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Abstract In this paper, we consider a vibrating system of Timoshenko-type in a one-

dimensional bounded domain with complementary frictional damping and infinite memory

acting on the transversal displacement. We show that the dissipation generated by these

two complementary controls guarantees the stability of the system in case of the equal-speed

propagation as well as in the opposite case. We establish in each case a general decay estimate

of the solutions. In the particular case when the wave propagation speeds are different and the

frictional damping is linear, we give a relationship between the smoothness of the initial data

and the decay rate of the solutions. By the end of the paper, we discuss some applications

to other Timoshenko-type systems.
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1 Introduction

In this work, we are concerned with the long-time behavior of the solution of the following

Timoshenko system:










































ρ1ϕtt − k1(ϕx + ψ)x + bh(ϕt) +

∫ +∞

0

g(s)(aϕx(t− s))xds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0,

ϕ(0, t) = ψx(0, t) = ϕ(L, t) = ψx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

(P)

∗Received September 9, 2014; revised February 26, 2015.
†Corresponding author: Salim MESSAOUDI.



2 ACTA MATHEMATICA SCIENTIA Vol.36 Ser.B

for (x, t) ∈]0, L[×R+, where R+ = [0,+∞[, a, b : [0, L] → R+, g : R+ → R+ and h : R → R are

given functions (to be specified later), L, ρi, ki (i = 1, 2) are positive constants, ϕ0, ϕ1, ψ0 and

ψ1 are given initial and history data, and (ϕ, ψ) :]0, L[×R+ → R
2 is the state of (P).

Our aim is the study of the asymptotic behavior of the solutions of (P) in case of the

equal-speed propagation
k1

ρ1
=
k2

ρ2
(1.1)

as well as in the opposite case.

Timoshenko [39], in 1921, introduced the following model to describe the transverse vibra-

tion of a beam:






ρutt = (K(ux − ϕ))x, in ]0, L[×R+,

Iρϕtt = (EIϕx)x +K(ux − ϕ), in ]0, L[×R+,

where t denotes the time variable and x is the space variable along the beam of length L, in its

equilibrium configuration, u is the transverse displacement of the beam and ϕ is the rotation

angle of the filament of the beam. The coefficients ρ, Iρ, E, I and K are, respectively, the density

(the mass per unit length), the polar moment of inertia of a cross section, Young’s modulus

of elasticity, the moment of inertia of a cross section, and the shear modulus. Since then, this

model has had attracted the attention of many researchers and an important amount of work

has been devoted to the issue of the stabilization and the search for the minimum dissipation

by which the solutions decay uniformly to the stable state as time goes to infinity. To achieve

this goal, diverse types of dissipative mechanisms have been used and several stability results

have been obtained. We mention some of these results (for more results, we refer the reader to

the list of references of this paper, which is not exhaustive, and the references therein).

In the case of presence of controls on both the rotation angle and the transverse displace-

ment, investigations showed that the weak solutions of the (P) are stable without any restriction

on the constants ρ1, ρ2, k1 and k2. In this regards, many decay estimates were obtained [14,

18, 23, 26, 34]. However, in the case of only one control on the rotation angle, the rate of

decay depends heavily on the constants ρ1, ρ2, k1 and k2 and the regularity of the initial data.

Precisely, if (1.1) holds, the results obtained are similar to those established for the case of

the presence controls in both equations. We quote in this regard [4, 7, 12, 13, 14, 16, 17, 24,

25, 29, 30, 31, 38]. But, if (1.1) does not hold, a situation which is more interesting from the

physics point of view, then it has been shown that the Timoshenko system is not exponentially

stable even for exponentially decaying relaxation functions and only weak decay estimates can

be obtained for regular solutions in the presence of dissipation. This has been demonstrated in

[1], for the case of an internal feedback, in [7, 14, 16, 17, 27], for the case of finite and infinite

memory, and in [10, 13], for complementary internal feedback and finite or infinite memory

acting on the rotation angle equation.

For stabilization of Timoshenko systems via heat effect, we mention the pioneer work [28],

where the following system:














ρ1ϕtt − σ(ϕx, ψ)x = 0, in ]0, L[×R+,

ρ2ψtt − bψxx + k(ϕx + ψ) + γθx = 0, in ]0, L[×R+,

ρ3θt − kθxx + γψtx = 0, in ]0, L[×R+

(1.2)
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has been considered. In their work, Rivera and Racke established, under appropriate conditions

on σ, ρi, b, k and γ, several exponential decay results for the linearized system with several

boundary conditions. They also proved a non exponential stability result for the case of different

wave speeds and proved an exponential decay result for the nonlinear case. Guesmia et al.

[15] discussed a linear version of (1.2) and completed the work of [28] by establishing some

polynomial decay results in the case of nonequal speed of propagation.

In (1.2), the heat flux is given by Fourier’s law. As a result, this theory predicts an infinite

speed of heat propagation; that is, any thermal disturbance at one point has an instantaneous

effect elsewhere in the body. Experiments showed that heat conduction in some dielectric

crystals at low temperatures is free of this paradox and disturbances, which are almost entirely

thermal, propagate in a finite speed. This phenomenon in dielectric crystals is called second

sound.

To overcome this physical paradox, many theories have merged. One of which suggests that

we should replace Fourier’s law by Cattaneo’s law. In line with this theory, (1.2), in its linear

form, becomes


























ρ1ϕtt − κ(ϕx + ψ)x = 0, in ]0, L[×R+,

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0, in ]0, L[×R+,

ρ3θt + γqx + δψtx = 0, in ]0, L[×R+,

τqt + q + kθx = 0, in ]0, L[×R+,

(1.3)

where q denotes the heat flux. Fernández Sare and Racke [8] studied (1.3) and proved that the

equal-speed condition κ
ρ1

= b
ρ2

is no longer sufficient to obtain exponential stability even in the

presence of an extra viscoelastic dissipation of the form
∫ +∞

0
g(s)ψxx(t − s)ds in the second

equation. Very recently, Santos et al. [37] considered (1.3), introduced a new stability number

χ =

(

τ −
ρ1

κρ3

) (

ρ2 −
bρ1

κ

)

−
τρ1δ

2

κρ3

and used the semigroup method to obtain an exponential decay result, for χ = 0, and a

polynomial decay, for χ 6= 0. See, also, [14, 26, 33, 35, 36].

In all above mentioned works, the stabilization was either via both equation control or

the angular rotation equation control. Very recently, Almeida Júnior et al. [2] considered

the situation when the control is only on the transverse displacement equation, which is more

realistic from the physics point of view. Precisely, they looked into the following system:






ρ1ϕtt − k1(ϕx + ψ)x + µϕt = 0, in ]0, L[×R+,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0, in ]0, L[×R+

(1.4)

and showed that the linear frictional damping in the first equation is strong enough to obtain

exponential stability provided that (1.1) holds. They, also, proved some non-exponential and

polynomial decay results in the case of nonequal speed situation. The same authors considered

in [3]














ρ1ϕtt − κ(ϕx + ψ)x + σθx = 0, in ]0, L[×R+,

ρ2ψtt − bψxx + κ(ϕx + ψ) − σθ = 0, in ]0, L[×R+,

ρ3θt − γθxx + σ(ϕx + ψ)t = 0, in ]0, L[×R+,

(1.5)
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with various boundary conditions, and established the exponential decay stability for equal-

speed case and nonexponential stability for the opposite case. In the case of lack of exponential

stability, they proved some algebraic (polynomial) stability for strong solutions.

Our goal in this paper is to investigate the effect of each control on the asymptotic behavior

of the solutions of (P) and on the decay rate of its energy, when both controls are acting

cooperatively, allowing each control to vanish on the whole domain. We give an explicit and

general characterization of the decay rate depending on the growth of g at infinity and h at

zero, by considering the case when (1.1) holds and the opposite case. In the latter case, we give

a general decay estimate depending on the smoothness of the initial data and the growth of g

at infinity.

The proof is based on the multipliers method and an approach introduced by the first

author in [9, 11], for a class of abstract hyperbolic systems of single or coupled equations with

one infinite memory. In the case when (1.1) does not hold, we use also some ideas given in [10]

to get a relation between the decay rate of solutions and the general growth of g at infinity

characterized by the condition (2.8) below introduced in [9].

The paper is organized as follows. In Section 2, we set up the hypotheses, discuss briefly

the well-posedness and present our stability results. The proofs of these stability results will

be given in Section 3, for the equal-speed case, in Section 4, for the nonequal-speed case, and

in Section 5, when h is linear. Finally, in Section 6, we discuss some applications to other

Timoshenko-type systems.

2 Preliminaries

2.1 Hypotheses

We consider the following hypotheses:

(H1) a, b : [0, L] → R+ are such that

a ∈ C1([0, L]), b ∈ L∞([0, L]), (2.1)

inf
x∈[0,L]

{a(x) + b(x)} > 0, (2.2)

a ≡ 0 or inf
x∈[0,L]

{a(x)} > 0. (2.3)

(H2) h : R → R is a differentiable non-decreasing function such that there exist constants

ǫ1, c
′, c′1 > 0, and a convex and increasing function H : R+ → R+ of class C1(R+)∩C2(]0,+∞[)

satisfying H(0) = 0 and

H is linear on [0, ǫ1]

or

H ′(0) = 0 and H ′′ > 0 on ]0, ǫ1]

such that

c′|s| ≤ |h(s)| ≤ c′1|s| if |s| ≥ ǫ1, (2.4)

s2 + h2(s) ≤ H−1(sh(s)) if |s| < ǫ1. (2.5)
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(H3) g : R+ → R+ is a non-increasing differentiable function such that g(0) > 0 and

g0‖a‖∞ <
k1k2

k0k1 + k2
, (2.6)

where g0 =
∫ +∞

0
g(s)ds, k0 is the smallest positive constant satisfying (Poincaré’s inequality)

∫ L

0

v2dx ≤ k0

∫ L

0

v2
xdx, ∀v ∈ H1

∗ (]0, L[)

and

H1
∗ (]0, L[) =

{

v ∈ H1(]0, L[),

∫ L

0

v(x)dx = 0

}

.

(H4) There exist a positive constant c′′ and an increasing strictly convex function G :

R+ → R+ of class C1(R+) ∩ C2(]0,+∞[) satisfying

G(0) = G′(0) = 0 and lim
t→+∞

G′(t) = +∞

such that

g′(t) ≤ −c′′g(t), ∀t ≥ 0 (2.7)

or
∫ +∞

0

g(t)

G−1(−g′(t))
dt+ sup

t∈R+

g(t)

G−1(−g′(t))
< +∞. (2.8)

Remark 2.1 1. The hypothesis (2.8) was introduced in [9] and it allows a wider class of

relaxation functions than the ones considered in [7, 27] (see examples given in [9, 14]).

