded subset of Ů such that sup
(
λ(P )

)
< +∞. Then

sup
(
λ(conv1(P ))

)
< +∞.

Proof. Let M = supx∈P λ(x) and k ∈ R+ such that for all x, x′ ∈ P , x′ + kν ≥ x,
which exists by Lemma 4.2. Let u ∈ conv1(P ) and x, x′ ∈ P such that u ∈ [x, x′].
By Lemma 4.7, λ(u) ≤ k +M and the lemma follows.

�
Lemma 4.10. Let x ∈ Ů . Then there exists V ∈ VŮ (x) such that V is convex and

sup
(
λ(V )

)
< +∞.

Proof. Let n ∈ N and a1, . . . , an ∈ Ů such that V = conv(a1, . . . , an) contains x
in its interior. Let M ∈ R+ such that for all y, y′ ∈ V , one has y + Mν ≥ y′,
which is possible by Lemma 4.2. One sets P = {a1, . . . , an} and for all k ∈ N,
Pk = convk(P ). By induction using Lemma 4.9, sup

(
λ(Pk)

)
< +∞ for all k ∈ N

and we conclude with Lemma 4.8. �
Lemma 4.11. Let V ⊂ Ů be open, convex, bounded and such sup

(
λ(V )

)
≤M for

some M ∈ R+. Let k ∈ R+ such that for all x, x′ ∈ V , x+ kν ≥ x′. Let a ∈ V and
u ∈ A such that a+u ∈ V . Then for all t ∈ [0, 1], λ(a+tu) ≤ (1−t)λ(a)+t(M+k).

Proof. By Lemma 4.3, a+u+(M+k)ν ∈ A. Moreover a+u+(M+k)ν ≥ a+Mν,
a+Mν ≥ a+ λ(a)ν = Fr(a) and thus a+ u+ (M + k)ν ≥ Fr(a).

Let t ∈ [0, 1]. Then by order-convexity,

(1− t)(a+ λ(a)ν) + t(a+ u+ (M + k)ν = a+ tu+
(
(1− t)λ(a) + t(M + k)

)
ν ∈ A.

Therefore λ(a+ tu) ≤ (1− t)λ(a) + t(M + k), which is our assertion. �
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Lemma 4.12. The map Fr is continuous on Ů .

Proof. Let x ∈ Ů and V ∈ VŮ (x) be convex, open, bounded and such that

sup
(
λ(V )

)
≤ M for some M ∈ R+, which exists by Lemma 4.10. Let k ∈ R+

such that for all v, v′ ∈ V , v+ kν ≥ v′. Let | | be a norm on A and r > 0 such that
B(x, r) ⊂ V , where B(x, r) = {u ∈ A| |x− u| ≤ r}. Let S = {u ∈ A| |u− x| = r}.
Let N = M + k.

Let y ∈ S and t ∈ [0, 1]. By applying Lemma 4.11 with a = x and u = y− x, we
get that

λ((1− t)x+ ty) ≤ λ(x) + tN.

By aplying Lemma 4.11 with a = (1− t)x+ ty and u = x− y, we obtain that

λ(x) = λ
(
(1− t)x+ ty + t(x− y)

)
≤ λ

(
(1− t)x+ ty

)
+ tN.

Therefore for all t ∈ [0, 1] and y ∈ S,

λ(x)− tN ≤ λ
(
(1− t)x+ ty

)
≤ λ(x) + tN.

Let (xn) ∈ B(x, r)N such that xn → x. Let n ∈ N. One sets tn = |xn−x|
r . If

tn = 0, one chooses yn ∈ S. It tn 6= 0, one sets yn = x + 1
tn

(xn − x) ∈ S. Then

xn = tnyn + (1 − tn)x and thus |λ(xn) − λ(x)| ≤ tnN → 0. Consequently λ|Ů is

continuous and we deduce that Fr|Ů is continuous. �

4.3. Piecewise affineness of Frx,y. We now study the map Fr. We begin by
proving that there exists a finite set H of hyperplanes of A such Fr is affine on each
connected component of Ů\⋃H∈HH.

LetM be finite set of walls such that Fr(A∩A) is contained in
⋃
M∈MM , whose

existence is provided by Proposition 3.14. Let r = |M|. Let {β1, . . . , βr} ∈ Φr and
(`1, . . . , `r) ∈

∏r
i=1 Λ′βi

be such that M = {Mi| i ∈ J1, rK} where Mi = β−1
i ({`i})

for all i ∈ J1, rK.
Let i, j ∈ J1, rK be such that i 6= j. If βi(ν)βj(ν) 6= 0 and Mi and Mj are not

parallel, one sets Hi,j = {x ∈ A| `i−βi(x)
βi(ν) =

`j−βj(x)
βj(ν) } (this definition will appear

naturally in the proof of the next lemma). Then Hi,j is a hyperplane of A. Indeed,

otherwise Hi,j = A. Hence
βj(x)
βj(ν) −

βi(x)
βi(ν) =

`j
βj(ν) − `i

βi(ν) , for all x ∈ A. Therefore
βj(x)
βj(ν) −

βi(x)
βi(ν) = 0 for all x ∈ A and thus Mi and Mj are parallel: a contradiction.

Let H = {Hi,j |i 6= j, βi(ν)βj(ν) 6= 0 and Mi ∦Mj} ∪ {Mi|βi(ν) = 0}.
Even if the elements of H can be walls of A, we will only consider them as

hyperplanes of A. To avoid confusion between elements of M and elements of H,
we will try to use the letter M (resp. H) in the name of objects related toM (resp.
H).

Lemma 4.13. Let M∩ =
⋃
M 6=M ′∈MM ∩M ′. Then Fr−1(M∩) ⊂ ⋃H∈HH.

Proof. Let x ∈ Fr−1(M∩). One has Fr(x) = x + λν, for some λ ∈ R. There exists
i, j ∈ J1, rK such that:

• i 6= j,
• βi(Fr(x)) = `i and βj(Fr(x)) = `j ,
• Mi and Mj are not parallel.

Therefore if βi(ν)βj(ν) 6= 0, then λ = `i−βi(x)
βi(ν) =

`j−βj(x)
βj(ν) and thus x ∈ Hi,j . If

βi(ν)βj(ν) = 0, then x ∈Mi ∪Mj , which proves the lemma. �
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Lemma 4.14. One has A ∩ A = Int(A ∩ A).

Proof. By Proposition 3.9, A ∩ A is closed and thus Int(A ∩ A) ⊂ A ∩ A.
Let x ∈ A∩A. Let V be an open bounded set contained in A∩A. By Lemma 4.2

applied to x − V , there exists a > 0 such that for all v ∈ V , one has v + aν ≥ x.
One has V + aν ⊂ A ∩ A and by order convexity (Conséquence 2 of Proposition
5.4 in [Rou11]), conv(V + aν, x) ⊂ A ∩ A. As conv(V + aν, x) is a convex set with
nonempty interior, there exists (xn) ∈ Int(conv(V +aν, x))N such that xn → x, and
the lemma follows. �

Let f1, . . . , fs be affine forms on A such that H = {f−1
i ({0})|i ∈ J1, sK} for some

s ∈ N. Let R = (Ri) ∈ {≤,≥, <,>}s. One sets

PR = Ů ∩ {x ∈ A| (fi(x) Ri 0) ∀i ∈ J1, sK}.
If R = (Ri) ∈ {≤,≥}s, one defines R′ = (R′i) ∈ {<,>}s by R′i = “ <” if Ri = “ ≤”
and R′i = “ >” otherwise (one replaces large inequalities by strict inequalities). If
R ∈ {≤,≥}s, then Int(PR) = PR′ .

