http：／／actams．wipm．ac．cn

SOME STABILITY RESULTS FOR TIMOSHENKO SYSTEMS WITH COOPERATIVE FRICTIONAL AND INFINITE－MEMORY DAMPINGS IN THE DISPLACEMENT＊

Aissa GUESMIA ${ }^{1,2}$ Salim MESSAOUDI ${ }^{1, \dagger}$
1．Department of Mathematics and Statistics，College of Sciences，King Fahd University of Petroleum and Minerals，P．O．Box 5005，Dhahran 31261，Saudi Arabia
2．Institut Elie Cartan de Lorraine，UMR 7502，Université de Lorraine， Bat．A，Ile du Saulcy， 57045 Metz Cedex 01，France
E－mail：guesmia＠kfupm．edu．sa；messaoud＠kfupm．edu．sa；aissa．guesmia＠univ－lorraine．fr

Abstract

In this paper，we consider a vibrating system of Timoshenko－type in a one－ dimensional bounded domain with complementary frictional damping and infinite memory acting on the transversal displacement．We show that the dissipation generated by these two complementary controls guarantees the stability of the system in case of the equal－speed propagation as well as in the opposite case．We establish in each case a general decay estimate of the solutions．In the particular case when the wave propagation speeds are different and the frictional damping is linear，we give a relationship between the smoothness of the initial data and the decay rate of the solutions．By the end of the paper，we discuss some applications to other Timoshenko－type systems．

Key words well－posedness；decay；damping；Timoshenko；thermoelasticity
2010 MR Subject Classification 35B37；35L55；74D05；93D15；93D20

1 Introduction

In this work，we are concerned with the long－time behavior of the solution of the following Timoshenko system：

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi\right)_{x}+b h\left(\varphi_{t}\right)+\int_{0}^{+\infty} g(s)\left(a \varphi_{x}(t-s)\right)_{x} \mathrm{~d} s=0, \tag{P}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi\right)=0, \\
\varphi(0, t)=\psi_{x}(0, t)=\varphi(L, t)=\psi_{x}(L, t)=0, \\
\varphi(x,-t)=\varphi_{0}(x, t), \varphi_{t}(x, 0)=\varphi_{1}(x), \\
\psi(x, 0)=\psi_{0}(x), \psi_{t}(x, 0)=\psi_{1}(x),
\end{array}\right.
$$

[^0]for $(x, t) \in] 0, L\left[\times \mathbb{R}_{+}\right.$, where $\mathbb{R}_{+}=\left[0,+\infty\left[, a, b:[0, L] \rightarrow \mathbb{R}_{+}, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}\right.\right.$and $h: \mathbb{R} \rightarrow \mathbb{R}$ are given functions (to be specified later), $L, \rho_{i}, k_{i}(i=1,2)$ are positive constants, $\varphi_{0}, \varphi_{1}, \psi_{0}$ and ψ_{1} are given initial and history data, and $\left.(\varphi, \psi):\right] 0, L\left[\times \mathbb{R}_{+} \rightarrow \mathbb{R}^{2}\right.$ is the state of (P).

Our aim is the study of the asymptotic behavior of the solutions of (P) in case of the equal-speed propagation

$$
\begin{equation*}
\frac{k_{1}}{\rho_{1}}=\frac{k_{2}}{\rho_{2}} \tag{1.1}
\end{equation*}
$$

as well as in the opposite case.
Timoshenko [39], in 1921, introduced the following model to describe the transverse vibration of a beam:

$$
\begin{cases}\rho u_{t t}=\left(K\left(u_{x}-\varphi\right)\right)_{x}, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \\ I_{\rho} \varphi_{t t}=\left(E I \varphi_{x}\right)_{x}+K\left(u_{x}-\varphi\right), & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right.\end{cases}
$$

where t denotes the time variable and x is the space variable along the beam of length L, in its equilibrium configuration, u is the transverse displacement of the beam and φ is the rotation angle of the filament of the beam. The coefficients ρ, I_{ρ}, E, I and K are, respectively, the density (the mass per unit length), the polar moment of inertia of a cross section, Young's modulus of elasticity, the moment of inertia of a cross section, and the shear modulus. Since then, this model has had attracted the attention of many researchers and an important amount of work has been devoted to the issue of the stabilization and the search for the minimum dissipation by which the solutions decay uniformly to the stable state as time goes to infinity. To achieve this goal, diverse types of dissipative mechanisms have been used and several stability results have been obtained. We mention some of these results (for more results, we refer the reader to the list of references of this paper, which is not exhaustive, and the references therein).