2. Hypothesis (H2) (with ǫ1 = 1) was introduced and used in [20, 21] to get the asymptotic

behavior of solutions of nonlinear wave equations with nonlinear boundary damping, where they

obtained decay estimates depending on the solution of an explicit nonlinear ordinary differential

equation.

3. Using the second equation and boundary conditions in (P), we easily verify that

∂tt

(
∫ L

0

ψ(x, t)dx

)

+
k1

ρ2

∫ L

0

ψ(x, t)dx = 0.

By solving this ordinary differential equation and using the initial data of ψ, we find

∫ L

0

ψ(x, t)dx =

(
∫ L

0

ψ0(x)dx

)

cos

(

√

k1

ρ2
t

)

+

√

ρ2

k1

(
∫ L

0

ψ1(x)dx

)

sin

(

√

k1

ρ2
t

)

.

Let

ψ̃(x, t) = ψ(x, t) −
1

L

(
∫ L

0

ψ0(x)dx

)

cos

(

√

k1

ρ2
t

)

−
1

L

√

ρ2

k1

(
∫ L

0

ψ1(x)dx

)

sin

(

√

k1

ρ2
t

)

.

Then, one can easily check that
∫ L

0

ψ̃(x, t)dx = 0,

and, hence, Poincaré’s inequality is applicable for ψ̃. In addition, (ϕ, ψ̃) satisfies (P) with initial

data

ψ̃0(x) = ψ0(x) −
1

L

∫ L

0

ψ0(x)dx and ψ̃1(x) = ψ1(x) −
1

L

∫ L

0

ψ1(x)dx
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instead of ψ0 and ψ1, respectively. In the sequel, we work with ψ̃ instead of ψ, but, for simplicity

of notation, we use ψ instead of ψ̃.

4. Thanks to Poincaré’s inequality (applied for ψ), we have

k1

∫ L

0

(ϕx + ψ)2dx ≥ k1(1 − ǫ̂)

∫ L

0

ϕ2
xdx+ k0k1

(

1 −
1

ǫ̂

)

∫ L

0

ψ2
xdx

for any 0 < ǫ̂ < 1. Then, thanks to (2.6), we can choose ǫ̂ > 0 such that

k0k1

k0k1 + k2
< ǫ̂ <

1

k1

(

k1 − g0‖a‖∞
)

and obtain

k̂

∫ L

0

(ϕ2
x + ψ2

x)dx ≤

∫ L

0

(

− g0‖a‖∞ϕ
2
x + k2ψ

2
x + k1(ϕx + ψ)2

)

dx, (2.9)

where k̂ = min
{

k1(1 − ǫ̂) − g0‖a‖∞, k2 + k0k1(1 − 1
ǫ̂
)
}

> 0.

Because
∫ L

0
ϕ2

xdx and
∫ L

0
ψ2

xdx define norms, for ϕ and ψ on H1
0 (]0, L[) and H1

∗ (]0, L[),

respectively, then
∫ L

0

(

− g0‖a‖∞ϕ
2
x + k2ψ

2
x + k1(ϕx + ψ)2

)

dx

defines a norm onH1
0 (]0, L[)×H1

∗(]0, L[), for (ϕ, ψ), equivalent to the one induced by
(

H1(]0, L[)
)2

.

2.2 Well-Posedness

We give here a brief idea about the existence, uniqueness and smoothness of solution of

(P). Following the idea of [6], let

η(x, t, s) = ϕ(x, t) − ϕ(x, t− s), for (x, t, s) ∈]0, L[×R+ × R+.

Then














ηt + ηs − ϕt = 0, in ]0, L[×R+ × R+,

η(0, t, s) = η(L, t, s) = 0, in R+ × R+,

η(x, t, 0) = 0, in ]0, L[×R+.

Let η0(x, s) = η(x, 0, s) = ϕ0(x, 0) − ϕ0(x, s), for (x, s) ∈]0, L[×R+,

H =







H1
0 (]0, L[) ×H1

∗ (]0, L[) × L2(]0, L[) × L2
∗(]0, L[) if a ≡ 0,

H1
0 (]0, L[) ×H1

∗ (]0, L[) × L2(]0, L[) × L2
∗(]0, L[) × Lg if inf

x∈[0,L]
{a(x)} > 0,

where

L2
∗(]0, L[) =

{

v ∈ L2(]0, L[),

∫ L

0

v(x)dx = 0

}

and

Lg =

{

v : R+ → H1
0 (]0, L[),

∫ L

0

a

∫ +∞

0

g(s)v2
x(s)dsdx < +∞

}

endowed with the inner product

〈v, w〉Lg
=

∫ L

0

a

∫ +∞

0

g(s)vx(s)wx(s)dsdx.
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The space H is equipped with the inner product defined, if a ≡ 0, by

〈V,W 〉H = k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx

+

∫ L

0

(

k2∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4

)

dx,

for any V = (v1, v2, v3, v4)
T ∈ H and W = (w1, w2, w3, w4)

T ∈ H, and, if inf
x∈[0,L]

{a(x)} > 0, by

〈V,W 〉H = 〈v5, w5〉Lg
+ k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx

+

∫ L

0

(

− g0a∂xv1∂xw1 + k2∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4

)

dx,

for any V = (v1, v2, v3, v4, v5)
T ∈ H and W = (w1, w2, w3, w4, w5)

T ∈ H. Let

U =







(ϕ, ψ, ϕt, ψt)
T if a ≡ 0,

(ϕ, ψ, ϕt, ψt, η)
T if inf

x∈[0,L]
{a(x)} > 0,

U0 =







(ϕ0, ψ0, ϕ1, ψ1)
T if a ≡ 0,

(ϕ0(·, 0), ψ0, ϕ1, ψ1, η0)
T if inf

x∈[0,L]
{a(x)} > 0

and A is the operator defined by A(v1, v2, v3, v4)
T = (ṽ1, ṽ2, ṽ3, ṽ4)

T , for any (v1, v2, v3, v4)
T ∈

D(A), where










































ṽ1 = −v3,

ṽ2 = −v4,

ṽ3 = −
k1

ρ1
∂x(∂xv1 + v2) +

b

ρ1
h(v3),

ṽ4 = −
k2

ρ2
∂xxv2 +

k1

ρ2
(∂xv1 + v2)

if a ≡ 0, and A(v1, v2, v3, v4, v5)
T = (ṽ1, ṽ2, ṽ3, ṽ4, ṽ5)

T , for any (v1, v2, v3, v4, v5)
T ∈ D(A),

where






















































ṽ1 = −v3,

ṽ2 = −v4,

ṽ3 = −
k1

ρ1
∂x(∂xv1 + v2) +

g0

ρ1
∂x(a∂xv1) −

1

ρ1

∫ +∞

0

g(s)∂x(a∂xv5(s))ds+
b

ρ1
h(v3),

ṽ4 = −
k2

ρ2
∂xxv2 +

k1

ρ2
(∂xv1 + v2),

ṽ5 = −v3 + ∂sv5

if inf
x∈[0,L]

{a(x)} > 0. The system (P) is equivalent to







U ′(t) +AU(t) = 0 on R+,

U(0) = U0.
(P)



8 ACTA MATHEMATICA SCIENTIA Vol.36 Ser.B

Note that, thanks to (2.4) and the fact that h is continuous, we have

∃h0 > 0 : |h(s)| ≤ h0(1 + |s|), ∀s ∈ R,

thus h(v3) ∈ L2(]0, L[), for any v3 ∈ L2(]0, L[). The domain D(A) of A can be characterized by

D(A) =
{

V = (v1, v2, v3, v4)
T ∈ H, AV ∈ H, ∂xv2(0) = ∂xv2(L) = 0

}

if a ≡ 0, and

D(A) =
{

V = (v1, v2, v3, v4, v5)
T ∈ H, AV ∈ H, ∂xv2(0) = ∂xv2(L) = 0, v5(0) = 0

}

if inf
x∈[0,L]

{a(x)} > 0. We use the classical notation D(A0) = H, D(A1) = D(A) and

D(An) =
{

V ∈ D(An−1), AV ∈ D(An−1)
}

, for n = 2, 3, · · · ,

endowed with the graph norm ‖V ‖D(An) =
n
∑

k=0

‖AkV ‖H.

As in [10] where the frictional damping and infinite memory were considered on the second

equation of (P), we can prove that the operatorA is maximal monotone; that is −A is dissipative

and Id+A is surjective. Then we deduce that A is an infinitesimal generator of a contraction

semigroup on H, which implies the following results of existence, uniqueness and smoothness

of the solution of (P) (see [19, 32]):

Theorem 2.0 1. For any U0 ∈ H, one has a unique solution

U ∈ C(R+;H).

2. If U0 ∈ D(A), then the solution

U ∈ W 1,∞(R+;H) ∩ L∞(R+;D(A)).

3. If h is linear (then A is linear) and U0 ∈ D(An) (for n ∈ N), then the solution

U ∈

n
⋂

k=0

Cn−k(R+;D(Ak)).

2.3 Stability

The energy functional associated with (P) is defined by

E(t) :=
1

2
g ◦ ϕx +

1

2

∫ L

0

(

ρ1ϕ
2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 + k2ψ

2
x − g0aϕ

2
x

)

dx, (2.10)

where

φ ◦ v =

∫ L

0

a

∫ +∞

0

φ(s)(v(t) − v(t− s))2dsdx,

for any v : R → L2(]0, L[) and φ : R+ → R+.

Now, we give our first main stability result which concerns the case (1.1).

Theorem 2.1 Assume that (1.1) and (H1)–(H4) are satisfied and let U0 ∈ H such that

a ≡ 0 or (2.7) holds or

sup
t∈R+

∫ +∞

t

g(s)

G−1(−g′(s))

∫ L

0

ϕ2
0x(x, s− t)dxds < +∞. (2.11)

Then there exist positive constants ǫ0, τ0, c
′′
1 and c′′2 , for which E satisfies

E(t) ≤ c′′1Ĝ
−1(c′′2 t), ∀t ≥ 0, (2.12)
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where Ĝ(t) =
∫ 1

t
1

Ĝ0(s)
ds,

Ĝ0(s) =







H0(s) if a ≡ 0 or (2.7) holds,

H0(s)G
′(ǫ0H0(s)) if inf

x∈[0,L]
{a(x)} > 0, (2.8) holds and (2.7) does not hold

(2.13)

and

H0(s) =







s ifH is linear on [0, ǫ1],

sH ′(τ0s) otherwise.
(2.14)

Remark 2.2 1. Because lim
t→0+

G1(t) = +∞, then (2.12) implies that

lim
t→+∞

E(t) = 0. (2.15)

2. If a ≡ 0 or (2.7) holds, and b ≡ 0 or H is linear near zero, then

E(t) ≤ c′′1e
−c′′2 t, ∀t ≥ 0, (2.16)

which is the best decay rate given by (2.12). For specific examples of decay rates given by

(2.12), see [10].