Let X = {R ∈ {≤,≥}s|P̊R 6= ∅}. By Lemma 4.14 and Lemma 3.10, Ů =⋃
R∈X PR and for all R ∈ X, P̊R ⊂ A\⋃H∈HH.

Lemma 4.15. Let R ∈ X. Then there exists M ∈M such that Fr(PR) ⊂M .

Proof. Let x ∈ P̊R. Let M ∈ M be such that Fr(x) ∈ M . Let us show that
Fr(PR) ⊂ M . By continuity of Fr (by Lemma 4.12), it suffices to prove that

Fr(P̊R) ⊂ M . By connectedness of P̊R it suffices to prove that Fr−1(M) ∩ P̊R is

open and closed. As Fr is continuous, Fr−1(M) ∩ P̊R is closed (in P̊R).

Suppose that Fr−1(M) ∩ P̊R is not open. Then there exists y ∈ P̊R such that

Fr(y) ∈M and a sequence (yn) ∈ (P̊R)N such that yn → y and such that Fr(yn) /∈M
for all n ∈ N. For all n ∈ N, Fr(yn) ∈ ⋃M ′∈MM ′, and thus, maybe extracting a
subsequence, one can suppose that for some M ′ ∈M, yn ∈M ′ for all n ∈ N.

As Fr is continuous (by Lemma 4.12), Fr(y) ∈M ′. Thus Fr(y) ∈M ∩M ′ and by

Lemma 4.13, y ∈ ⋃H∈HH, which is absurd by choice of y. Therefore, Fr−1(M)∩P̊R
is open, which completes the proof of the lemma. �

Lemma 4.16. Let R ∈ X and M ∈ M be such that Fr(PR) ⊂ M . Then ν /∈ ~M
and there exists a (unique) affine morphism ψ : A → M such that Fr|PR

= ψ|PR
.

Moreover ψ induces an isomorphism ψ : A/Rν →M .

Proof. If y ∈ Ů , then Fr(y) = y + k(y)ν for some k(y) ∈ R. Let α ∈ Φ be such
that M = α−1({u}) for some u ∈ −Λ′α. For all y ∈ PR, one has α(Fr(y)) =
α(y) + k(y)α(ν) = u and α(ν) 6= 0 because α is not constant on PR. Consequently

ν /∈ ~M and Fr(y) = y + u−α(y)
α(ν) ν. One defines ψ : A → M by ψ(y) = y + u−α(y)

α(ν) ν

for all y ∈ A and ψ has the desired properties. �

4.4. Local convexity of Frx,y. Let M ∈ M and ~M be its direction. Let TM =

T̊ ∩ ~M and DM be the half-apartment containing a shortening of R+ν and whose
wall is M .

Lemma 4.17. Let a ∈ Fr(Ů) and suppose that there exists K ∈ VŮ (a) such that

Fr(K) ⊂M for some M ∈M. Then Fr
(
(a± T̊M ) ∩ Ů

)
⊂ DM .
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Proof. Let u ∈ Ů ∩ (a− T̊M ), u 6= a. Suppose Fr(u) /∈ DM . Then Fr(u) = u− kν,

with k ≥ 0. Then Fr(u) ≤ u≤̊a (which means that a− u ∈ T̊ ). Therefore for some
K′ ∈ VM (a) such that K′ ⊂ K, one has Fr(u)≤̊u′ for all u′ ∈ K′. As a consequence
A ∩ A ⊃ conv(K′,Fr(u)) and thus Fr(u′) /∈ M for all u′ ∈ K′. This is absurd and
hence Fr(u) ∈ DM .

Let v ∈ Ů∩(a+T̊M ), v 6= a and suppose that Fr(v) /∈ DM . Then for v′ ∈ [Fr(v), v[
near enough from v, one has a ≤ v′. Therefore, [a, v′] ⊂ A∩A. Thus for all t ∈]a, v[,
Fr(t) /∈ DM , a contradiction. Therefore Fr(v) ∈ DM and the lemma follows. �

The following lemma is crucial to prove the local convexity of Frx,y for good
choices of x and y. This is mainly here that we use that A ∩ A have nonempty
interior.

Let H∩ =
⋃
H 6=H′∈HH ∩H ′.

Lemma 4.18. Let x ∈ Ů ∩ (
⋃
H∈HH)\H∩ and H ∈ H be such that x ∈ H. Let

C1 and C2 be the half-spaces defined by H. Then there exists V ∈ VŮ (x) satisfying
the following conditions:

(1) For i ∈ {1, 2}, let Vi = V ∩ C̊i. Then Vi ⊂ P̊Ri
for some Ri ∈ X.

(2) Let M be a wall containing Fr(PR1
). Then Fr(V ) ⊂ DM .

Proof. (see Figure 2) The set Ů\⋃H∈H\{H}H is open in Ů . Let V ′ ∈ VŮ (x) be

such that V ′ ∩⋃H′∈H\{H}H ′ = ∅ and such that V ′ is convex. Let i ∈ {1, 2} and

V ′i = V ′∩C̊i. Then V ′i ⊂ Ů\
⋃
H∈HH. Moreover V ′i is connected. As the connected

components of Ů\⋃H∈HH are the P̊R’s for R ∈ X, we deduce that V ′ satisfies 1.

Let ψ : A→M be the affine morphism such that ψ|PR1
= Fr|PR1

and ψ : A/Rν →
M be the induced isomorphism, which exist by Lemma 4.16. Let π : A→ A/Rν be
the canonical projection. As C1 is invariant under translation by ν (by definition
of the elements of H), the set ψ(C1) = ψ(π(C1)) is a half-space D of M . Let
V ′′ = V ′ ∩ C1. Then ψ(V ′′) = ψ(C1) ∩ ψ(π(V ′)) ∈ VD(Fr(x)).

Let g : ~M → R be a linear form such that D = g−1([b,+∞[), for some b ∈ R.
Let ε ∈ {−1, 1} be such that g(u) > 0 for some u ∈ εTM . Let η > 0. Then
Fr(x+ ηu) ∈ x+ ηu+ Rν and thus Fr(x+ ηu) = Fr(x) + ηu+ kν for some k ∈ R.

If η is small enough that x + ηu ∈ V ′′, then kν = Fr(x + ηu) − (Fr(x) + ηu) ∈ ~M
and hence k = 0 (by Lemma 4.16). Let K = ψ(V ′′) +Rν and a = Fr(x) +ηu. Then
K ∈ VŮ (a) and for all v ∈ K, Fr(v) ∈M . By Lemma 4.17,

Fr(Ů ∩ (a− εTM )) = Fr(Ů ∩ (a− εTM + Rν)) ⊂ DM .

