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Observability, controllability and boundary stabilization
of some linear elasticity systems

AISSA GUESMIA

Communicated by L. Hatvani

Abstract. In this paper, we study the observability, the controllability and
the boundary stabilizability of the linear elasticity systems. This work extends
to non-isotropic systems with variable coefficients, the observability and exact
controllability results for isotropic elastodynamic systems obtained by J.-L.
Lions in 1988, the uniform stabilizability results for two-dimensional isotropic
systems obtained by J. E. Lagnese in 1991 and the results obtained by Alabau
and Komornik [1].

1. Introduction and statement of the results

Let 0 be a non-empty bounded open set in !Rn (n E N*) having a boundary
r of class C2 and let aijkl, i,j,k,t = 1, ... ,n be a set in W1,OO(O) such that

aijkl = aklij = ajikl in 0

and satisfying for some et > 0 the ellipticity condition

(1.1)

for every symmetric tensor Cij' (Here and in the sequel we shall use the summation
convention for repeated indices.)

For a given function u = (Ul' ... , un): 0 -t R", we shall use the notations
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h 8u' d ~ If' . b . hwere Ui,j = ih::' an Uj,i = 8Xi' It IS necessary to e more precise, we s all
write Cij(U) and aij(u) instead of Cij, aij'

Consider the problem

{

U~' - a ij,j = 0 in n x JR,
(1.2) Ui = 0 on r x JR,

~~O) = u? and u~(O) = ut in n,
t - 1, ... ,n,

where I = gt' aij,j = ~:ijand Ui(O), u~(O) denote, respectively, the functions
x f----> Ui(X, 0), x f----> u~(x, 0).

This system is well-posed in the following sense (cf. Lagnese [8]):
* For every (uO,u1) E (HJ(n)t x (L2(n))n, the system (1.2) has a unique

solution (defined in a suitable weak sense) satisfying

U E C(JR; (HJ(n))n) n C1(JR; (L2(n))n),

where HJ(n) = {v E H1(n): v = 0 on I'].
* If (UO, u1) E (H2(n)nHJ(n))n x (HJ(n))n then the solution (called a strong

solution) is more regular:

U E C(JR; (H2(n) n HJ(n))n) n C1(JR; (HJ(n))n) n C2(JR; (L2(n))n).

* The energy of the (weak) solution, defined by the formula

(1.3) E = ~ r (u~u~ + aijCij)dx,
2 in

is independent of the time t.
Fix a point Xo = (x~, ... ,x~) E JRn and fix a measurable partition ro, r1 of

r such that r1 = r \ ro we have

(1.4) (x - xo).v(x) :::;0 for all x E ro,
where v denotes the outward unit normal vector to r. (For example, we may always
choose ro = 0 and r1 = r.) Set

(1.5) R = sup{lx - xol : x En},

and let be , the smaller number in 1 - 00, 2[ satisfying

(1.6) (xp - x~)( 8paijkt}cijCkl :::; ,aijklCijCkl in n,

8 8ai'kl A hwhere paijkl =~. ssume t at

(1.7) , ? 2(1 - n).

Then we have the following results.
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Theorem 1.1. Assume (1.1), (1.4), (1.7) and let T > 41.f!;R. Then there exist
two positive constants Cl and C2 such that every strong solution of (1.2) satisfies
the inequalities

(1.8)

Remarks. * The first inequality in (1.8) cannot hold for arbitrarily small T. The

condition T > 2/f;R is the best possible if the system is isotropic; i.e. when

where A and J.L are the positive Lame constants (see Komornik [6J and note that,
In this case, 'Y = 0).

* By a simple density argument, the second estimate in (1.8) allows us to
define the trace of O'ijCij on fl x JR as an element of Lroc(fl x JR), for every weak
solution of (1.2).

* For sufficiently large time T, if two solutions of (1.2) coincide in fl, then the
boundary integral in (1.8), for their difference, vanishes and therefore the energy
of their difference is equal to zero by the first inequality in (1.8). This implies that
the two solutions are identical.

Applying the Hilbert Uniqueness Method (HUM) we shall deduce from theo-
rem 1.1 an exact controllability result for the non-homogeneous system

(1.9)
{

Y? - O"ij,j(Y) = 0 in D x JR,
u. = 1'Ji on I' x JR,
~i~O) = Y? and yHa) = yf in D,
2 - 1, ... ,no

Theorem 1.2. Assume (1.1), (1.4), (1.7) and fix T > 4../f!#R. Then for any given
yO, fio E (L2(D))n and yl, fil E (H-I(D))n there exists o E Lroc(lR; (L2(f))n) such
that the solution of (1.9) satisfies

yeT) = fio and y' (T) = fil in D.

Moreover, we may assume that v vanishes outside of fl x (0, T).

In the second half of the paper we shall study the uniform stabilizability of
elasticity systems by applying suitable dissipative boundary feedbacks. Consider
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the problem

(1.10) !
U~'- aij,j = 0 in 0 x R+,
Ui = 0 on ro x R+,
aijVj + aUi + bu~ = 0 on r1 x R+,
~~O) = u? and u~(O) = u; in 0,
t - 1, ... ,n.