When (1.1) does not hold, we consider the following additional hypothesis:

(H5) Assume that (H2) is satisfied such that H is linear,

h ∈ C1(R) and inf
t∈R

h′(t) > 0.

Theorem 2.2 Assume that (H1)–(H5) hold and U0 ∈ D(A) such that a ≡ 0 or (2.7)

holds or

sup
t∈R+

max
k=0,1

∫ +∞

t

g(s)

G−1(−g′(s))

∫ L

0

(

∂kϕ0x(x, s− t)

∂sk

)2

dxds < +∞. (2.17)

Then there exist positive constants ǫ0 and c1 such that

E(t) ≤ G−1
0

(c1

t

)

, ∀t > 0, (2.18)

where

G0(s) =







s if a ≡ 0 or (2.7) holds,

sG′(ǫ0s) if inf
x∈[0,L]

{a(x)} > 0, (2.8) holds and (2.7) does not hold.
(2.19)

Remark 2.3 If a ≡ 0 or (2.7) holds, then (2.18) becomes

E(t) ≤
c1

t
, ∀t > 0,

which is the best decay rate given by (2.18).

In the particular case where h is linear and the initial data are more regular, we prove a

more general stability result than (2.18).

Theorem 2.3 Assume that h is linear, and (H1)–(H4) are satisfied. Let n ∈ N
∗ and

U0 ∈ D(An) such that a ≡ 0 or (2.7) holds or

sup
t∈R+

max
k=0,··· ,n

∫ +∞

t

g(s)

G−1(−g′(s))

∫ L

0

(

∂kϕ0x(x, s− t)

∂sk

)2

dxds < +∞. (2.20)

Then there exist positive constant ǫ0 and cn such that

E(t) ≤ Gn

(cn

t

)

, ∀t > 0, (2.21)
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where Gm(s) = G1(sGm−1(s)), for m = 2, · · · , n and s ∈ R+, G1 = G−1
0 and G0 is defined in

(2.19).

Remark 2.4 If n = 1, then (2.18) and (2.21) are the same. On the other hand, if a ≡ 0

or (2.7) holds, then (2.21) becomes

E(t) ≤
cn

tn
, ∀t > 0 (2.22)

which is the best decay rate given by (2.21). For specific examples of decay rates given by

(2.21), see [11].

3 Proof of Teorem 2.1

We will use c (sometimes cτ which depends on some parameter τ), throughout this paper,

to denote a generic positive constant. Before starting the proofs of our stability resuls, we give

the following identity on the derivative of E:

Lemma 3.1 The energy functional satisfies

E′(t) =
1

2
g′ ◦ ϕx −

∫ L

0

bϕth(ϕt)dx ≤ 0. (3.1)

Proof By multiplying the first two equations in (P), respectively, by ϕt and ψt, integrat-

ing over ]0, L[, and using the boundary conditions, we obtain (3.1) (note that g is non-increasing

and sh(s) ≥ 0, for all s ∈ R, because h is non-decreasing and h(0) = 0 thanks to (2.5)). The

estimate (3.1) shows that (P) is dissipative, where the entire dissipation is generated by the

frictional damping and/or infinite memory. �

Lemma 3.2 The following inequalities hold:

∃d1 > 0 :

(
∫ L

0

a

∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))dsdx

)2

≤ d1g ◦ ϕx, (3.2)

∃d2 > 0 :

(
∫ L

0

a

∫ +∞

0

g′(s)(ϕ(t) − ϕ(t− s))dsdx

)2

≤ −d2g
′ ◦ ϕx, (3.3)

∃d3 > 0 :

(
∫ L

0

a′
∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))dsdx

)2

≤ d3g ◦ ϕx. (3.4)

(
∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))ds

)2

≤ g0

∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))2ds, (3.5)

(
∫ +∞

0

g′(s)(ϕx(t) − ϕx(t− s))ds

)2

≤ −g(0)

∫ +∞

0

g′(s)(ϕx(t) − ϕx(t− s))2ds. (3.6)

Proof If a ≡ 0, (3.2)–(3.4) are trivial. If inf
x∈[0,L]

{a(x)} > 0, we use the fact that a and

a′ are bounded and apply Hölder’s and Poincaré’s inequalities to get (3.2)–(3.4). Using again

Hölder’s inequality, (3.5) and (3.6) hold. �

Lemma 3.3 The functional

I1(t) := −ρ1

∫ L

0

aϕt

∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))ds dx (3.7)
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satisfies, for any δ > 0,

I ′1(t) ≤ −ρ1g0

∫ L

0

aϕ2
t dx+ δ

∫ L

0

(ϕ2
t + ϕ2

x + ψ2
x)dx

+cδ

∫ L

0

bh2(ϕt) dx+ cδg ◦ ϕx − cδg
′ ◦ ϕx. (3.8)

Proof First, note that

∂t

(
∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))ds

)

= ∂t

(
∫ t

−∞

g(t− s)(ϕ(t) − ϕ(s))ds

)

=

∫ t

−∞

g(t− s)ϕt(t)ds +

∫ t

−∞

g′(t− s)(ϕ(t) − ϕ(s))ds

= g0ϕt(t) +

∫ +∞

0

g′(s)(ϕ(t) − ϕ(t− s))ds.

Then, by differentiating I1, and using the first equation and boundary conditions in (P), we

find

I ′1(t) = −ρ1g0

∫ L

0

aϕ2
t dx− ρ1

∫ L

0

aϕt

∫ +∞

0

g′(s)(ϕ(t) − ϕ(t− s))dsdx

+k1

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))dsdx

+

∫ L

0

abh(ϕt)

∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))dsdx

+

∫ L

0

a2

(
∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))ds

)2

dx

−g0

∫ L

0

a2ϕx

∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))dsdx

+

∫ L

0

aa′
(

∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))ds

)(
∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))ds

)

dx

+k1

∫ L

0

a′(ϕx + ψ)

∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))dsdx

−g0

∫ L

0

aa′ϕx

∫ +∞

0

g(s)(ϕ(t) − ϕ(t− s))dsdx.

Therefore, applying Hölder’s and Young’s inequalities, for the last heigh terms of the above

equality, and using (3.2), (3.3), (3.4), (3.5), Poincaré’s inequality, for ϕ, and the fact that a, b

and a′ are bounded, we get (3.8). �

Lemma 3.4 The functional

I2(t) :=

∫ L

0

(ρ1ϕϕt + ρ2ψψt)dx

satisfies, for any δ > 0,

I ′2(t) ≤

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx− k1

∫ L

0

(ϕx + ψ)2 dx− k2

∫ L

0

ψ2
x dx
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+g0

∫ L

0

aϕ2
x dx+ δ

∫ L

0

ϕ2
x dx+ cδ

∫ L

0

bh2(ϕt)dx+ cδg ◦ ϕx. (3.9)

Proof By differentiating I2, and using the first two equations and boundary conditions

in (P), we have

I ′2(t) =

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx − k1

∫ L

0

(ϕx + ψ)2 dx− k2

∫ L

0

ψ2
x dx

+g0

∫ L

0

aϕ2
x dx−

∫ L

0

bϕh(ϕt)dx−

∫ L

0

aϕx

∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))dsdx.

Consequently, aplying Hölder’s and Young’s inequalities, for the last two terms of the above

equality, and using (3.5), Poincaré’s inequality, for ϕ, and the fact that a and b are bounded,

we find (3.9). �

Lemma 3.5 The functional

I3(t) := −ρ2

∫ L

0

ψt(ϕx + ψ)dx−
k2ρ1

k1

∫ L

0

ψxϕtdx+
ρ2

k1

∫ L

0

aψt

∫ +∞

0

g(s)ϕx(t− s)dsdx

satisfies, for any δ, δ1 > 0,

I ′3(t) ≤ k1

∫ L

0

(ϕx + ψ)2 dx− ρ2

∫ L

0

ψ2
t dx

+g0(
δ1

2
− 1)

∫ L

0

aϕ2
x dx+

g0k0‖a‖∞
2δ1

∫ L

0

ψ2
xdx+ cδ

∫ L

0

bh2(ϕt)dx

+δ

∫ L

0

(ψ2
t + ϕ2

x + ψ2
x) dx+ cδ(g ◦ ϕx − g′ ◦ ϕx)

+

(

k2ρ1

k1
− ρ2

)
∫ L

0

ϕxtψtdx. (3.10)

Proof Similarly to (3.8) and using that lim
s→+∞

g(s) = 0, we see that

∂t

(
∫ +∞

0

g(s)ϕx(t− s)ds

)

= ∂t

(
∫ t

−∞

g(t− s)ϕx(s)ds

)

= g(0)ϕx(t) +

∫ t

−∞

g′(t− s)ϕx(s)ds

= g(0)ϕx(t) +

∫ +∞

0

g′(s)(ϕx(t− s) − ϕx(t) + ϕx(t))ds

= −

∫ +∞

0

g′(s)(ϕx(t) − ϕx(t− s))ds.

Therefore, exploiting the first two equations and boundary conditions in (P), we have

I ′3(t) = k1

∫ L

0

(ϕx + ψ)2dx− ρ2

∫ L

0

ψ2
t dx+

(

k2ρ1

k1
− ρ2

)
∫ L

0

ϕxtψtdx

−g0

∫ L

0

aϕ2
xdx− g0

∫ L

0

aϕxψ dx+

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))dsdx

−
ρ2

k1

∫ L

0

aψt

∫ +∞

0

g′(s)(ϕx(t) − ϕx(t− s))dsdx +
k2

k1

∫ L

0

bψxh(ϕt)dx.

By applying Young’s inequality, for the last four terms, Poincaré’s inequality, for ψ, and using

(3.5), (3.6) and the fact that a and b are bounded, (3.10) is established. �
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Now, as in [4], we use a function w to get a crucial estimate.

Lemma 3.6 The function

w(x, t) =

∫ x

0

ψ(y, t)dy (3.11)

satisfies the estimates
∫ L

0

w2
xdx =

∫ L

0

ψ2dx, ∀t ≥ 0, (3.12)

∫ L

0

w2
t dx ≤ c

∫ L

0

ψ2
t dx, ∀t ≥ 0. (3.13)

Proof We just have to note that wx = ψ to get (3.12). On the other hand,

wt(0, t) = 0 and wt(L, t) =

∫ L

0

ψt(y, t)dy = ∂t

∫ L

0

ψ(y, t)dy = 0.