Moreover, a− εTM +Rν ∈ VŮ (x) and thus if one sets V = V ′ ∩ (a− εTM +Rν), V
satisfies 1 and 2.

�

4.5. Convexity of A∩A. Let ~H =
⋃
H∈H

~H be the set of directions of the hyper-
planes of H.

Lemma 4.19. Let x, y ∈ Ů ∩A ∩A be such that y − x /∈ ~H and such that the line
spanned by [x, y] does not meet any point of H∩. Then [x, y] ⊂ Ů ∩A ∩ A.

Proof. Let π : [0, 1] → A defined by π(t) = tx + (1 − t)y for all t ∈ [0, 1]. Set
g = Fr ◦ π. Let f1, . . . , fs be affine forms on A such that H = {f−1

i ({0}| i ∈ J1, sK}.
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Figure 2. Proof of Lemma 4.18 when dimH = 2 (the illustration
is made in M)

As y−x /∈ ~H, for all i ∈ J1, sK, the map fi◦g is strictly monotonic and π−1(
⋃
H∈HH)

is finite. Therefore, there exist k ∈ N and open intervals T1 . . . , Tk such that:

• [0, 1] =
⋃k
i=1 Ti,

• T1 < . . . < Tk,
• for all i ∈ J1, kK, there exist Ri ∈ X such that π(Ti) ⊂ P̊Ri

.

For all t ∈ [0, 1], one has g(t) = π(t)+f(t)ν for some f(t) ∈ R. By Lemma 4.16 this
equation uniquely determines f(t) for all t ∈ [0, 1]. By Lemma 4.12, f is continuous
and by Lemma 4.16, f is affine on each Ti.

Let us prove that f is convex. Let i ∈ J1, k − 1K. One writes Ti =]a, b[. Then
for ε > 0 small enough, one has f(b + ε) = f(b) + εc+ and f(b − ε) = f(b) − εc−.
To prove the convexity of f , it suffices to prove that c− < c+. Let M be a wall

containing Fr(PRi
). As π(b) ∈ Ů ∩ ⋃H∈HH\H∩, we can apply Lemma 4.18 and

there exists V ∈ V[0,1](b) such that g(V ) ⊂ DM . Let h : A → R be a linear map

such that DM = h−1([a,+∞[). For ε > 0 small enough, one has h(g(b + ε)) ≥ a
and h(g(b− ε)) = a.

For ε > 0 small enough, one has

h(g(b+ ε)) = h(π(b) + ε(y − x) + (f(b) + εc+)ν)

= h(g(b) + ε(y − x+ c+ν))

= a+ ε(h(y − x) + c+h(ν)) ≥ a,
and similarly, h(g(b− ε)) = a− ε(h(y − x) + c−h(ν)) = a.
Therefore h(y−x)+c+h(ν) ≥ 0, h(y−x)+c−h(ν) = 0 and hence (c+−c−)h(ν) ≥

0. As DM contains a shortening of R+ν, h(ν) ≥ 0 and by Lemma 4.16, h(ν) > 0.
Consequently, c− ≤ c+ and, as i ∈ J1, k − 1K was arbitrary, f is convex.
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For all t ∈ [0, 1], f(t) ≤ (1− t)f(0) + tf(1). Therefore

(1−t)g(0)+tg(1) = π(t)+((1−t)f(0)+tf(1))ν ∈ π(t)+f(t)ν+R+ν = g(t)+R+ν.

By definition of Fr, if t ∈ [0, 1], then (1− t)g(0) + tg(1) ∈ A∩A. Moreover, there
exist λ, µ ≥ 0 such that x = g(0) + λν and y = g(1) + µν. Then

π(t) = (1− t)x+ ty = (1− t)g(0) + tg(1) + ((1− t)λ+ tµ)ν ∈ A ∩ A

and hence [x, y] ⊂ A ∩ A.
�

Lemma 4.20. Let x, y ∈ Int(A ∩ A) and ~H =
⋃
H∈H

~H. Then there exists

(xn), (yn) ∈ Int(A ∩ A)N satisfying the following conditions:

(1) xn → x and yn → y

(2) for all n ∈ N, yn − xn /∈ ~H
(3) the line spanned by [xn, yn] does not meet any point of H∩.

Proof. Let (xn) ∈ (Int(A ∩ A)\H∩)N be such that xn → x. Let | | be a norm on
A. Let n ∈ N. Let F be the set of points z ∈ A such that the line spanned by
[xn, z] meets H∩. Then F is a finite union of hyperplanes of A (because H∩ is a

finite union of spaces of dimension at most dimA− 2). Therefore A\(F ∪ xn + ~H)

is dense in A and one can choose yn ∈ A\(F ∪ xn + ~H) such that |yn − y| ≤ 1
n+1 .

Then (xn) and (yn) satisfy the conditions of the lemma. �

Lemma 4.21. The set A ∩ A is convex.

Proof. Let x, y ∈ Int(A∩A). Let (xn), (yn) be as in Lemma 4.20. Let t ∈ [0, 1]. As

Int(A∩A) ⊂ Ů , one has txn + (1− t)yn ∈ A∩A for all n ∈ N, by Lemma 4.19. As
A ∩ A is closed (by Proposition 3.9), tx + (1 − t)y ∈ A ∩ A. Therefore Int(A ∩ A)

is convex. Consequently A ∩ A = Int(A ∩ A) (by Lemma 4.14) is convex. �

We thus have proved the following theorem:

Theorem 4.22. Let A and B be two apartments sharing a generic ray. Then A∩B
is enclosed and there exists an isomorphism φ : A

A∩B→ B.

Proof. By Lemma 4.21 and Lemma 4.1, A∩B is convex. By Proposition 3.22, A∩B
is enclosed and by Proposition 3.26, there exists an isomorphism φ : A

A∩B→ B. �

4.6. A partial reciprocal. One says that a group G of automorphisms of I acts
strongly transitively on I if the isomorphisms involved in (MA2) and (MA4) are
induced by elements of G. For example if G is a quasi-split Kac-Moody group
over an ultrametric field K, it acts strongly transitively on the associated masure
I(G,K).

We now prove a kind of weak reciprocal of Theorem 4.22 when some group G
acts strongly transitively on I and when I is thick, which means that each panel
is contained in at least three chambers. This implies some restrictions on Λ′ by
Lemma 4.24 below and Remark 3.3.

Lemma 4.23. Let P be an enclosed subset of A and suppose that P̊ 6= ∅. One fixes
the origin of A in some point of P̊ . Let jP be the gauge of P defined in Section 3.3.
Let U = {x ∈ A|jP (x) 6= 0}. One defines Fr : U → P as in Lemma 3.18. One

writes P =
⋂k
i=1Di, where the Di’s are half-apartments of A. Let j ∈ J1, kK, Mj
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be the wall of Dj and suppose that for all open subset V of U , Fr(V ) * Mj. Then
P =

⋂
i∈J1,kK\{j}Di.

