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On the nonlinear stabilization of the wave equation

by AISSA GUESMIA (Strasbourg)

Abstract. We obtain a precise decay estimate of the energy of the solutions to the
initial boundary value problem for the wave equation with nonlinear internal and boundary
feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

1. Introduction. Let [l be a bounded open set in ~n (n = 1,2, ... )
having a boundary T of class C2. We denote by v the outward unit normal
vector to T. Fix a point Xo E ~n, and set

(1.1) m(x) := x - Xo, x E ~n, and R = IlmIlLOO(!2).

Let To be an open subset of T such that setting Tl = T \ To we have

(1.2) m.u :S 0 on To·

Let I, 9 : ~ ~ ~ be two non decreasing continuous functions such that
1(0) = g(O) = 0, and let a be a nonnegative number for simplicity. (It is
easy to generalize our results to the case where a is a nonnegative function
in c(l,\).) Consider the following system:

(1.3)
(1.4)
(1.5)
(1.6)

u" - Llu + 1(u') = 0 in [l x ~+ ,
u = 0 on To x ~+ ,

Ol/U + (m.v)(au + g(u')) = 0 on Tl x ~+,
u(O) = Uo and u' (0) = Ul on [l

where we use the notation ~+ := [0,(0). Define the energy of the solution
by the formula

(1.7) E(t) := ~ ~((u')2 + lV'uI2
) dx + ~ ~(m.v)u2 ar,

!2 n
t E n+.
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An easy formal computation shows that

(1.8) E'(t) = - ~u' f(u') dx - ~ (m.v)u'g(u') dT
n n

(observe that xf(x), xg(x) 2: 0 for every x E JR); hence the energy is nonin-
creasing.

This system is well-posed in the following sense (cf. [1, 2, 4] for second
order evolution equations and [5, 6, 9, 10, 11] for the wave equation with a
nonlinear internal or boundary feedback): let us introduce three real Hilbert
spac,es H, V and W by setting

H = L2(n), V = Hh(n) and W = H2(n) n V

where Hh(!l) = {v E H1(rl) : v = 0 on To} and assume that there exists a
positive constant c' such that

(1.9) If(x)1 :s; c'{l + Ixl) and Ig(x)l:S; c'(l + Ixl) Vx E JR.

We have the following theorem:

THEOREM 1.1. Given (uo, ud E V x H arbitrarily, the problem (1.3)-
(1.6) has a unique solution (defined in a suitable weak sense) satisfying

(1.10) uEC(JR+;V)nC1(JR+;H).

Moreover, its energy is nonincreasing. If (uo, Ul) E W x V is such that

(1.11)

then the solution (called a strong solution) of (1.3)-(1.6) has the following
regularity properties:

(1.12) u E LOO(JR+; W),
(1.13) u' E LOO(JR+; V),
(1.14) u",f(u') E LOO(JR+;H).

In the case where f = 0 or g = 0, the system (1.3)-(1.6) was studied
earlier for example by Komornik [5, 6], Nakao [9] and Zuazua [11]. Decay
results for the solutions of (1.3)-(1.6) were obtained in this case. The aim
of this paper is to extend these results to the case of nonlinear internal and
boundary feedbacks. Moreover, we obtain rather precise decay estimates of
the energy under suitable growth assumptions on i, g and a particular choice
of the constant a. We give a better result than the one found in Komornik
[7] when the dimension of the space is equal to 2.

Assume in the sequel that

(1.15) either To =1= 0 or a> 0 and inf(m.v) > 0
r1
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and that

(1.16) To n Tl = 0 if n > 3.

We prove the following result.

THEOREM 1.2. Assume (1.2), (1.15), (1.16) and assume that there exist
two positive constants Cl, C2 such that

(1.17)

(1.18)

cllxl ~ Ig(x)1 ~ c2lxl, V x E JR.,
1 12 (3aR2 - n)cllxl ~ If(x)1 ~ 2 (3aR2 - n)c2Ixl, Vx E JR.,

and

(1.19) 1 { n} n- max n - 2 - < a < -.R2 '3 - R2

Then for every (uo, ud E V x H the solution of (1.3)-(1.6)
energy estimate

satisfies the

(1.20) E(t) ~ E(O)el-wt
, Vt 2 0,

REMARKS. 1. We note that Theorem 1.2 remains valid without the as-
sumption (1.16). However, the proof becomes more delicate because the
strong solutions are not sufficiently smooth to justify the computations given
below. One can overcome this difficulty by applying a domain approxima-
tion argument. (See Komornik and Zuazua [8] for a similar study of the
wave equation).