Then, applying (3.12) to wt and using Poincaré’s inequality, for wt, we arrive at (3.13). �

Lemma 3.7 The functional

I4(t) := ρ1

∫ L

0

(wϕt + ϕϕt)dx

satisfies, for any δ, ǫ, ǫ′ > 0,

I ′4(t) ≤
(

ρ1 +
c

ǫ

)

∫ L

0

ϕ2
t dx+ cǫ

∫ L

0

ψ2
t dx

+
(

g0‖a‖∞

(

1 +
ǫ′

2

)

− k1

)

∫ L

0

(ϕx + ψ)2dx+
g0k0‖a‖∞

2ǫ′

∫ L

0

ψ2
xdx

+δ

∫ L

0

(ϕ2
x + ψ2

x)dx+ cδ

∫ L

0

bh2(ϕt)dx+ cδg ◦ ϕx. (3.14)

Proof Using the first two equations and boundary conditions in (P), and exploiting the

fact that w(0, t) = w(L, t) = 0 and wx = ψ, we find

I ′4(t) = ρ1

∫ L

0

ϕ2
t dx− k1

∫ L

0

(ϕx + ψ)2 dx+ g0

∫ L

0

aϕx(ϕx + ψ) dx+ ρ1

∫ L

0

wtϕt dx

−

∫ L

0

b(w + ϕ)h(ϕt) dx−

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s)(ϕx(t) − ϕx(t− s))dsdx.

Applying Young’s inequality, for the last four terms, Poincaré’s inequality, for ϕ and ψ, and

exploiting (3.5), (3.12), (3.13) and the fact that a and b are bounded, we get (3.14). �

For N, N1, N2, N3 > 0, let

I5(t) := NE(t) +N1I1(t) +N2I2(t) + I3(t) +N3I4(t). (3.15)

Let a0 := inf
x∈[0,L]

{a(x)} and b0 := inf
x∈[0,L]

{b(x)}. Noting that

−N1ρ1g0a = −N1ρ1g0a−N1b +N1b ≤ −N1(ρ1g0a0 + b0) +N1b.

Then, by combining (3.1), (3.8), (3.9), (3.10) and (3.14), we obtain

I ′5(t) ≤ −

∫ L

0

(l0ϕ
2
t + l1ψ

2
t + l2(ϕx + ψ)2 + l3ψ

2
x)dx+ l4g0

∫ L

0

aϕ2
xdx

+δcN1,N2,N3

∫ L

0

(ϕ2
t + ψ2

t + ϕ2
x + ψ2

x)dx−N

∫ L

0

bϕth(ϕt)dx
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+cN1,N2,N3,δ

(
∫ L

0

b(ϕ2
t + h2(ϕt))dx + g ◦ ϕx

)

+

(

N

2
− cN1,δ

)

g′ ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx, (3.16)

where

l0 = N1(ρ1g0a0 + b0) − (N2 +N3)ρ1 −
c0N3

ǫ
,

l1 = ρ2(1 −N2) − c0ǫN3, l2 = k1(N2 +N3 − 1) − g0‖a‖∞

(

1 +
ǫ′

2

)

N3,

l3 = k2N2 −
g0k0‖a‖∞

2

(

N3

ǫ′
+

1

δ1

)

, l4 = N2 +
δ1

2
− 1

and c0 > 0, independent ofN, Ni, δ, δ1, ǫ and ǫ′. At this point, we choose carefully the constants

N, Ni, δ, δ1, ǫ and ǫ′ to get desired signs of li.

Case 1 a ≡ 0: the second integral in (3.16) drops, g ◦ϕx = g′ ◦ϕx = 0 and the constants

l0, l1, l2 and l3 do not depent on δ1 and ǫ′. Therefore, we choose

N3 = 1, 0 < N2 < 1, 0 < ǫ <
ρ2

c0
(1 −N2) and N1 >

1

b0
(N2 +N3) +

c0N3

ǫb0

(note that b0 > 0 thanks to (2.2)). According to these choices, we get

L := min

{

l0

ρ1
,
l1

ρ2
,
l2

k1
,
l3

k2

}

> 0,

and then, using (2.9), (2.10) and (3.16),

I ′5(t) ≤ −(2L− cδ)E(t) −N

∫ L

0

bϕth(ϕt)dx

+

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx+ cδ

∫ L

0

b(ϕ2
t + h2(ϕt))dx.

Case 2 a0 > 0: we choose

ǫ′ =
k1 − g0‖a‖∞
g0‖a‖∞

, δ1 =
k0g0‖a‖∞

k2
,

k1δ1

2k1 − g0‖a‖∞(2 + ǫ′)
< N3 < ǫ′

(

k2(2 − δ1)

g0k0‖a‖∞
−

1

δ1

)

,

max

{

1 −N3

(

1 −
g0‖a‖∞(2 + ǫ′)

2k1

)

,
g0k0‖a‖∞

2k2

(

N3

ǫ′
+

1

δ1

)}

< N2 < 1 −
δ1

4
,

0 < ǫ < min

{(

2(1 −N2) −
δ1

2

)

ρ2

c0N3
,
ρ2(1 −N2)

c0N3

}

and

N1 > max

{

(N2 +N3)ρ1 + c0N3

ǫ

ρ1g0a0 + b0
,
(2N2 +N3 + δ1

2 − 1)ρ1 + c0N3

ǫ

ρ1g0a0 + b0

}

.

Note that ǫ′ and δ1 are positive thanks to (2.6) and g0‖a‖∞ > 0, N2 exists according to the

choice of N3, ǫ exists from the choice of N2, and N1 exists because ρ1g0a0 + b0 > 0. On the

other hand, using the definitions of ǫ′ and δ1, we see that N3 exists if and only if

k2
0k1(g0‖a‖∞)3 < k2(k2 − k0g0‖a‖∞)(k1 − g0‖a‖∞)2.
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Let y0 = k1k2

k0k1+k2
, y = g0‖a‖∞ ∈]0, y0[ (see (2.6)) and

f(y) = k2
0k1y

3 − k2(k2 − k0y)(k1 − y)2.

We have

f ′(y) = 3(k2
0k1 + k0k2)y

2 − 2(2k0k1k2 + k2
2)y + k0k

2
1k2 + 2k1k

2
2

and

f ′′(y) = 6(k2
0k1 + k0k2)y − 2(2k0k1k2 + k2

2).

Let y1 =
2k0k1k2+k2

2

3(k2
0
k1+k0k2)

. We notice that f ′ is decreasing on ]0, y1[, it is increasing on ]y1,+∞[

and

f ′(y0) =
k2
0k

3
1k2 + 2k0k

2
1k

2
2

k0k1 + k2
> 0,

Moreover, y1 ≤ y0 if and only if k2 ≤ k0k1, and, if k2 ≤ k0k1,

f ′(y1) =
5k2

0k
2
1k

2
2 − k4

2 + 2k0k1k
3
2 + 3k3

0k
3
1k2

3(k2
0k1 + k0k2)

≥
9k4

2

3(k2
0k1 + k0k2)

> 0.

Therefore, f ′ is positive on ]0, y0[, and then f(y) < f(y0), for any y ∈]0, y0[. But f(y0) = 0,

hence f is negative on ]0, y0[. This guarantees the existence of N3.

By vertue of these choices, we notice that

L := min

{

l0

ρ1
,
l1

ρ2
,
l2

k1
,
l3

k2

}

> 0 and l4 ≤ L,

and then, as in case 1, using (2.9), (2.10) and (3.16), we find

I ′5(t) ≤ −(2L− cδ)E(t) + cδg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx

+cδ

∫ L

0

b(ϕ2
t + h2(ϕt))dx −N

∫ L

0

bϕth(ϕt)dx+

(

N

2
− cδ

)

g′ ◦ ϕx. (3.17)

Choosing δ > 0 small enough in (3.17), we deduce in both cases a ≡ 0 and inf
x∈[0,L]

{a(x)} > 0

that

I ′5(t) ≤ −cE(t) + cg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx

+c

∫ L

0

b(ϕ2
t + h2(ϕt))dx −N

∫ L

0

bϕth(ϕt)dx+

(

N

2
− c

)

g′ ◦ ϕx. (3.18)

Now, by the definitions of the functionals I1 − I4 and E, there exists a positive constant β

satisfying

|N1I1 +N2I2 + I3 +N3I4| ≤ βE,

which implies that

(N − β)E ≤ I5 ≤ (N + β)E.

To estimate the last two integrals of (3.18), we use some ideas from [19, 20, 22]. Let

Ω+ = {x ∈]0, L[: |ϕt| ≥ ǫ1} and Ω− = {x ∈]0, L[: |ϕt| < ǫ1}, (3.19)

where ǫ1 is defined in (H2). Using (2.4), we get (note that sh(s) ≥ 0)

c

∫

Ω+

b(ϕ2
t + h2(ϕt))dx −N

∫ L

0

bψth(ϕt)dx ≤ (c−N)

∫

Ω+

bϕth(ϕt)dx.
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Then we choose N large enough so that c − N ≤ 0 (so the right hand side of the above

inequality is non-positive), N
2 − c ≥ 0 (so the last term of (3.18) is non-positive) and N > β

(that is I5 ∼ E), we get from (3.18)

I ′5(t) ≤ −cE(t) + cg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx+ c

∫

Ω−

b(ϕ2
t + h2(ϕt))dx. (3.20)

Case 1 H is linear on [0, ǫ1]: then (2.4) is satisfied on R, and therefore

c

∫ L

0

b(ϕ2
t + h2(ϕt))dx −N

∫ L

0

bϕth(ϕt)dx ≤ (c−N)

∫ L

0

bϕth(ϕt)dx.

So, with the same choice of N , we get from (3.20), for H0 = Id in this case,

I ′5(t) ≤ −cH0(E(t)) + cg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx. (3.21)

Case 2 H ′(0) = 0 and H ′′ > 0 on ]0, ǫ1]: without loss of generality, we can assume that

H ′ defines a bijection from R+ to R+. Let H∗ denote the dual function of the convex function

H given by

H∗(t) = sup
s∈R+

{ts−H(s)}, ∀t ∈ R+.

For t ∈ R+, the function s 7→ ts − H(s) reaches its maximum on R+ at the unique point

(H ′)−1(t). Therefore

H∗(t) = t(H ′)−1(t) −H((H ′)−1(t)), ∀t ∈ R+.

Because H is convex and H(0) = 0, then, for any s0 ∈ R+,

H

(

b

max{1, ‖b‖∞}
s0

)

≤
b

max{1, ‖b‖∞}
H(s0) +

(

1 −
b

max{1, ‖b‖∞}

)

H(0) ≤ bH(s0),

which implis that, for s0 = H−1(ϕth(ϕt)),

bH−1(ϕth(ϕt))dx ≤ max{1, ‖b‖∞}H−1(bϕth(ϕt)).