Proof. Suppose that P *
⋂
i∈J1,kK\{j}Di. Let V be a nonempty open and bounded

subset contained in
⋂
i∈J1,kK\{j}Di\P . Let n ∈ N∗ be such that 1

nV ⊂ P . Let v ∈ V .

Then [ 1
nv, v] ∩ Fr(P ) = {Fr(v)}. Moreover for all i ∈ J1, kK\{j}, [ 1

nv, v] ⊂ D̊i.
As Fr(P ) ⊂ ⋃

i∈J1,kKMi, we deduce that Fr(v) ∈ Mj : this is absurd and thus

P =
⋂
i∈J1,kK\{j}Di.

�
Lemma 4.24. Suppose that I is thick. Let D be a half-apartment of A. Then there
exists an apartment A of A such that D = A ∩ A.

Proof. Let F be a panel of the wall of D. As I is thick, there exists a chamber
C dominating F and such that C * A. By Proposition 2.9 1) of [Rou11], there
exists an apartment A containing D and C. The set A ∩ A is a half-apartment by
Lemma 3.1 and thus A ∩A = D, which proves the lemma. �
Proposition 4.25. Suppose that I is thick and that some group G acts strongly
transitively on I. Let P be an enclosed subset of A containing a generic ray and
having nonempty interior. Then there exists an apartment A such that A∩A = P .

Proof. One writes P = D1 ∩ . . . ∩ Dk, where the Di’s are half-apartments of A.
One supposes that k is minimal for this writing, which means that for all i ∈ J1, nK,
P 6= ⋂

j∈J1,kK\{i}Dj . For all i ∈ J1, nK, one chooses an apartment Ai such that

A ∩Ai = Di. Let φi : A Di→ Ai and gi ∈ G inducing φi.
Let g = g1 . . . gk and A = g.A. Then A ∩ A ⊃ D1 ∩ . . . ∩ Dk and g fixes

D1 ∩ . . .∩Dk. Let us show that A∩A = {x ∈ A|g.x = x}. By Theorem 4.22, there

exists φ : A A∩A→ A. Moreover g−1
|A ◦φ : A→ A fixesD1∩. . .∩Dk, which has nonempty

interior and thus g−1
|A ◦ φ = IdA, which proves that A ∩ A = {x ∈ A|g.x = x}.

Suppose that A ∩ A ) D1 ∩ . . . ∩ Dk. Let i ∈ J1, kK be such that there exists
a ∈ A ∩ A\Di.

One fixes the origin of A in some point of P̊ , one sets U = {x ∈ A| jP (x) 6= 0} and
one defines Fr : U → Fr(P ) as in Lemma 3.18. By minimality of k and Lemma 4.23,
there exists a nonempty open set V of U such that Fr(V ) ⊂Mi.

By the same reasoning as in the proof of Lemma 3.21, Fr(V ) ∩Mi is open in
Mi. Consequently, there exists v ∈ Fr(V ) such that v /∈ ⋃j∈J1,kK\{i}Mj . Let

V ′ ∈ VU (v) be such that V ′∩⋃j∈J1,kK\{i}Mj = ∅ and such that V ′ is convex. Then

V ′ ⊂ ⋂j∈J1,kK\{i} D̊j . Let V ′′ = Fr(V ) ∩ V ′. By Theorem 4.22, [a, v] ⊂ A ∩ A and

hence g fixes [a, v]. Moreover for u ∈ [a, v] near v, one has u ∈ ⋂j∈J1,kK\{i}Dj . Then

g.u = g1 . . . gi.(gi+1 . . . gk.u) = g1 . . . gi.u. Moreover, gi.u = g−1
i−1. . . . .g

−1
1 .u = u.

Therefore u ∈ Di, which is absurd by choice of u. �
Remark 4.26. (1) In the proof above, the fact that P contains a generic ray is

only used to prove that A∩A is convex and that there exists an isomorphism

φ : A
A∩A→ A. When G is an affine Kac-Moody group and I is its masure, we

will see that these properties are true without assuming that A∩A contains
a generic ray. Therefore, for any enclosed subset P of A having nonempty
interior, there exists an apartment A such that A ∩ A = P
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(2) Let T be a discrete homogeneous tree with valence 3 and x be a vertex of
T. Then there exists no pair (A,A′) of apartments such that A∩A′ = {x}.
Indeed, let A be an apartment containing x and C1, C2 be the alcoves of A
dominating x. Let A′ be an apartment containing x. If A′ does not contain
C1, it contains C2 and thus A∩A′ 6= {x}. Therefore the hypothesis “P has
nonempty interior” is necessary in Proposition 4.25.

5. Axiomatic of masures

5.1. Axiomatic of masures in the general case. The aim of this section is to
give an other axiomatic of masure than the one of [Rou11] and [Rou17]. For this,
we mainly use Theorem 4.22.

We fix an apartment A = (S,W,Λ′). A construction of type A is a set endowed
with a covering of subsets called apartments and satisfying (MA1).

Let cl ∈ CLΛ′ . Let (MA i)=(MA1).
Let (MA ii) : if two apartments A,A′ contain a generic ray, then A ∩ A′ is

enclosed and there exists an isomorphism φ : A
A∩A′→ A′.

Let (MA iii, cl): if R is the germ of a splayed chimney and if F is a face or a
germ of a chimney, then there exists an apartment containing R and F .

It is easy to see that the axiom (MA ii) implies (MA4, cl) for all cl ∈ CLΛ′ . If
cl ∈ CLΛ′ , then (MA iii, cl) is equivalent to (MA3, cl) because each chimney is
contained in a solid chimney.

Let I be a construction of type A and cl ∈ CLΛ′ . One says that I is a masure
of type (1, cl) if it satisfies the axioms of [Rou11]: (MA2, cl), (MA3, cl), (MA4,
cl) and (MAO). One says that I is a masure of type (2, cl) if it satisfies (MA ii)
and (MA iii, cl).

The aim of the next two subsections is to prove the following theorem:

Theorem 5.1. Let I be a construction of type A and cl ∈ CLΛ′ . Then I is a
masure of type (1, cl) if and only if I is a masure of type (1, cl#) if and only if I is

a masure of type (2, cl) if and only if I is a masure of type (2, cl#).

Let us introduce some other axioms and definitions. An extended chimney
of A is associated to a local face F l = F `(x, F v0 ) (its basis) and a vectorial face
(its direction) F v, this is the filter re(F

`, F v) = F ` + F v. Similarly to classical
chimneys, we define shortenings and germs of extended chimney. We use the same
vocabulary for extended chimneys as for classical: splayed, solid, full, ... We use
the isomorphisms of apartments to extend these notions in constructions. Actually
each classical chimney is of the form cl(re) for some extended chimney re.

Let cl ∈ CLΛ′ . Let (MA2’, cl): if F is a point, a germ of a preordered interval
or a splayed chimney in an apartment A and if A′ is another apartment containing
F then A∩A′ contains the enclosure clA(F ) of F and there exists an isomorphism
from A onto A′ fixing clA(F ).