Where a+ = [0, +00), a and b are given nonnegative numbers. (It is easy to
generalize our results to the case where a and bare nonnegative functions of class
C1(f\).) Indeed, define the energy of the solutions of (1.10) by

E(t) = ~ r (u~u~ + aijcij)dx + -2
1 r aUiuidr,

2 io. i;

(1.12) Ix-xol=R forall xEr1·

(1.11)

for all t E lR+. The energy E is nonnegative and we have

Then the energy E is non-increasing of t E 1R+.
We shall consider the system (1.10) under the conditions (1.1), (1.4) and

For example, these conditions are satisfied if

0= {x E R" : r < Ix - xol < R}

where 0 < r < Rand ro = {x Er: Ix - xol = r} or r = 0 and ro is empty.

Theorem 1.3. Assume (1.1), (1.4), (1.12) and a < (2~t·. Then there exists a
positive numberw such that all (weak) solution of (1.10) satisfy the energy estimate

(1.13) E(t) ::;E(0)e1-wt, for all t 2: o.

If ro has a positive measure, then the result holds also for a = O.

Theorem 1.4. Assume (1.1), (1.4). Then every weak solution of (1.10) satisfies

(1.14) lim E(t) = O.
t-+oo
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Remarks. * These results seem to be new even in the isotropic case.
* The proof of Theorem 1.3 will be obtained by applying a Liapunov type

method based on an integral inequality applied earlier in Komornik [6, 7]. The
proof of Theorem 1.4 will be based on a LaSalle invariance principle.

* If fo has a positive measure, then the result of Theorem 1.4 holds also for
a = O.

* Theorem 1.3 probably remains valid even if a ::::(2~~)Q . This could be
proven by a compactness-uniqueness argument. Since this method does not provide
explicit decay rates, we do not study this case here.

2. Stabilizability: proof of Theorem 1.3

We recall (see e.g. Lagnese [8, 9]) that this problem is well-posed in the
following sense:

Theorem 2.1. Assume (1.1). Then for every given uo E vn(:= (Hfo(fl))n) and
y1 E (£2(fl))n the problem (1.10) has a unique (weak) solution satisfying

u E C(JR+; v") n C1(JR+; (£2(fl))n),

where Hfo(fl) = {v E H1(fl) : v = 0 on fo}.
Now assume also that I'o () I'1 = 0, and let uo E (H2(fl) () V}", u1 E V" be

such that CTij(UO)Vj + au? + but = 0 on f1' i = 1, ... ,n. Then the corresponding
strong solution is more regular:

Let us turn to the proof of Theorem 1.3. All computations which follow will
be justified for strong solution. Since the constant w in (1.13) will not depend on
E(O), once the estimates (1.13) will be estabilished for regular solutions, they will
be also satisfied for all weak solutions by an easy density argument. For this, we
shall prove that 1000E(t)dt ~ ~E(O) with w the positive constant not depending
on E(O) and by [5], Th. 8.1 we deduce the estimate (1.13).

First we show the dissipativity of the problem (1.10).

Lemma 2.1. The function E: JR+ -+ JR+ is a non-increasing and

(2.1) E(O) - E(T) = rT r bu~u~drdt, 0 ~ T < 00.io i.
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Proof. We have

integrating between 0 and T we obtain (2.1).
Let 0 :::;T :::;00 arbitrarily, we have

0= iT 1u-(u" - CT-- -)dxdt~ ~ ~J,J
o n

= [10 UiU~dX]~ -loT h UiCTijVjdrdt + loT 10 (CTijCij - u~uDdxdt,

whence

(2.2)

Fix an arbitrary function h E (Wl,oo(o))n. We deduce from (1.10) that

0= loT 10 (hmUi,m)(U~' - CTij,j)dxdt

= [10 hmUi,mu~dx]~ -loT h hmUi,mCTijVjdrdH

+ loT 10 (hm,jCTijUi,m + hmCTijUi,jm - ~hm(u~uDm)dxdt.

Since
1 1

CTijUi,jm = CTijCij,m = 2(CTijCij)m - 2 (8maijkl)ckICij,

integrating by parts the last two terms in the last integral and then multiplying bJ
2, we obtain the following identity:

loT h (2hmUi,mCTijVj + (h.v)(u~u~ - CTijCij))drdt

[102hmUi,mu~dX]~ -loT 10 hm(8maijkl)ckICijdxdH

+ loT In (2hm,jCTijUi,m + (div h)(u~u~ - CTijCij))dxdt.
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Multiplying (2.2) by n - 1 + 1+ 2~R and combine it with the preceding identity
such that h(x) = x - Xo. Writing

o ( "( 2aR)M·= 2(x - x )u' + n -1 + - + - U·, m m ',m 2 Cl! '

for simplicity, we have

by (1.6), the last parts of this equality is negative; taking into account the definition
(1.11) of the energy, we can rewrite it in the following form:

Now using the boundary conditions in (1.10) we obtain

(2.3) (2-"( - 4:R) lT E(t)dt + [in MiU~dx] ~

:::; rT r (h.V)O"ijcijdrdt _ 4aR rT r O"ijcijdxdHio iro Cl! io in
+ lT hi ((1 - ~ - 2:R)aUiUi - Mi(aui + buD+

+ (h.v)(u~u~ - O"ijCij))drdt.