Thus, using (2.5),
∫

Ω−

b(ϕ2
t + h2(ϕt))dx ≤

∫

Ω−

bH−1(ϕth(ϕt))dx ≤ c

∫

Ω−

H−1(bϕth(ϕt))dx.

Therefore, using Jensen’s inequality and (3.1), we find
∫

Ω−

b(ϕ2
t + h2(ϕt))dx ≤ cH−1

(
∫

Ω−

cbϕth(ϕt)dx

)

≤ cH−1(−cE′(t)).

Consequently, recalling (3.20), we get

I ′5(t) ≤ −cE(t) + cH−1(−cE′(t)) + cg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx.

Let τ0, τ
′ > 0. The fact that E′ ≤ 0, H ′′ ≥ 0 and I5 ≥ 0 imply that

(

H ′(τ0E(t))I5(t) + τ ′E(t)
)′

= τ0E
′(t)H ′′(τ0E(t))I5(t) +H ′(τ0E(t))I ′5(t) + τ ′E′(t)

≤ H ′(τ0E(t))

(

− cE(t) + cH−1(−cE′(t)) + cg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx

)

+ τ ′E′(t).
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Hence, Young’s inequality gives

H−1(−cE′(t))H ′(τ0E(t)) ≤ −cE′(t) +H∗(H ′(τ0E(t))),

and the fact that H∗(t) ≤ t(H ′)−1(t) and H ′(τ0E) is non-increasing leads to
(

H ′(τ0E(t))I5(t) + τ ′E(t)

)′

≤

(

ρ1k2

k1
− ρ2

)

H ′(τ0E(t))

∫ L

0

ϕxtψtdx

+cH ′(τ0E(0))g ◦ ϕx − cH ′(τ0E(t))E(t) + cH∗(H ′(τ0E(t))) + (τ ′ − c)E′(t)

≤

(

ρ1k2

k1
− ρ2

)

H ′(τ0E(t))

∫ L

0

ϕxtψtdx

+cH ′(τ0E(0))g ◦ ϕx − cH0(E(t)) + cτ0H0(E(t)) + (τ ′ − c)E′(t),

where H0(t) = tH ′(τ0t) in this case. By choosing τ0 small enough and τ ′ large enough, we

arrive at
(

H0(E(t))

E(t)
I5(t)+τ

′E(t)

)′

≤ −cH0(E(t))+cg◦ϕx+

(

ρ1k2

k1
−ρ2

)

H0(E(t))

E(t)

∫ L

0

ϕxtψtdx. (3.22)

Let

I6 =
H0(E)

E
I5 + τ ′E,

where H0 is defined by (2.14) (I6 = I5 if H is linear on [0, ǫ1]). The functional I6 satidfies

I6 ∼ E (because I5 ∼ E and H0(E)
E

is non-increasing) and, using (3.21) and (3.22),

I ′6(t) ≤ −cH0(E(t)) + cg ◦ ϕx +

(

ρ1k2

k1
− ρ2

)

H0(E(t))

E(t)

∫ L

0

ϕxtψtdx. (3.23)

Now, we estimate the term g ◦ ϕx in (3.23).

Case 1 a ≡ 0 or (2.7) holds: then, using (3.1),

g ◦ ϕx ≤ −cg′ ◦ ϕx ≤ −cE′(t). (3.24)

Case 2 a0 > 0, (2.8) holds and (2.7) does not hold: we apply here the approach introduced

in [9, 11] and we get this lemma.

Lemma 3.8 For any ǫ0 > 0, we have

G′(ǫ0H0(E(t)))g ◦ ϕx ≤ −cE′(t) + cǫ0H0(E(t))G′(ǫ0H0(E(t))). (3.25)

Proof Because E is non-increasing,
∫ L

0

a(ϕx(t) − ϕx(t− s))2dx ≤ 2‖a‖∞

∫ L

0

ϕ2
x(t)dx+ 2‖a‖∞

∫ L

0

ϕ2
x(t− s)dx

≤











cE(0) if 0 ≤ s < t,

cE(0) + 2

∫ L

0

ϕ2
0x(s− t)dx if s ≥ t

:= M(t, s).

Let ǫ0, τ1(t, s), τ2(t, s) > 0 and K(s) = s
G−1(s) for s ∈ R+. The function K is non-decreasing,

and therefore,

K

(

− τ2(t, s)g
′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dx

)

≤ K(−M(t, s)τ2(t, s)g
′(s)).
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Using this inequality, we get

g ◦ ϕx =
1

G′(ǫ0H0(E(t)))

∫ +∞

0

1

τ1(t, s)
G−1

(

− τ2(t, s)g
′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dx

)

×
τ1(t, s)G

′(ǫ0H0(E(t)))g(s)

−τ2(t, s)g′(s)
K

(

− τ2(t, s)g
′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dx

)

ds

≤
1

G′(ǫ0H0(E(t)))

∫ +∞

0

1

τ1(t, s)
G−1

(

− τ2(t, s)g
′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dx

)

×
τ1(t, s)G

′(ǫ0H0(E(t)))g(s)

−τ2(t, s)g′(s)
K(−M(t, s)τ2(t, s)g

′(s))ds

≤
1

G′(ǫ0H0(E(t)))

∫ +∞

0

1

τ1(t, s)
G−1

(

− τ2(t, s)g
′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dx

)

×
M(t, s)τ1(t, s)G

′(ǫ0H0(E(t)))g(s)

G−1(−M(t, s)τ2(t, s)g′(s))
ds.

Let G∗ denote the dual function of G defined by

G∗(t) = sup
s∈R+

{ts−G(s)}, ∀t ∈ R+.

Thanks to (H4), G′ is increasing and defines a bijection from R+ to R+, and then, for any

t ∈ R+, the function s 7→ ts−G(s) reaches its maximum on R+ at the unique point (G′)−1(t).

Therfore

G∗(t) = t(G′)−1(t) −G((G′)−1(t)), ∀t ∈ R+.

Using the general Young’s inequality: t1t2 ≤ G(t1) +G∗(t2), for

t1 = G−1

(

− τ2(t, s)g
′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dx

)

and

t2 =
M(t, s)τ1(t, s)G

′(ǫ0H0(E(t)))g(s)

G−1(−M(t, s)τ2(t, s)g′(s))
,

we get

g ◦ ψx ≤
−1

G′(ǫ0H0(E(t)))

∫ +∞

0

τ2(t, s)

τ1(t, s)
g′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dxds

+
1

G′(ǫ0H0(E(t)))

∫ +∞

0

1

τ1(t, s)
G∗

(

M(t, s)τ1(t, s)G
′(ǫ0H0(E(t)))g(s)

G−1(−M(t, s)τ2(t, s)g′(s))

)

ds.

Using the fact that G∗(t) ≤ t(G′)−1(t), we get

g ◦ ϕx ≤
−1

G′(ǫ0H0(E(t)))

∫ +∞

0

τ2(t, s)

τ1(t, s)
g′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dxds

+

∫ +∞

0

M(t, s)g(s)

G−1(−M(t, s)τ2(t, s)g′(s))
(G′)−1

(

M(t, s)τ1(t, s)G
′(ǫ0H0(E(t)))g(s)

G−1(−M(t, s)τ2(t, s)g′(s))

)

ds.

Condition (2.8) implies that

sup
s∈R+

g(s)

G−1(−g′(s))
= m1 < +∞.

Then, using the fact that (G′)−1 is non-decreasing (thanks to (H4)), we get, for τ2(t, s) = 1
M(t,s) ,

g ◦ ϕx ≤
−1

G′(ǫ0H0(E(t)))

∫ +∞

0

1

τ1(t, s)M(t, s)
g′(s)

∫ L

0

a(ϕx(t) − ϕx(t− s))2dxds
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+

∫ +∞

0

M(t, s)g(s)

G−1(−g′(s))
(G′)−1

(

m1τ1(t, s)M(t, s)G′(ǫ0H0(E(t)))
)

ds.

Choosing τ1(t, s) = 1
m1M(t,s) , and using (3.1) and the fact that

∫ +∞

0

M(t, s)g(s)

G−1(−g′(s))
ds = m2 < +∞

(thanks to (2.8), (2.11) and the definition of M(t, s)), we obtain

g ◦ ϕx ≤
−2m1

G′(ǫ0H0(E(t)))
E′(t) + ǫ0m2H0(E(t)),

thus (3.25) holds. �

Using (3.23), (3.24) and (3.25), we see that, in both cases,

Ĝ0(E(t))

H0(E(t))
I ′6(t) ≤ −(c− cǫ0)Ĝ0(E(t)) − cE′(t) +

(

ρ1k2

k1
− ρ2

)

Ĝ0(E(t))

E(t)

∫ L

0

ϕxtψtdx,

where Ĝ0 and H0 are defined in (2.13) and (2.14), respectively. Choosing ǫ0 small enough, we

get

Ĝ0(E(t))

H0(E(t))
I ′6(t) ≤ −cĜ0(E(t)) − cE′(t) +

(

ρ1k2

k1
− ρ2

)

Ĝ0(E(t))

E(t)

∫ L

0

ϕxtψtdx. (3.26)

Let τ > 0 and

F = τ

(

Ĝ0(E)

H0(E)
I6 + cE

)

. (3.27)

We have F ∼ E (because I6 ∼ E and Ĝ0(E)
H0(E) is non-increasing) and, using (3.26),

F ′(t) ≤ −cτĜ0(E(t)) + τ

(

ρ1k2

k1
− ρ2

)

Ĝ0(E(t))

E(t)

∫ L

0

ϕxtψtdx. (3.28)

Thanks to (1.1), the last term of (3.28) vanishes. Then, for τ > 0 such that

F ≤ E and F (0) ≤ 1, (3.29)

we get, for c′′2 = cτ > 0 (since Ĝ0 is increasing),

F ′ ≤ −c′′2Ĝ0(F ). (3.30)

Then (3.30) implies that (Ĝ(F ))′ ≥ c′′2 , where Ĝ(t) =
∫ 1

t
1

Ĝ0(s)
ds. Integrating over [0, t] yields

Ĝ(F (t)) ≥ c′′2t+ Ĝ(F (0)).

Because F (0) ≤ 1, Ĝ(1) = 0 and Ĝ is decreasing, we obtain Ĝ(F (t)) ≥ c′′2 t which implies that

F (t) ≤ Ĝ−1(c′′2t). The fact that F ∼ E gives (2.12). This completes the proof of Theorem 2.1.

4 Proof of Teorem 2.2

In this section, we treat the case when (1.1) does not hold which is more realistic from the

physics point of view. We will estimate the last term of (3.28) using the system (P2) resulting

from differentiating (P) with respect to time






















ρ1ϕttt − k1(ϕxt + ψt)x +

∫ +∞

0

g(s)(aϕxt(t− s))xds+ bh′(ϕt)ϕtt = 0,

ρ2ψttt − k2ψxxt + k1(ϕxt + ψt) = 0,

ϕxt(0, t) = ψt(0, t) = ϕxt(L, t) = ψt(L, t) = 0.