Let (MA2”, cl): if F is a solid chimney in an apartment A and if A′ is an other
apartment containing F then A ∩A′ contains the enclosure clA(F ) of F and there
exists an isomorphism from A onto A′ fixing clA(F ).

The axiom (MA2, cl) is a consequence of (MA2’, cl), (MA2”, cl) and (MA ii).
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Let (MA iii’): if R is the germ of a splayed extended chimney and if F is a local
face or a germ of an extended chimney, then there exists an apartment containing
R and F .

Let I be a construction. Then I is said to be a masure of type 3 if it satisfies
(MA ii) and (MA iii’).

In order to prove Theorem 5.1, we will in fact prove the following stronger
theorem:

Theorem 5.2. Let cl ∈ CLΛ′ and I be a construction of type A. Then I is a
masure of type (1, cl) if and only I is a masure of type (2, cl) if and only if I is a
masure of type 3.

The proof of this theorem will be divided in two steps. In the first step, we prove
that (MAO) is a consequence of variants of (MA1), (MA2), (MA3) and (MA4) (see
Proposition 5.3 for a precise statement). This uses paths but not Theorem 4.22. In
the second step, we prove the equivalence of the three definitions. One implication
relies on Theorem 4.22.

5.1.1. Dependency of (MAO). The aim of this subsection is to prove the following
proposition:

Proposition 5.3. Let I be a construction of type A satisfying (MA2’), (MA iii’)
and (MA4). Then I satisfies (MAO).

We now fix a construction I of type A satisfying (MA2’), (MA iii’) and (MA4).
To prove proposition above, the key step is to prove that if B is an apartment and
if x, y ∈ A ∩ B are such that x ≤A y, then the image by ρ−∞ of the segment of B
joining x to y is a (y − x)++-path, where if u ∈ T , u++ is the unique element of
W v.u ∩ Cvf .

Let a, b ∈ A. An (a, b)-path of A is a continuous piecewise linear map [0, 1]→ A
such that for all t ∈ [0, 1[, π′(t)+ ∈ W v.(b − a). When a ≤ b, the (a, b)-paths are
the (b− a)++-paths defined in 3.1.2.

Let A be an apartment an π : [0, 1]→ A be a map. Let a, b ∈ A. One says that π
is an (a, b)-path of A if there exists Υ : A→ A such that Υ◦π is a (Υ(a),Υ(b))-path
of A.

Lemma 5.4. Let A be an apartment and a, b ∈ A. Let π : [0, 1] → A be an
(a, b)-path in A and f : A→ B be an isomorphism of apartments. Then f ◦ π is a
(f(a), f(b))-path.

Proof. Let Υ : A→ A be an isomorphism such that Υ ◦ π is a (Υ(a),Υ(b))-path in
A. Then Υ′ = Υ◦f−1 : B → A is an isomorphism, Υ′◦f◦π is a (Υ′(f(a)),Υ′(f(b)))-
path in A and we get the lemma. �

The following lemma slightly improves Proposition 2.7 1) of [Rou11]. We recall
that if A is an affine space and x, y ∈ A, [x, y) means the germ germx([x, y]), (x, y]
means germy([x, y]), ..., see 2.4.

Lemma 5.5. Let R be the germ of a splayed extended chimney, A be an apartment
of I and x−, x+ ∈ A be such that x− ≤A x+. Then there exists a subdivision
z1 = x−, . . . , zn = x+ of [x−, x+]A such that for all i ∈ J1, n − 1K there exists
an apartment Ai containing [zi, zi+1]A ∪R such that there exists an isomorphism

φi : A
[zi,zi+1]Ai→ Ai.
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Proof. Let u ∈ [x−, x+]. By (MA iii’), applied to (x−, u] and [u, x+) there exist
apartments A−u and A+

u containing R∪(x−, u] and R∪ [u, x+) and by (MA2’), there

exist isomorphisms φ+
u : A

(x−,u]→ A−u and φ−u : A
[u,x+)→ A+

u . For all u ∈ [x−, x+]
and ε ∈ {−,+}, one chooses a convex set V εu ∈ [u, xε) such that V εu ⊂ A ∩ Aεu
and V εu is fixed by φεu. If u ∈ [x−, x+], one sets Vu = Int[x−,x+]A(V +

u ∪ V −u ). By

compactness of [x−, x+], there exists a finite set K and a map ε : K → {−,+} such

that [x−, x+] =
⋃
k∈K V

ε(k)
k and the lemma follows. �

Let q be a sector-germ. Then q is an extended chimney. Let A be an apartment
containing q. The axioms (MA2’), (MA iii’) and (MA4) enable one to define a

retraction ρ : I q→ A as in 2.6 of [Rou11].

Lemma 5.6. Let A and B be two apartments, q be a sector-germ of B and ρ : I q→
B. Let x, y ∈ A be such that x ≤A y. Let τ : [0, 1]→ A mapping each t ∈ [0, 1] on
(1− t)x+A ty and f : A→ B be an isomorphism. Then ρ ◦ τ is a (f(x), f(y))-path
of B.

Proof. By Lemma 5.5, there exist k ∈ N and t1 = 0 < . . . < tk = 1 such that for
all i ∈ J1, k− 1K, there exists an apartment Ai containing τ([ti, ti+1)])∪ q such that

there exists an isomorphism φi : A
τ([ti,ti+1])→ Ai.

If i ∈ J1, k − 1K, one denotes by ψi the isomorphism Ai
q→ B. Then for t ∈

[ti, ti+1], one has ρ(τ(t)) = ψi ◦ φi(τ(t)). Let Υ : B → A be an isomorphism. By
(MA1), for all i ∈ J1, kK, there exists wi ∈W such that Υ ◦ ψi ◦ φi = wi ◦Υ ◦ f .

Let i ∈ J1, k − 1K and t ∈ [ti, ti+1]. Then

Υ ◦ ρ ◦ τ(t) = Υ ◦ ψi ◦ φi ◦ τ(t) = (1− t)wi ◦Υ ◦ f(x) + twi ◦Υ ◦ f(y).

Therefore ρ ◦ τ is a (f(x), f(y))-path in B. �

Lemma 5.7. Let λ ∈ Cvf and π : [0, 1]→ A be a λ-path. Then π(1)− π(0) ≤Q∨ λ.

Proof. By definition, there exists k ∈ N, (ti) ∈ [0, 1]k and (wi) ∈ (W v)k such

that
∑k
i=1 ti = 1 and π(1) − π(0) =

∑k
i=1 ti.wi.λ. Therefore π(1) − π(0) − λ =∑k

i=1 ti(wi.λ− λ) and thus π(1)− π(0)− λ ≤Q∨ 0 by Lemma 3.5. �

Lemma 5.8. Let x, y ∈ A be such that x ≤A y and B be an apartment containing
x, y. Let τB : [0, 1]→ B defined by τB(t) = (1− t)x+B ty. Let s be a sector-germ

of A and ρs : I s→ A. Then x ≤B y and πA := ρs ◦ τB is an (x, y)-path of A.