2. By hypothesis (1.15) the expression

Ilull~ = ~l'Vul2 dx + a ~ (m.v)u2 sr
a r,

defines a norm on V, which is equivalent to the norm induced by Hl(Q);
consequently, V is a Hilbert space with this norm.

3. If we choose a = (1/ R2) max{ n - 2, n/3} and Cl = C2 = 1/ R (i.e.
f = 0 if n = 1,2,3 and g(x) = (1/ R)x for x E JR.),then we find that the
solutions of (1.3)-(1.6) satisfy estimates (1.20) with w = n/(6R) ifn = 1,2,3
and w = 1/(2R) if n > 3. This gives a better result than the one found in
Komornik [7] when the dimension of the space is equal to 2.

4. The decay estimates will be obtained by applying a Lyapunov type
method based on an integral inequality applied earlier in Komornik [4, 5, 6]
and Zuazua [11].

For the proof of Theorem 1.2, we use the following lemma.
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LEMMA 1.3 (Komornik [4]). Let E : a+ -t lR+ be a nonincreasing func-
tion and assume that there are two constants a 2: 0 and T > 0 such that

00

~ E(s)<:'+1ds :::;TE(OyJ! E(t), Vt E lR+.
t

Then

E(t) < E(O) (:: :;) -l/a, Vt 2: 0, if a> 0,

and
E(t) < E(0)e1-t/T, Vt 2: 0, if a = O.

2. Proof of Theorem 1.2. We note that it is sufficient to prove the
estimate (1.20) for strong solutions: the general case then follows by an easy
density argument as in Zuazua [11]. We henceforth assume that u is a strong
solution of (1.3)-(1.6).

We begin by establishing two identities. They will be obtained by mul-
tiplying the equation (1.3) with u' and 2m. \1u + 2aR2u, respectively, and
by integrating by parts in [l x (8, T) where (8, T) is an arbitrarily fixed
bounded interval in lR+.

LEMMA 2.1. The function E : lR+ -t lR+ is nonincreasing, locally abso-
lutely continuous and

(2.1) E'(t) = - ~u' f(u') dx - ~ (m.v)u'g(u') ar a.e. in lR+.
S? Fl

Proof. Fixing 0 :::;8 < T < 00 arbitrarily, we have the equality
T

0= ~ ~u'(u"-Llu+f(u'))dxdt
sS?
T T

= ~~(u'u"+\1u.\1u'+u'f(u'))dxdt- ~ ~u'avudrdt
sS? sr
T

~ ~(u'u" + \1u.\1u' + u'f(u'))dxdt
sS?

T

+ ~~(m.v)(au + g(u'))u' sr dt,
sn

whence
T T

(2.2) E(8) - E(T) = ~ ~u' f(u') dx dt + ~~(m.v)u'g(u') ar dt.
s a s r,
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Since m.u 2 0 on Tt and since xf(x), xg(x) 2 0 for x E JR.,the right hand
side of (2.2) is nonnegative; hence E is nonincreasing. It also follows from
(2.2) that E is locally absolutely continuous and that (2.1) is satisfied.

LEMMA 2.2. Putting for brevity

(2.3) M = 2m. Vu + 2aR2u,

for all 0 ::; S < T < 00 we have
T T

(2.4) (2aR2 + 2 - n) ~ ~ IVul2 dx dt + (n - 2aR2) ~ ~(U')2 dx dt
sn sn

T T T- U Mu'dx] - ~ ~ Mf(u')dxdt+ ~ ~ (m.v)(ovu)2dTdt
n s s n s ro

T

+ ~~(m.v)((u')2 - IVul2 - M(au + g(u'))) dT dt.
s r1

Proof. We have
T

(2.5) 0 = ~ ~M(u" - Llu + f(u')) dx dt
sn

T T T
= U u'Mdx] + ~~Mf(u')dxdt- ~ ~(u'M' +MLlu)dxdt.

n s s a s a
Integrating by parts and using the relation div m = n we transform the

inner integral in the last term as follows:

~(u'M' + MLlu) dx
o

= ~(m.V(u')2 + 2aR2(u')2 - Vu.V M) dx + ~MovudT
n r

= ~(m.V(u')2 + 2aR2(u')2 - 21Vul2 - m.VIVuI2
- 2aR21Vu12) dx

a

+ ~MovudT
r

- (2aR2 + 2 - n) ~ IVul2 dx - (n - 2aR2) ~(U')2 dx
n n

+ ~(-(m.v)IVuI2 + (2m.Vu)ovu) dT
ro

+ ~(m.v)((u')2 - IVul2 - M(au + g(u'))) dT.
r1
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Substituting this equality into (2.5) and using the equality 'Vu = vovu on
ro, we obtain the identity (2.4).

LEMMA 2.3. The following estimates hold true:

(2.6) I ~ Mu'dxl :::;2RE(t)
a

and for all E > 0,

R2

(2.7) I~M f(u') dxl :::;E ~ f2(u') dx + -;- 0 l'Vul2 dx + a ~ (m.v)u2 dr).
a a a r,

Proof. Using (1.19) we have

~ 12m.'Vu + 2aR2ul2 dx - ~ 12m.'VuI2 dx
a a

= ~(4a2 R4u2 + 8aR2(m.'Vu)u) dx
a

= 4aR2 ~ (m.v)u2 ar + 4aR2(aR2 - n) ~ u2 dx
n a

:::;4aR2 ~ (m.v)u2 ar.
r1

Hence, using (1.7) we conclude that

I ~ Mu'dxl :::;.l.~12m.'Vu + 2aR2ul2 dx + R ~(u')2 dx
a 4R a a

1:::;4 ~12m.'VuI2 dx + aR ~ (m.v)u2 .u: + R ~(u')2 dx
Ra n a

:::;RO ((U')2 + l'VuI2) dx + a ~ (m.v)u2 dr) = 2RE(t)
a n

and hence (2.6) follows.
Next by a similar computation, for all E > 0, we obtain

I ~ Mf(u') dxl :::;E ~ f(u')2 dx + : ~IMI2 dx
a a Ea

:::;E ~ f(u')2 dx + :E 0 12m.'VuI2 dx + 4aR2 ~ (m.v)u2 dr)
a a n

:::; E ~ f(U')2 dx + ~2 0 l'Vul2 dx + a ~ (m.v)u2 dx),
a a n

which is (2.7), and the lemma follows.
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LEMMA 2.4. On rl the following estimate holds true:

(2.8) -M(au + g(u')) -IVuI2 ::; R2g(u')2 - a2R2u2.

Proof. We have

-M(au + g(u')) ::;2Im.Vul·lau + g(u')I- 2a2R2u2 - 2aR2ug(u')
::; IVul2 + R2(a2u2 + g(u')2 + 2aug(u'))

- 2a2R2u2 - 2aR2ug( u')
::; IVul2 - a2R2u2 + R2g(u')2.

The lemma follows.

Let us return to the identity (2.4). Applying the preceding two lemmas
and using also the assumptions (1.2), (1.17), (1.19) and the definition (1.7)
of energy, we deduce easily from this identity the following inequality for all° ::;S < T < 00 and all e > 0:

2R2 (a - ~) IE(t) dt ::;2R(E(S) + E(T)) + £I~f(u')2 dx dt
e S SD

T

+ (: + R2C2) ~ ~ (m.v)u'g(u') ar dt
1 S r1

(
R2) T+ 3aR2 - n - - ~ ~(u')2 dxdt.
e SD

Choosing e = 2R2 j(3aR2 - n), using the assumption (1.18) and the identity
(2.2), we conclude from (2.9) that (in the case where n = 3aR2, we have,
by (1.18), f = 0; then we let e ----+ 00 in (2.9))

(n - aR2) IE(t) dt ::; (2R + R2C2 + ~) E(S)
S Cl

+ (2R - R2c2 - c1l) E(T).

(2.9)

Since (cf. (1.17))

2 1 2 1 ( 1 )22R - R C2 - - ::; 2R - R Cl - - = - Ry'c1 - - ::; 0,
Cl Cl Ft

letting T ----+ 00 we conclude that

= 1 ( 1)~ E(t) dt ::; R2 2R + R2c2 + - E(S), VS ~ 0,
S n - a Cl

and we may then complete the proof by applying Lemma 1.3.

(2.10)
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