(P2)
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System (P2) is well posed for initial data U0 ∈ D(A). Let E2 be the second-order energy (the

energy of (P2)) defined by E2(t) = E1(ϕt, ψt)(t), where E1(ϕ, ψ)(t) = E(t), defined by (2.10).

A simple calculation (as for (3.1)) implies that

E′
2(t) =

1

2
g′ ◦ ϕxt −

∫ L

0

bh′(ϕt)ϕ
2
ttdx. (4.1)

Because inf
t∈R

h′(t) > 0 thanks to hypothesis (H5), we have

E′
2(t) ≤

1

2
g′ ◦ ϕxt − c

∫ L

0

bϕ2
ttdx ≤ 0. (4.2)

Let τ = 1 in (3.27). Thanks to (H5), H is linear and then (3.28) holds for H0 = Id. Thus,

F ′(t) ≤ −cG0(E(t)) +

(

ρ1k2

k1
− ρ2

)

G0(E(t))

E(t)

∫ L

0

ϕxtψtdx, (4.3)

where G0 is defined in (2.19). Now, we proceed as in [7] and we use some ideas of [10].

Lemma 4.1 For any ǫ > 0, we have
(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ϕxtψtdxdt

≤ ǫ

∫ T

S

G0(E(t))dt + cǫ

∫ T

S

G0(E(t))

E(t)
(g ◦ ϕxt − g′ ◦ ϕx)dt

+cǫ
G0(E(0))

E(0)
(E(S) + E2(S)), ∀T ≥ S ≥ 0. (4.4)

Proof We distinguish two cases (corresponding to hypothesis (2.3)).

Case 1 inf
x∈[0,L]

{a(x)} > 0: we have inf
x∈[0,L]

{a(x)} := a0 > 0, and then

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx

=

ρ1k2

k1
− ρ2

a0g0

∫ L

0

a0ψt

∫ +∞

0

g(s)ϕxt(t− s)dsdx

+

ρ1k2

k1
− ρ2

a0g0

∫ L

0

a0ψt

∫ +∞

0

g(s)(ϕxt(t) − ϕxt(t− s))dsdx. (4.5)

Using Young’s inequality and (3.5) (for ϕxt instead of ϕx), we get for all ǫ > 0

ρ1k2

k1
− ρ2

a0g0

∫ L

0

a0ψt

∫ +∞

0

g(s)(ϕxt(t) − ϕxt(t− s))dsdx

≤ c

∫ L

0

a|ψt|

∫ +∞

0

g(s)|ϕxt(t) − ϕxt(t− s)|dsdx

≤
ǫ

2
E(t) + cǫg ◦ ϕxt.

On the other hand, by integrating by parts and using (3.6), we obtain

ρ1k2

k1
− ρ2

a0g0

∫ L

0

a0ψt

∫ +∞

0

g(s)ϕxt(t− s)dsdx

=

ρ1k2

k1
− ρ2

a0g0

∫ L

0

a0ψt

(

g(0)ϕx +

∫ +∞

0

g′(s)ϕx(t− s)ds

)

dx



No.1 A. Guesmia & S. Messaoudi: SOME STABILITY RESULTS FOR TIMOSHENKO SYSTEMS 21

=

ρ1k2

k1
− ρ2

a0g0

∫ L

0

a0ψt

∫ +∞

0

(−g′(s))(ϕx(t) − ϕx(t− s))dsdx

≤
ǫ

2
E(t) − cǫg

′ ◦ ϕx.

Inserting these last two inequalities into (4.5), multiplying by G0(E)
E

, integrating over [S, T ],

noting that G0(E)
E

is non-increasing and using (3.1), we obtain (4.4).

Case 2 a ≡ 0: according to (2.2), we have inf
x∈[0,L]

{b(x)} := b0 > 0, and then, by integration

with respect to t and using the definition of G0(E)
E

, E and E2 and their non-increasingness, we

get
(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ψtϕxtdxdt

=

(

ρ1k2

k1
− ρ2

)[

G0(E(t))

E(t)

∫ L

0

ψϕxtdx

]T

S

−

(

ρ1k2

k1
− ρ2

)
∫ T

S

(

G0(E(t))

E(t)

)′ ∫ L

0

ψϕxtdxdt

−

(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ψϕxttdxdt.

Using the fact that (by vertue of Poincaré’s inequality)
∣

∣

∣

∣

(

ρ1k2

k1
− ρ2

)
∫ L

0

ψϕxtdx

∣

∣

∣

∣

≤ c(E(t) + E2(t)) ≤ c(E(S) + E2(S)), ∀t ≥ S ≥ 0.

Therefore, by integrating by parts the last integral with respect to x and noting that G0(E)
E

is

non-increasing, we have
(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ψtϕxtdxdt

≤ c
G0(E(0))

E(0)
(E(S) + E2(S)) − c(E(S) + E2(S))

∫ T

S

(

G0(E(t))

E(t)

)′

dt

+

(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ψxϕttdxdt, ∀T ≥ S ≥ 0.

Using the fact that inf
x∈[0,L]

{b(x)} > 0, we deduce that

(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ψtϕxtdxdt

≤ c
G0(E(0))

E(0)
(E(S) + E2(S)) + c

∫ T

S

G0(E(t))

E(t)

∫ L

0

b|ψx||ϕtt|dxdt.

Therefore, using Young’s inequality and (4.2), we estimate the last integral as follows:
(

ρ1k2

k1
− ρ2

)
∫ T

S

G0(E(t))

E(t)

∫ L

0

ψtϕxtdxdt

≤ c
G0(E(0))

E(0)
(E(S) + E2(S)) + ǫ

∫ T

S

G0(E(t))dt − cǫ
G0(E(0))

E(0)

∫ T

S

E′
2(t)dt

≤ cǫ
G0(E(0))

E(0)
(E(S) + E2(S)) + ǫ

∫ T

S

G0(E(t))dt, ∀T ≥ S ≥ 0. (4.6)

This implies (4.4). �
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Now, exploiting (4.3) and (4.4) and choosing ǫ small enough, we get

∫ T

S

F ′(t)dt ≤ −c

∫ T

S

G0(E(t))dt + c
G0(E(0))

E(0)
(E(S) + E2(S))

+c

∫ T

S

G0(E(t))

E(t)
(g ◦ ϕxt − g′ ◦ ϕx)dt, ∀T ≥ S ≥ 0,

and recalling (3.1) and the fact that F ∼ E and G0(E)
E

is non-increasing, we have

∫ T

S

G0(E(t))dt ≤ c

(

1 +
G0(E(0))

E(0)

)

(E(S) + E2(S)) + c

∫ T

S

G0(E(t))

E(t)
g ◦ ϕxtdt. (4.7)

To estimate the last term in (4.7), we distingish two cases.

Case 1 a ≡ 0 or (2.7) holds: we have G0 = Id. Using (4.2), we get

G0(E(t))

E(t)
g ◦ ϕxt = g ◦ ϕxt ≤ −cg′ ◦ ϕxt ≤ −cE′

2(t).

Case 2 inf
x∈[0,L]

{a(x)} > 0, (2.8) holds and (2.7) does not hold: in this case, G0(s) =

sG′(ǫ0s) with ǫ0 > 0. Therefore, using (2.17) and similarly to (3.25) for g ◦ϕxt instead of g ◦ϕx

(here H0 = Id), we get, using also (4.2),

G0(E(t))

E(t)
g ◦ ϕxt ≤ −cE′

2(t) + cǫ0G0(E(t)), ∀ǫ0 > 0.

Then we get in both cases

∫ T

S

G0(E(t))

E(t)
g ◦ ϕxtdt ≤ −c

∫ T

S

E′
2(t)dt+ cǫ0

∫ T

S

G0(E(t))dt, ∀ǫ0 > 0, ∀T ≥ S ≥ 0.

Inserting this inequality into (4.7) and choosing ǫ0 small enough, we deduce that

∫ T

S

G0(E(t))dt ≤ c

(

1 +
G0(E(0))

E(0)

)

(E(S) + E2(S)), ∀T ≥ S ≥ 0. (4.8)

Choosing S = 0 in (4.8) and using the fact that G0(E) is non-increasing, we get

G0(E(T ))T ≤

∫ T

0

G0(E(t))dt ≤ c

(

1 +
G0(E(0))

E(0)

)

(E(0) + E2(0)), ∀T ≥ 0,

which gives (2.18) with c1 = c
(

1 + G0(E(0))
E(0)

)

(E(0) + E2(0)).

5 Proof of Theorem 2.3

We prove (2.21) by induction on n. For n = 1, condition (2.20) coincides with (2.17), and

(2.21) is exactly (2.18).

Now, suppose that (2.21) holds and let U0 ∈ D(An+1) satisfying (2.20), for n + 1 instead

of n. We have Ut(0) ∈ D(An) (thanks to Theorem 2.0–3), Ut(0) satisfies (2.20) (because U0

satisfies (2.20), for n+ 1) and Ut satisfies the first two equations and the boundary conditions

of (P), and then the energy E2 of (P2) (defined in Section 4) also satisfies, for some positive

constant c̃n,

E2(t) ≤ Gn

( c̃n

t

)

, ∀t > 0. (5.1)
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Now, choosing S = T
2 in (4.8), combining with (2.21) and (5.1), and using the fact that G0(E)

is non-increasing, we deduce that

G0(E(T ))T ≤ 2

∫ T

T
2

G0(E(t))dt ≤ c

(

1 +
G0(E(0))

E(0)

)(

Gn

(2cn
T

)

+Gn

(2c̃n
T

)

)

,

this implies that, for cn+1 = max
{

c
(

1 + G0(E(0))
E(0)

)

, 2cn, 2c̃n

}

,

E(T ) ≤ G−1
0

(

cn+1

T
Gn

(cn+1

T

)

)

= Gn+1

(cn+1

T

)

.

This proves (2.21), for n+ 1. The proof of Theorem 2.3 is completed.

Remark 5.1 One important system related to (P) is the following system:


















ρ1ϕtt − k1(ϕx + ψ)x + b(x)h(ϕt) +

∫ +∞

0

(a(x)g(s)ϕx(t− s))x ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) −

∫ +∞

0

a(x)g(s)ϕx(t− s)ds = 0,

which results from the governing equations

ρ1ϕtt = Sx and ρ2ψtt = Mx − S,

taking into account the action on two tensors

S = k1(ϕx + ψ) −

∫ +∞

0

a(x)g(s)ϕx(t− s)ds and M = k2ψx.

This system looks more realistic than (P) from the physics point view. However the energy

given by (2.10) is not dissipative.