Proof. Maybe changing the choice of Cvf , one can suppose that y−x ∈ Cvf . Let q be

a sector-germ of B, ρB : I q→ B and τA : [0, 1]→ A defined by τA(t) = (1− t)x+ ty.
Let φ : A → B. By Lemma 5.6, πB := ρB ◦ τA is a (φ(x), φ(y))-path of B from x
to y. Therefore x ≤B y. Let ψ = φ−1 : B → A. Composing φ by some w ∈ W v if
necessary, one can suppose that ψ(y)− ψ(x) ∈ Cvf .

By Lemma 5.6, πA is a (ψ(x), ψ(y))-path of A. By Lemma 5.7, we deduce that
y − x ≤Q∨ ψ(y)− ψ(x).

By Lemma 5.4, ψ ◦ πB is an (x, y)-path of A from ψ(x) to ψ(y). By Lemma 5.7,
we deduce that ψ(y)− ψ(x) ≤Q∨ y − x. Therefore x− y = ψ(x)− ψ(y) and πA is
an (x, y)-path of A. �
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If x, y ∈ I, one says that x ≤ y if there exists an apartment A containing x, y
and such that x ≤A y. By Lemma 5.8, this does not depend on the choice of A:
if x ≤ y then for all apartment B containing x, y, one has x ≤B y. However, one
does not know yet that ≤ is a preorder: the proof of Théorème 5.9 of [Rou11] uses
(MAO).

The following lemma is Lemma 3.6 of [Héb17]:

Lemma 5.9. Let τ : [0, 1] → I be a segment such that τ(0) ≤ τ(1), such that
τ(1) ∈ A and such that there exists ν ∈ Cvf such that (ρ−∞ ◦ τ)′ = ν. Then

τ([0, 1]) ⊂ A and thus ρ−∞ ◦ τ = τ .

Proof. Let A be an apartment such that τ is a segment of A. Then τ is increasing
for ≤A and thus τ is increasing for ≤. Let x, y ∈ A be such that τ(t) = (1− t)x+ ty
for all t ∈ [0, 1]. Let us first prove that τ is increasing for ≤. It suffices to prove
that x ≤ y. By (MA iii’), there exists u ∈]0, 1] such that there exists an apartment

A containing τ([0, u]) and −∞. Let φ : A
−∞→ A. One has

φ(τ(u)) = ρ−∞(τ(u)) = ρ−∞(τ(0)) + uν = φ(τ(0)) + uν,

thus φ(τ(u)) ≥ φ(τ(0)) and hence τ(u) ≥ τ(0). As τ is a segment of A, it suffices
to prove that there exists u > 0 such that τ(u) ≥ τ(0). Therefore τ is increasing
for ≤.

Suppose that τ([0, 1]) * A. Let u = sup{t ∈ [0, 1]|τ(t) /∈ A}. Let us prove that
τ(u) ∈ A. If u = 1, this is our hypothesis. Suppose u < 1. Then by (MA2’) applied
to
]
τ(u), τ(1)

)
, A contains clA

(
]τ(u), τ(1))

)
and thus A contains τ(u).

By (MA iii’), there exists an apartment B containing τ((0, u]) ∪ −∞ and by

(MA4), there exists an isomorphism φ : B
τ(u)−Cv

f→ A. For all t ∈ [0, u], near
enough from u, one has φ(τ(t)) = ρ−∞(τ(t)). By hypothesis, for all t ∈ [0, u],
ρ−∞(τ(t)) ∈ τ(u) − Cvf . Therefore for t near enough from u, φ(τ(t)) = τ(t) ∈ A:

this is absurd by choice of u and thus τ([0, 1]) ⊂ A. �

We can now prove Proposition 5.3: I satisfies (MAO).

Proof. Let x, y ∈ A be such that x ≤A y and B be an apartment containing
{x, y}. We suppose that y − x ∈ Cvf . Let πA : [0, 1]→ A mapping each t ∈ [0, 1] on

ρ−∞((1−t)x+B ty). By Lemma 5.8, πA is an (x, y)-path from x to y. By Lemma 3.6,
πA(t) = x+ t(y − x) for all t ∈ [0, 1]. Then by Lemma 5.9, πA(t) = (1− t)x+B ty
for all t ∈ [0, 1]. In particular [x, y] = [x, y]B and thus I satisfies (MAO). �

5.1.2. Equivalence of the axiomatics. As each chimney or face contains an extended
chimney or a local face of the same type, if cl ∈ CLΛ′ , (MA iii, cl) implies (MA iii’).
Therefore a masure of type (2, cl) is also a masure of type 3.

If A is an apartment and F is a filter of A, then clA(F ) ⊂ cl#A(F ). Therefore for

all cl ∈ CLΛ′ , (MA2’, cl#) implies (MA2’, cl) and (MA iii, cl#) implies (MA iii, cl).

Lemma 5.10. Let cl ∈ CLΛ′ and I be a masure of type (1, cl). Then I is a masure
of type (2, cl).

Proof. By Theorem 4.22, I satisfies (MA ii). By conséquence 2.2 3) of [Rou11], I
satisfies (MA iii, cl). �
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By abuse of notation if I is a masure of any type and if q, q′ are adjacent sectors
of I, we denote by q∩ q′ the maximal face of q∩ q′. This has a meaning by Section
3 of [Rou11] for masures of type 1 and by (MA ii) for masures of type 2 and 3.

Lemma 5.11. Let I be a masure of type 3. Let A be an apartment. Let X be a
filter of A such that for all sector-germ s of I, there exists an apartment containing
X and s. Then if B is an apartment containing X , B contains cl#(X ) and there

exists an isomorphism φ : A
cl#(X )→ B.

Proof. Let q and q′ be sector-germs of A and B of the same sign. By (MA iii’),
there exists an apartment C containing q and q′. Let q1 = q, . . . , qn = q′ be a
gallery of sector-germs from q to q′ in C. One sets A1 = A and An+1 = B. By
hypothesis, for all i ∈ J2, nK there exists an apartment Ai containing qi and X . For
all i ∈ J1, n−1K, qi∩qi+1 is a splayed chimney and Ai∩Ai+1 ⊃ qi∩qi+1. Therefore

Ai ∩ Ai+1 is enclosed and there exists φi : Ai
Ai∩Ai+1→ Ai+1. The set An ∩ An+1 is

also enclosed and there exists φn : An
An∩An+1→ An+1.

If i ∈ J1, n+ 1K, one sets ψi = φi−1 ◦ . . . ◦ φ1. Then ψi fixes A1 ∩ . . . ∩Ai.
Let i ∈ J1, nK and suppose that A1 ∩ . . .∩Ai is enclosed in A. The isomorphism

ψi fixes A1 ∩ . . . ∩Ai and thus we deduce that A1 ∩ . . . ∩Ai = ψi(A1 ∩ . . . ∩Ai) is
enclosed in Ai. Moreover, Ai ∩ Ai+1 is enclosed in Ai and thus A1 ∩ . . . ∩ Ai+1 is
enclosed in Ai. Consequently A1 ∩ . . .∩Ai+1 = ψ−1

i (A1 ∩ . . .∩Ai+1) is enclosed in
A. Let X = A1 ∩ . . . ∩ An+1. By induction, X is enclosed in A and φ := ψn fixes

X. As X ⊃ X , we deduce that X ∈ cl#(X ) and we get the lemma.
�

Lemma 5.12. Let I be a masure of type 3. Then for all cl ∈ CLΛ′ , I satisfies
(MA iii, cl).