(Note that, from the homogeneous Dirichlet boundary condition in (1.10), we have
on ro
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Next we transform the integral over r1. Applying twice the Green formula
and using the boundary condition on I'0 and the relation h = Ru on I'1 we have
(cf. [1])

(2.4) t" r -2ahmUi,mUidrdtlo i;
= lT 10 (4aRcmicmi - 2aRui,mUi,m - 2aRldivuI2)dxdt+

+ rT r (2aR(divu)(v.u) - 4aRcmiUiVm)drdt.lo i.
(2.5) rT r -2bhmUi,mu~drdtlo i.

= [10 (2bRcmicmi - bRui,mUi,m - bRldiv uI2)dx] ~ +

+ rT r (2bR(divu)(v.u') - 4bRcmiU~Vm)drdt.lo i;
Substituting the equalities (2.4) and (2.5) into (2.3) and using the equality h.v = R
on r1 and h.v S; 0 on ro we obtain

(2.6) (2 - 'Y - 4:R) lT E(t)dt

S; [10 (-MiU~ + 2bRcmicmi - bRui,mUi,m - bRldivuI2)dX]~ +

+ loT 10 (4aRcmicmi - 2aRui,m Ui,m - 2aRldiv uI2 - 4:R aijCij ) dxdt+

+ loT It ((1 - ~ - 2:R)aUiUi - (n - 1+ ~ + 2:R)Ui(aUi + bu~)+

+ R(u~u~ - aijCij) + 2aR(divu)(v.u) - 4aRcmiUiVm+

+ 2bR(divu)(v.u') - 4bRcmiU~Vm )drdt.

Let us majorize the right-hand side of this identity. Using the definition 0

the energy and the Korn inequality,

\10 (-MiU~ + 2bRcmicmi - bRui,mUi,m - bRldivuI2)dx\ S; cIE(t)

and

\-b( n - 1 + ~ + 2:R) loT It uiu~drdt\ = \~(2n - 2 + 'Y + 4:R) [It UiUi]~1
S; c2E(O)
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with some constants Cl and C2 independent of E(O) and of T.
By the condition (1.1) we have

Applying Lemma 2.1 we deduce that

lTl R RR u~u~drdt = b(E(O) - E(T)) ~ bE(O).o r1

Then we deduce from the identity (2.6) (using also (1.1) on -RnijCij) the following
inequality:

(2.7) (2-, - 4:R) iT E(t)dt

~ C3E(O) + (2 - n -, - 4:R) iT ilaUiUidx+

+ rT r (- RaCijCij + 2aR(divu)(u.v) - 4aRcmiUiVm+Jo Jr1
+ 2bR(divu)(u'.v) - 4bRcmiU~Vm )drdt.

Here C3 = 2Cl + 2C2+ 1:. For any fixed 8 > 0 we have

2aR(divu)u.v ~ 81divuI2 + a2R28-lluI2,

2bR(divu)u'.v ~ 81divuI2 + b2R28-llu'12,

-4aRcmiUiVm ~ Ocmicmi + 4a2 R28-lluI2,

-4bRcmiU~Vm ~ OcmiCmi + 4b2R28-llu'12.

Substituting them into (2.7) and using the inequality Idivul2 ~ CmiCmi, we obtain

( 4aR) rT

2 - , - -;;- Jo E(t)dt

~ C3E(O) + rT r (( 2 _ n _ , _ 4aR + 5aR28-l) alul2+
Jo Jrl a

+ (48 - aR)cmicmi + 5bR28-lblu'12)drdt.
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Using (2.1) we have

5bR2t5-1 {T ( blu'I2drdt = 5bR2t5-1(E(0) _ E(T)) :::;5bR2t5-1 E(O).
lo i;

Substituting into the preceding inequality and choosing t5 = a! hence we conclude
that

with C4 = C3 + 20b:;.
Applying a method of Conrad and Rao [3],we shall prove the following lemma

(cf. [1])

lemma 2.2. For any given to > 0, there exists a constant Cs > 0 such that

T lT{ (luI2drdt:::; csE(O) + to E(t)dtlo i; 0

for all T 2: O.

Choosing to> 0 such that (2-n-,,(+ 16:R)atO < 2-,,(- 4~R if n < 2-"(+ 16:R
and we deduce from (2.8) the inequality

lT E(t)dt:::; cE(O), for all T 2: 0

where c is a constant independent of E(O) and of T, then we conclude that

100 E(t)dt :::;cE(O)

and obtain (1.13) with w = 1/c.
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