We believe that such a system is worth looking at and a “modified” energy needs to be

defined, as well the functionals used to prove stability.

6 Applications

In this section, we give applications of our results of section 2 to some Timoshenko-type

systems.

6.1 Timoshenko-heat

We start by considering coupled Timoshenko-heat system on ]0, L[ under Fourier’s law of

heat conduction and in the presence of an infinite memory acting on the first equation. That

is,






















































ρ1ϕtt − k1(ϕx + ψ)x − γθx +

∫ +∞

0

(ag(s)ϕx(t− s))x ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0,

ρ3θt − κθxx + γϕxt = 0,

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = θx(0, t) = θx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x),

(6.1)
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where ϕ, ψ and θ are functions of (x, t) and denote the transverse displacement of the beam,

the rotation angle of the filament, and the difference temperature, respectively, ρi, ki, γ, κ, L are

positive constants, and the functions a and g are as in Section 2.

From the third equation in (6.1) and the boundary conditions, we easily verify that

∂t

∫ L

0

θ(x, t)dx = 0.

By solving this ordinary differential equation and using the initial data of θ, we get
∫ L

0

θ(x, t)dx =

∫ L

0

θ0(x)dx.

So, we set

θ̃(x, t) = θ(x, t) −
1

L

∫ L

0

θ0(x)dx

to conclude that (ϕ, ψ̃, θ̃) satisfies (6.1), with initial data

θ̃0(x) = θ0(x) −
1

L

∫ L

0

θ0(x)dx

instead of θ0, and more importantly
∫ L

0

θ̃(x, t)dx = 0;

which implies that Poincaré’s inequality is applicable for θ̃. In the sequel, we work with θ̃

instead of θ, but, for simplicity of notation, we use θ instead of θ̃.

6.1.1 Well-Posedness

By combining arguments from the Subsection 2.2 above and Subsection 6.1 of [14], one can

easily establish the well-posedness of (6.1). For this purpose, we define η as in Subsection 2.2

and set

H =







H̃ if a ≡ 0,

H̃ × Lg if inf
x∈[0,L]

{a(x)} > 0,

where Lg and its inner product are given in Subsection 2.2, and

H̃ = H1
0 (]0, L[) ×H1

∗ (]0, L[) × L2(]0, L[) × L2
∗(]0, L[) × L2

∗(]0, L[).

If a ≡ 0, the space H is equipped with the inner product

〈V,W 〉 = k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx

+

∫ L

0

(k2∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4 + ρ3v5w5) dx,

for any V = (v1, v2, v3, v4, v5)
T
, W = (w1, w2, w3, w4, w5)

T ∈ H, and if inf
x∈[0,L]

{a(x)} > 0, we

equip H with the inner product

〈V,W 〉 = 〈v6, w6〉Lg
+ k1

∫ L

0

(∂xv1 + v2)(∂xw1 + w2)dx

+

∫ L

0

(−g0a∂xv1∂xw1 + k2∂xv2∂xw2 + ρ1v3w3 + ρ2v4w4 + ρ3v5w5) dx,
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for any V = (v1, v2, v3, v4, v5, v6)
T
, W = (w1, w2, w3, w4, w5, w6)

T
∈ H. By letting

U =







(ϕ, ψ, ϕt, ψt, θ)
T if a ≡ 0,

(ϕ, ψ, ϕt, ψt, θ, η)
T if inf

x∈[0,L]
{a(x)} > 0

and

U0 =







(ϕ0, ψ0, ϕ1, ψ1, θ0)
T if a ≡ 0,

(ϕ0(., 0), ψ0, ϕ1, ψ1, θ0, η0)
T if inf

x∈[0,L]
{a(x)} > 0,

problem (6.1) can be written as






U ′ +AU = 0 onR+,

U(0) = U0,
(6.2)

where, if a ≡ 0,

AV =



























































−v3,

−v4,

−
k1

ρ1
∂x(∂xv1 + v2) −

γ

ρ1
∂xv5,

−
k2

ρ2
∂xxv2 +

k1

ρ1
(∂xv1 + v2),

−
κ

ρ3
∂xxv5 +

γ

ρ3
v3,

for any V = (v1, v2, v3, v4, v5)
T
∈ D(A) and, if inf

x∈[0,L]
{a(x)} > 0,

AV =











































































−v3,

−v4,

−
k1

ρ1
∂x(∂xv1 + v2) +

g0

ρ1
∂x(a∂xv1) −

1

ρ1

∫ +∞

0

g(s)∂x(a∂xv6(s))ds−
γ

ρ1
∂xv5,

−
k2

ρ2
∂xxv2 +

k1

ρ1
(∂xv1 + v2),

−
κ

ρ3
∂xxv5 +

γ

ρ3
v3,

−v3 + ∂sv5,

for any V = (v1, v2, v3, v4, v5, v6)
T ∈ D(A). By noting that (6.2) is linear and exploiting the

semigroup theory [19, 32], one can easily prove the following:

Theorem 6.1 For any n ∈ N and U0 ∈ D(An), problem (6.2) has a unique solution

U ∈

n
⋂

k=0

Cn−k(R+;D(Ak)).

6.1.2 Stability

Similarly to (P), we establish a general stability result for solutions of (6.1), under the

hypotheses (H3) and (H4). we define the first-order energy of (6.1) by

E(t) =
1

2
g ◦ ϕx +

1

2

∫ L

0

(

(ρ1ϕ
2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 + k2ψ

2
x − g0aϕ

2
x + ρ3θ

2
)

dx. (6.3)
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Straightforward computations yield

E′(t) = −κ

∫ L

0

θ2xdx+
1

2
g′ ◦ ϕx ≤ 0. (6.4)

Now, we give our first stability result.

Theorem 6.2 Assume (1.1), (2.1), (2.3), (H3) and (H4) hold, and let U0 ∈ H such that

a ≡ 0 or (2.7) or (2.11) is satisfied. Then, the energy E satisfies (2.12) with Ĝ(t) =
∫ 1

t
1

G0(s)
ds

and G0 is defined in (2.19).

In order to prove our main result, we adopt several functionals from section 2 and prove

several lemmas.

Lemma 6.3 The functional

I2(t) =

∫ L

0

(ρ1ϕϕt + ρ2ψψt)dx

satisfies, for any δ > 0,

I ′2(t) ≤

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx − k1

∫ L

0

(ϕx + ψ)2dx− k2

∫ L

0

ψ2
x dx

+g0

∫ L

0

aϕ2
xdx+ δ

∫ L

0

ϕ2
xdx+ cδg ◦ ϕx + cδ

∫ L

0

θ2x dx. (6.5)

Proof By using equations (6.1), a simple integration leads to

I ′2(t) =

∫ L

0

(ρ1ϕ
2
t + ρ2ψ

2
t )dx − k2

∫ L

0

ψ2
xdx− k1

∫ L

0

(ϕx + ψ)2dx

−γ

∫ L

0

ϕθxdx+

∫ L

0

ϕx

(
∫ +∞

0

a(x)g(s)ϕx(t)ds

)

dx

+

∫ L

0

ϕx

(
∫ +∞

0

ag(s)(ϕx(t− s) − ϕx(t))ds

)

dx.

Exploiting Young’s and Poincaré’s inequalities, (6.5) follows. �

Lemma 6.4 The functional

I3(t) = −ρ2

∫ L

0

ψt(ϕx + ψ)dx −
ρ1k2

k1

∫ L

0

ϕtψxdx+
ρ2

k1

∫ L

0

aψt

∫ +∞

0

g(s)ϕx(t− s)dsdx

satisfies, for any δ, δ1 > 0,

I ′3(t) ≤ k1

∫ L

0

(ϕx + ψ)2dx− ρ2

∫ L

0

ψ2
t dx+ g0

(δ1

2
− 1

)

∫ L

0

aϕ2
xdx

+
g0k0||a||∞

2δ1

∫ L

0

ψ2
xdx+ δ

∫ L

0

(ψ2
t + ϕ2

x + ψ2
x)dx + cδg ◦ ϕx − cδg

′ ◦ ϕx

+cδ

∫ L

0

θ2xdx+
(ρ1k2

k1
− ρ2

)

∫ L

0

ϕxtψtdx. (6.6)

Proof Differentiation of I3, using equations (6.1), gives

I ′3(t) = k1

∫ L

0

(ϕx + ψ)2dx− ρ2

∫ L

0

ψ2
t dx+

k2

k1
γ

∫ L

0

ψxθxdx

−
ρ2

k1

∫ L

0

aψt

∫ +∞

0

g′(s) (ϕx(t) − ϕx(t− s)) dsdx
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+

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s) (ϕx(t) − ϕx(t− s)) dsdx

−g0

∫ L

0

a(ϕx + ψ)ϕxdx+

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx.

By using Young’s and Poincaré’s inequalities and recalling (3.2), (3.5) and (3.6), estimate (6.6)

follows. �

By using w defined in (3.11) and repeating the proof of Lemma 3.7, we can easily establish

this lemma.

Lemma 6.5 The functional

I4(t) = ρ1

∫ L

0

(wϕt + ϕϕt)dx

satisfies, for any δ, ǫ, ǫ′ > 0,

I ′4(t) ≤ (ρ1 +
c

ǫ
)

∫ L

0

ϕ2
t dx+ cǫ

∫ L

0

ψ2
t dx

+
(

g0‖a‖∞

(

1 +
ǫ

2

)

− k1

)

∫ L

0

(ϕx + ψ)2dx+
g0k0‖a‖∞

2ǫ′

∫ L

0

ψ2
xdx

+δ

∫ L

0

(ϕ2
x + ψ2

x)dx+ cδg ◦ ϕx + cδ

∫ L

0

θ2xdx. (6.7)

Proof Differentiation of I3, using equations (6.1), leads to

I ′4(t) = ρ1

∫ L

0

wtϕtdx+ ρ1

∫ L

0

ϕ2
t dx− k1

∫ L

0

(ϕx + ψ)2dx

+g0

∫ L

0

ϕ2
xdx+ g0

∫ L

0

ϕxψdx− γ

∫ L

0

wθxdx− γ

∫ L

0

ϕθxdx

−

∫ L

0

a(ϕx + ψ)

∫ +∞

0

g(s) (ϕx(t) − ϕx(t− s)) dsdx.