Proof. Each face is contained in the finite enclosure of a local face and each chimney
is contained in the finite enclosure of an extended chimney. Thus by Lemma 5.11,
applied when X is a local face and a germ of a chimney, I satisfies (MA iii, cl#).
Consequently for all cl ∈ CLΛ′ , I satisfies (MA iii, cl), hence (MA3, cl) and the
lemma is proved. �
Lemma 5.13. Let I be a masure of type 3 and cl ∈ CLΛ′ . Then I satisfies (MA2’,
cl).

Proof. If A is an apartment and F is a filter of A, then cl(F ) ⊂ cl#(F ). Therefore

it suffices to prove that I satisfies (MA2’, cl#). We conclude the proof by applying
Lemma 5.11 applied when X is a point, a germ of a preordered segment. �

Using Proposition 5.3, we deduce that a masure of type 2 or 3 satisfies (MAO),
as (MA4) is a consequence of (MA ii).

Lemma 5.14. Let I be a masure of type 3. Let r be a chimney of A, r =
r(F `, F v), where F ` (resp. F v) is a local face (resp. vectorial face) of A. Let

R# = germ∞(cl#(F `, F v)). Let A be an apartment containing r and R# and such

that there exists φ : A R#

→ A. Then φ : A r→ A.

Proof. One can suppose that F v ⊂ Cvf . Let U ∈ R# such that U is enclosed,

U ⊂ A ∩ A and such that U is fixed by φ. One writes U =
⋂k
i=1D(βi, ki), with

β1, . . . , βk ∈ Φ and (k1, . . . , kr) ∈
∏r
i=1 Λ′βi

.
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Let ξ ∈ F v be such that U ∈ cl(F ` + F v + ξ). Let J = {i ∈ J1, kK| βi(ξ) 6= 0}.
For all i ∈ J1, rK, one has D(βi, ki) ⊃ nξ for n � 0. Thus βi(ξ) > 0 for all

i ∈ J . One has U − ξ =
⋂k
i=1D(βi, ki + βi(ξ)). Let λ ∈ [1,+∞[ be such that

for all i ∈ J , there exists k̃i ∈ Λ′βi
such that ki + βi(ξ) ≤ k̃i ≤ ki + λβi(ξ). Let

Ũ =
⋂k
i=1D(βi, k̃i). Then U − ξ ⊂ Ũ ⊂ U − λξ. Therefore, Ũ ∈ r. Let V ′ ∈ r

be such that V ′ ⊂ A ∩ A and such that V ′ + F v ⊂ V ′. Then V := Ũ ∩ V ′ ∈ r.
Let v ∈ V and δ ⊂ F v be the ray based at 0 and containing ξ. By the proof of
Proposition 5.4 of [Rou11] (which uses only (MA1), (MA2’), (MA3), (MA4) and

(MAO)), there exists gv : A v+δ→ A. As V ⊂ U − λξ, there exists a shortening δ′ of
v + δ contained in U . Then g−1

v ◦ φ : A → A fixes δ′. Consequently, g−1
v ◦ φ fixes

the support of δ′ and thus φ fixes v: φ fixes V . Therefore φ fixes r and the lemma
follows. �

Lemma 5.15. Let I be a masure of type 3 and cl ∈ CLΛ′ . Then I satisfies (MA2”,
cl).

Proof. Let r = cl(F l, F v) be a solid chimney of an apartment A and A′ be an

apartment containing r. One supposes that A = A. Let r# = cl#(F l, F v) (resp.
re = F l + F v) and R# (resp. Re) be the germ of r# (resp. re). By Lemma 5.11

applied with X = Re, there exists φ : A
R#

→ A′. By Lemma 5.14, φ fixes r and thus
I satisfies (MA2”, cl).

�

We can now prove Theorem 5.2: let cl ∈ CLΛ′ . By Lemma 5.10, a masure of
type (1, cl) is also a masure of type (2, cl) and thus it is a masure of type 3. By
Lemma 5.12, Lemma 5.13 and Lemma 5.15, a masure of type 3 is a masure of type
(1, cl) which concludes the proof of the theorem.

5.2. Friendly pairs in I. Let A = (A,W,Λ′) be an apartment. Let I be a

masure of type A. We now use the finite enclosure cl = cl#Λ′ , which makes sense by
Theorem 5.1. A family (Fj)j∈J of filters in I is said to be friendly if there exists
an apartment containing

⋃
j∈J Fj . In this section we obtain friendliness results for

pairs of faces, improving results of Section 5 of [Rou11]. We will use it to give a
very simple axiomatic of masures in the affine case. These kinds of results also have
an interest on their own: the definitions of the Iwahori-Hecke algebra of [BPGR16]
and of the parahoric Hecke algebras of [AH17] rely on the existence of apartments
containing pairs of faces.

If x ∈ I, ε ∈ {−,+} and A is an apartment, one denotes by Fx (resp. Fε, Fε(A),
Cx, . . .) the set of faces of I based at x (resp. and of sign ε, and contained in A,
the set of chambers of I based at x, . . .). If X is a filter, one denotes by A(X ) the
set of apartments containing X .

Lemma 5.16. Let A be an apartment of I, a ∈ A and C1, C2 ∈ Ca(A). Let Da
be the set of half-apartments of A whose wall contains a. Suppose that C1 6= C2.
Then there exists D ∈ Da such that D ⊃ C1 and D + C2.

Proof. Let Cv1 and Cv2 be vectorial chambers of A such that C1 = F (a,Cv1 ) and
C2 = F (a,Cv2 ). Suppose that for all D ∈ Da such that D ⊃ C1, one has D ⊃ C2.
Let X ∈ C1. There exists half-apartments D1, . . . , Dk and Ω ∈ VA(a) such that

X ⊃ ⋂ki=1D
◦
i ⊃ Ω ∩ (a+ Cv1 ).
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Let J = {j ∈ J1, kK| Dj /∈ Da}. For all j ∈ J , one chooses Ωj ∈ VA(a) such that
D◦j ⊃ Ωj . If j ∈ J1, kK\J , Dj ⊃ C1, thus Dj ⊃ C2 and hence D◦j ⊃ C2. Therefore,
there exists Ωj ∈ VA(a) such that D◦j ⊃ Ωj ∩ (x+ Cv2 ). Hence

X ⊃
k⋂

j=1

D◦j ⊃ (
k⋂

j=1

Ωj) ∩ (x+ Cv2 ),

thus X ∈ C2 and C1 ⊃ C2.
Let D ∈ Da such that D ⊃ C2. Suppose that D + C1. Let D′ be the half-

apartment opposite D. Then D′ ⊃ C1 and therefore D′ ⊃ C2: this is absurd.
Therefore for all D ∈ Da such that D ⊃ C2, one has D ⊃ C1. By the same
reasoning we just did, we deduce that C2 ⊃ C1 and thus C1 = C2. This is absurd
and the lemma is proved.

�

The following proposition improves Proposition 5.1 of [Rou11]. It is the analogue
of axiom (I1) of buildings (see the introduction).

Proposition 5.17. Let {x, y} be a friendly pair in I.

(1) Let A ∈ A({x, y}) and δ be a ray of A based at x and containing y (if y 6= x,
δ is unique) and Fx ∈ Fx. Then (δ, Fx) is friendly. Moreover, there exists

A′ ∈ A(δ ∪ Fx) such that there exists an isomorphism φ : A
δ→ A′.

(2) Let (Fx, Fy) ∈ Fx ×Fy. Then (Fx, Fy) is friendly.

Proof. We begin by proving 1. Let Cx be a chamber of I containing Fx. Let C be
a chamber of A based at x and having the same sign as Cx. By Proposition 5.1 of
[Rou11], there exists an apartment B containing Cx and C. Let C1 = C, . . . , Cn =
Cx be a gallery in B from C to Cx. If i ∈ J1, nK, one sets Pi: “there exists an

apartment Ai containing Ci and δ such that there exists an isomorphism φ : A
δ→

Ai”. The property P1 is true by taking A1 = A. Let i ∈ J1, n−1K be such that Pi is
true. If Ci+1 = Ci, then Pi+1 is true. Suppose Ci 6= Ci+1. Let Ai be an apartment
containing Ci and δ. By Lemma 5.16, there exists a half-apartment D of A whose
wall contains x and such that Ci ⊂ D and Ci+1 * D. As Ci and Ci+1 are adjacent,
the wall M of D is the wall separating Ci and Ci+1. By (MA2), there exists an

isomorphism φ : B
Ci→ Ai. Let M ′ = φ(M) and D1, D2 be the half-apartments of

Ai delimited by M ′. Let j ∈ {1, 2} such that Dj ⊃ δ. By Proposition 2.9 1) of

[Rou11], there exists an apartment Ai+1 containing Dj and Ci+1. Let ψi : A
δ→ Ai

and ψ : Ai
Dj→ Ai+1. Then ψ◦ψi : A

δ→ Ai+1. Therefore Pi+1 is true. Consequently,
Pn is true, which proves 1.

Let us prove 2, which is very similar to 1. As a particular case of 1, there
exists an apartment A′ containing Fx and y. Let Cy be a chamber of I containing
Fy. Let C be a chamber of A′ based at y and of the same sign as Fy. Let C1 =
C, . . . , Cn = Cy be a gallery of chambers from C to Cy (which exists by Proposition
5.1 of [Rou11]). By the same reasoning as above, for all i ∈ J1, nK, there exists an
apartment containing Fx and Ci, which proves 2. �

5.3. Axiomatic of masures in the affine case. In this section, we study the
particular case of masures associated to irreducible affine Kac-Moody matrix A,
which means that A satisfies condition (aff) of Theorem 4.3 of [Kac94].
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Let S be a generating root system associated to an irreducible and affine Kac-
Moody matrix and A = (S,W,Λ′) be an apartment. By Section 1.3 of [Rou11], one

has T̊ = {v ∈ A|δ(v) > 0} for some imaginary root δ ∈ Q+\{0} and T = T̊ ∪ Ain,
where Ain =

⋂
i∈I ker(αi).

We fix an apartment A of affine type.

Let (MA af i)=(MA1).
Let (MA af ii) : let A and B be two apartments. Then A ∩ B is enclosed and

there exists φ : A
A∩B→ B.

Let (MA af iii)= (MA iii).

The aim of this subsection is to prove the following theorem:

Theorem 5.18. Let I be a construction of type A and cl ∈ CLΛ′ . Then I is a
masure for cl if and only if I satisfies (MA af i), (MA af ii) and (MA af iii, cl) if

and only if I satisfies (MA af i), (MA af ii) and (MA af iii, cl#).

Remark 5.19. Actually, we do not know if this axiomatic is true for masures
associated to indefinite Kac-Moody groups. We do not know if the intersection of
two apartments is always convex in a masure.

The fact that we can exchange (MA af iii, cl#) and (MA af iii, cl) for all cl ∈ CLΛ′

follows from Theorem 5.2. The fact that a construction satisfying (MA af ii) and

(MA af iii, cl#) is a masure is clear and does not use the fact that A is associated to
an affine Kac-Moody matrix. It remains to prove that a masure of type A satisfies
(MA af ii), which is the aim of this subsection.

Lemma 5.20. Let A and B be two apartments such that there exist x, y ∈ A ∩ B
such that x≤̊y and x 6= y. Then A ∩B is convex.

Proof. One identifies A and A. Let a, b ∈ A∩B. If δ(a) 6= δ(b), then a ≤ b or b ≤ a
and [a, b] ⊂ B by (MAO). Suppose δ(a) = δ(b). As δ(x) 6= δ(y), one can suppose
that δ(a) 6= δ(x). Then [a, x] ⊂ B. Let (an) ∈ [a, x]N be such that δ(an) 6= δ(a) for
all n ∈ N and an → a. Let t ∈ [0, 1]. Then tan + (1− t)b ∈ B for all n ∈ N and by
Proposition 3.9, ta+ (1− t)b ∈ B: A ∩B is convex. �
Lemma 5.21. Let A and A′ be two apartments of I. Then A ∩ A′ is convex.

Moreover, if x, y ∈ A ∩A′, there exists an isomorphism φ : A
[x,y]A→ A′.

Proof. Let x, y ∈ A∩A′ be such that x 6= y. Let Cx be a chamber of A based at x
and Cy be a chamber of A′ based at y. Let B be an apartment containing Cx and
Cy, which exists by Proposition 5.17. By Lemma 5.20, A∩B and A′∩B are convex

and by Proposition 3.26, there exist isomorphisms ψ : A
A∩B→ B and ψ′ : B

A′∩B→ A′.
Therefore [x, y]A = [x, y]B = [x, y]A′ . Moreover, φ = ψ′ ◦ ψ fixes [x, y]A and the
lemma is proved. �
Theorem 5.22. Let A and B be two apartments. Then A ∩ B is enclosed and

there exists an isomorphism φ : A
A∩B→ B.

Proof. The fact that A∩B is enclosed is a consequence of Lemma 5.21 and Propo-
sition 3.22. By Proposition 3.14, there exist ` ∈ N, enclosed subsets P1, . . . , P` of A

such that supp(A ∩B) = supp(Pj) and isomorphisms φj : A
Pj→ B for all j ∈ J1, `K.

Let x ∈ Intr(P1) and y ∈ A ∩B. By Lemma 5.21, there exists φy : A
[x,y]→ B. Then
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φ−1
y ◦ φ1 fixes a neighborhood of x in [x, y] and thus φ1 fixes y, which proves the

theorem. �
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