Again, Young’s and Poincaré’s inequalities, (3.5), (3.12) and (3.13) give the desired result. �

Finally, we need the following lemma:

Lemma 6.6 The functional

I5(t) = ρ1ρ3

∫ L

0

ϕt

(
∫ x

0

θ(y, t)dy

)

dx,

for any δ > 0,

I ′5(t) ≤ −
γρ1

2

∫ L

0

ϕ2
t dx+ δ

∫ L

0

(ϕ2
x + ψ2

x) dx+ cδ

∫ L

0

θ2xdx+ cδg ◦ ϕx. (6.8)

Proof By using equations (6.1), a simple integration keeping in mind that θ stands for

θ̃, leads to

I ′5(t) = ρ3

∫ L

0

(

k1(ϕx + ψ)x + γθx −

∫ +∞

0

(a(x)g(s)ϕx(t− s))x ds

) (
∫ x

0

θ(y, t)dy

)

dx

+ρ1

∫ L

0

ϕt

(
∫ x

0

(κθxx − γϕxt)dy

)

dx

= −ρ3

∫ L

0

(

k1(ϕx + ψ) + γθ −

∫ +∞

0

ag(s)ϕx(t− s)ds

)

θdx
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+ρ1

∫ L

0

ϕt

(
∫ x

0

κθx − γϕt)dy

)

dx.

By using Young’s and Poincaré’s inequalities and (3.5), (6.8) is established. �

For N,N2, N3, N4, we set

I6 = NE +N2I2 + I3 +N3I4 +N4I5.

Direct calculations, using (6.4)–(6.8), yield

I ′6(t) ≤ − (Nκ− cδ(1 +N2 +N3 +N4))

∫ L

0

θ2xdx+

(

N

2
− cδ

)

g′ ◦ ϕx

+ (1 +N2 +N3 +N4) cδg ◦ ϕx −
(

N4
γρ1

2
−N2ρ1 −N3

(

ρ1 +
c

ǫ

))

∫ L

0

ϕ2
t dx

−

(

N2k2 −
g0k0||a||∞

2δ1
− δ −N3

(g0k0||a||∞
2ǫ′

+ δ
)

− δN4

)
∫ L

0

ψ2
xdx

− (ρ2(1 −N2) − δ − cǫ′N3)

∫ L

0

ψ2
t dx

−
(

(N2 +N3 − 1)k1 −N3g0||a||∞

(

1 +
ǫ

2

))

∫ L

0

(ϕx + ψ)2dx

+
(

N2 +
δ1

2
− 1

)

g0

∫ L

0

aϕ2
xdx+ δ (N2 + 1 +N3 +N4)

∫ L

0

ϕ2
xdx

+

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx. (6.9)

At this point, we distinguish two cases.

Case 1 a ≡ 0: in this case (6.9), reduces to

I ′6(t) ≤ − (Nκ− cδ(1 +N2 +N3 +N4))

∫ L

0

θ2x dx

−ρ1

(

N4
γ

2
− (N2 +N3)

)

∫ L

0

ϕ2
t dx− (N2k2 − δ(1 +N3 +N4))

∫ L

0

ψ2
xdx

− (ρ2(1 −N2) − δ)

∫ L

0

ψ2
t dx− (N2 +N3 − 1)k1

∫ L

0

(ϕx + ψ)2dx

+δ (N2 + 1 +N3 +N4)

∫ L

0

ϕ2
xdx+

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx. (6.10)

By taking N3 = 1, 0 < N2 < 1, N4 >
2(N2+N3)

γ
, δ small enough, and N large enough, (6.10)

becomes

I ′6(t) ≤ −cE(t) +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx, (6.11)

where c is a positive constant.

Case 2 inf
x∈[0,L]

{a(x)} > 0: with the same choice of ǫ′, δ1, N3, N2 and ǫ as in section 3 and

N4 >
2

(

N2ρ1 +N3(ρ1 + c0

ǫ
)
)

γρ1
,

δ small enough, and N large enough, (6.9) becomes

I ′6(t) ≤ −cE(t) +

(

ρ1k2

k1
− ρ2

)
∫ L

0

ϕxtψtdx+ cg ◦ ϕx. (6.12)
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We then proceed, as in Section 3, to complete the proof.

Remark 6.1 When a ≡ 0 or g satisfies (2.7), we obtain the exponential decay. That is,

E(t) ≤ c′′1e
−c′′2 t,

for two positive constants c′′1 and c′′2 .

When (1.1) does not hold, we have the following:

Theorem 6.3 Assume (2.1), (2.3), (H3), and (H4) hold and let n ∈ N
∗ and U0 ∈ D(An)

such that a ≡ 0 or (2.7) or (2.20) is satisfied. Then, the energy E satisfies (2.21).

Proof The proof goes exactly like that of Theorem 2.3. �

6.2 Timoshenko-heat Type III

In this subsection, we consider a coupled Timoshenko-thermoelasticity system of type III

on ]0, L[ in the presence of an infinite memory acting on the first equation. That is,


































































ρ1ϕtt − k1(ϕx + ψ)x + γθx +

∫ +∞

0

(ag(s)ϕx(t− s))x ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) = 0,

ρ3θtt − κθxx + γϕxt − δθxxt = 0,

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = θx(0, t) = θx(L, t) = 0,

ϕ(x,−t) = ϕ0(x, t), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),

(6.13)

where ϕ, ψ, and θ are functions of (x, t) and denote the transverse displacement of the beam, the

rotation angle of the filament, and the temperature displacement, respectively; ρi, ki, γ, κ, δ, L

are positive constants and a and g are as in Section 2. We only give brief comments and state

the main results and leave the proofs for the reader since they go exactly like the ones done in

Subsection 6.1.

From the third equation in (6.13) and the boundary conditions, we easily verify that

∂tt

∫ L

0

θ(x, t)dx = 0.

By solving this ordinary differential equation and using the initial data of θ, we get
∫ L

0

θ(x, t)dx = t

∫ L

0

θ1(x) dx +

∫ L

0

θ0(x) dx.

So, we set

θ̃(x, t) = θ(x, t) −
t

L

∫ L

0

θ1(x)dx −
1

L

∫ L

0

θ0(x)dx

to conclude that (ϕ, ψ̃, θ̃) satisfies (6.13), with initial data

θ̃0(x) = θ0(x) −
1

L

∫ L

0

θ0(x)dx

and

θ̃1(x) = θ1(x) −
1

L

∫ L

0

θ1(x)dx
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instead of θ0 and θ1, respectively, and more importantly

∫ L

0

θ̃(x, t)dx = 0;

which implies that Poincaré’s inequality is applicable for θ̃. In the sequel, we work with θ̃

instead of θ, but, for simplicity of notation, we use θ instead of θ̃.

6.2.1 Well-Posedness

By combining arguments from the Subsection 2.2 above and subsection 6.1 of [14], one can

easily establish the well-posedness of (6.13). For this purpose, we define η as in subsection 2.2

and set

H =







H̃ if a ≡ 0,

H̃ × Lg if inf
x∈[0,L]

{a(x)} > 0,

where Lg and its inner product are given in Subsection 2.2, and

H̃ = H1
0 (]0, L[) ×H1

∗ (]0, L[) ×H1
∗ (]0, L[) × L2(]0, L[) × L2

∗(]0, L[) × L2
∗(]0, L[).

If a ≡ 0, the space H is equipped with the inner product

〈V,W 〉 =

∫ L

0

(k1(∂xv1 + v2)(∂xw1 + w2) + k2∂xv2∂xw2) dx

+

∫ L

0

(κ∂xv3∂xw3 + ρ1v4w4 + ρ2v5w5 + ρ3v6w6) dx,

for any V = (v1, v2, v3, v4, v5, v6)
T
, W = (w1, w2, w3, w4, w5, w6)

T
∈ H; and if inf

x∈[0,L]
{a(x)} > 0,

we equip H with the inner product

〈V,W 〉 = 〈v7, w7〉Lg
+

∫ L

0

(k1(∂xv1 + v2)(∂xw1 + w2) + k2∂xv2∂xw2) dx

+

∫ L

0

(−g0a∂xv1∂xw1 + κ∂xv3∂xw3 + ρ1v4w4 + ρ2v5w5 + ρ3v6w6) dx,

for any V = (v1, v2, v3, v4, v5, v6, v7)
T , W = (w1, w2, w3, w4, w5, w6, w7)

T ∈ H. By letting

U =







(ϕ, ψ, θ, ϕt, ψt, θt)
T if a ≡ 0,

(ϕ, ψ, θ, ϕt, ψt, θt, η)
T if inf

x∈[0,L]
{a(x)} > 0

and

U0 =







(ϕ0, ψ0, θ0, ϕ1, ψ1, θ1)
T if a ≡ 0,

(ϕ0(., 0), ψ0, θ0, ϕ1, ψ1, θ1, η0)
T if inf

x∈[0,L]
{a(x)} > 0,

problem (6.13) can be written as







U ′ +AU = 0, in R+,

U(0) = U0,
(6.14)
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where, if a ≡ 0,

AV =







































































−v4,

−v5,

−v6,

−
k1

ρ1
∂x(∂xv1 + v2) +

γ

ρ1
∂xv3,

−
k2

ρ2
∂xxv2 +

k1

ρ1
(∂xv1 + v2),

−
κ

ρ3
∂xxv3 +

γ

ρ3
∂xv4 −

δ

ρ3
∂xxv6,

for any V = (v1, v2, v3, v4, v5, v6)
T
∈ D(A) and, if inf

x∈[0,L]
{a(x)} > 0,

AV =























































































−v4,

−v5,

−v6,

−
k1

ρ1
∂x(∂xv1 + v2) +

g0

ρ1
∂x(a∂xv1) −

1

ρ1

∫ +∞

0

g(s)∂x(a∂xv6(s))ds+
γ

ρ1
∂xv3,

−
k2

ρ2
∂xxv2 +

k1

ρ1
(∂xv1 + v2),

−
κ

ρ3
∂xxv3 +

γ

ρ3
∂xv4 −

δ

ρ3
∂xxv6,

−v4 + ∂sv7,

for any V = (v1, v2, v3, v4, v5, v6, v7)
T
∈ D(A). By noting that (6.14) is linear and exploiting the

semigroup theory [19, 32], one can easily show that Theorem 6.1 also holds for (6.14). Hence,

the well-posedness for (6.13) is established.

6.2.2 Stability

Similarly to (6.1), we establish a general stability result for solutions of (6.13), under the

hypotheses (H3) and (H4). We define the first-order energy of (6.13) by

E(t) =
1

2
g ◦ϕx +

1

2

∫ L

0

(

ρ1ϕ
2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 + k2ψ

2
x + ρ3θ

2
t + κθ2x − g0aϕ

2
x

)

dx. (6.15)

Straightforward computations yield

E′(t) = −κ

∫ 1

0

θ2xt dx+
1

2
g′ ◦ ϕx ≤ 0. (6.16)

Remark 6.3 By adopting the same functionals used in the subsection 6.1 and repeating

the same steps, one can easily show that Theorems 6.2 and 6.3 remain valid for problem (6.13).

In particular, we obtain the exponential stability if a ≡ 0 or g decays exponentially.
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