In the case of presence of controls on both the rotation angle and the transverse displacement, investigations showed that the weak solutions of the (P) are stable without any restriction on the constants $\rho_{1}, \rho_{2}, k_{1}$ and k_{2}. In this regards, many decay estimates were obtained [14, $18,23,26,34]$. However, in the case of only one control on the rotation angle, the rate of decay depends heavily on the constants $\rho_{1}, \rho_{2}, k_{1}$ and k_{2} and the regularity of the initial data. Precisely, if (1.1) holds, the results obtained are similar to those established for the case of the presence controls in both equations. We quote in this regard $[4,7,12,13,14,16,17,24$, $25,29,30,31,38]$. But, if (1.1) does not hold, a situation which is more interesting from the physics point of view, then it has been shown that the Timoshenko system is not exponentially stable even for exponentially decaying relaxation functions and only weak decay estimates can be obtained for regular solutions in the presence of dissipation. This has been demonstrated in [1], for the case of an internal feedback, in $[7,14,16,17,27]$, for the case of finite and infinite memory, and in $[10,13]$, for complementary internal feedback and finite or infinite memory acting on the rotation angle equation.

For stabilization of Timoshenko systems via heat effect, we mention the pioneer work [28], where the following system:

$$
\begin{cases}\rho_{1} \varphi_{t t}-\sigma\left(\varphi_{x}, \psi\right)_{x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \tag{1.2}\\ \rho_{2} \psi_{t t}-b \psi_{x x}+k\left(\varphi_{x}+\psi\right)+\gamma \theta_{x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \\ \rho_{3} \theta_{t}-k \theta_{x x}+\gamma \psi_{t x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right.\end{cases}
$$

has been considered. In their work, Rivera and Racke established, under appropriate conditions on σ, ρ_{i}, b, k and γ, several exponential decay results for the linearized system with several boundary conditions. They also proved a non exponential stability result for the case of different wave speeds and proved an exponential decay result for the nonlinear case. Guesmia et al. [15] discussed a linear version of (1.2) and completed the work of [28] by establishing some polynomial decay results in the case of nonequal speed of propagation.

In (1.2), the heat flux is given by Fourier's law. As a result, this theory predicts an infinite speed of heat propagation; that is, any thermal disturbance at one point has an instantaneous effect elsewhere in the body. Experiments showed that heat conduction in some dielectric crystals at low temperatures is free of this paradox and disturbances, which are almost entirely thermal, propagate in a finite speed. This phenomenon in dielectric crystals is called second sound.

To overcome this physical paradox, many theories have merged. One of which suggests that we should replace Fourier's law by Cattaneo's law. In line with this theory, (1.2), in its linear form, becomes

$$
\begin{cases}\rho_{1} \varphi_{t t}-\kappa\left(\varphi_{x}+\psi\right)_{x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \tag{1.3}\\ \rho_{2} \psi_{t t}-b \psi_{x x}+\kappa\left(\varphi_{x}+\psi\right)+\delta \theta_{x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \\ \rho_{3} \theta_{t}+\gamma q_{x}+\delta \psi_{t x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \\ \tau q_{t}+q+k \theta_{x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right.\end{cases}
$$

where q denotes the heat flux. Fernández Sare and Racke $[8]$ studied (1.3) and proved that the equal-speed condition $\frac{\kappa}{\rho_{1}}=\frac{b}{\rho_{2}}$ is no longer sufficient to obtain exponential stability even in the presence of an extra viscoelastic dissipation of the form $\int_{0}^{+\infty} g(s) \psi_{x x}(t-s) \mathrm{d} s$ in the second equation. Very recently, Santos et al. [37] considered (1.3), introduced a new stability number

$$
\chi=\left(\tau-\frac{\rho_{1}}{\kappa \rho_{3}}\right)\left(\rho_{2}-\frac{b \rho_{1}}{\kappa}\right)-\frac{\tau \rho_{1} \delta^{2}}{\kappa \rho_{3}}
$$

and used the semigroup method to obtain an exponential decay result, for $\chi=0$, and a polynomial decay, for $\chi \neq 0$. See, also, [14, 26, 33, 35, 36].

In all above mentioned works, the stabilization was either via both equation control or the angular rotation equation control. Very recently, Almeida Júnior et al. [2] considered the situation when the control is only on the transverse displacement equation, which is more realistic from the physics point of view. Precisely, they looked into the following system:

$$
\begin{cases}\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi\right)_{x}+\mu \varphi_{t}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+},\right. \tag{1.4}\\ \rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi\right)=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right.\end{cases}
$$

and showed that the linear frictional damping in the first equation is strong enough to obtain exponential stability provided that (1.1) holds. They, also, proved some non-exponential and polynomial decay results in the case of nonequal speed situation. The same authors considered in [3]

$$
\begin{cases}\rho_{1} \varphi_{t t}-\kappa\left(\varphi_{x}+\psi\right)_{x}+\sigma \theta_{x}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right. \tag{1.5}\\ \rho_{2} \psi_{t t}-b \psi_{x x}+\kappa\left(\varphi_{x}+\psi\right)-\sigma \theta=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+},\right. \\ \rho_{3} \theta_{t}-\gamma \theta_{x x}+\sigma\left(\varphi_{x}+\psi\right)_{t}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+},\right.\end{cases}
$$

with various boundary conditions, and established the exponential decay stability for equalspeed case and nonexponential stability for the opposite case. In the case of lack of exponential stability, they proved some algebraic (polynomial) stability for strong solutions.

Our goal in this paper is to investigate the effect of each control on the asymptotic behavior of the solutions of (P) and on the decay rate of its energy, when both controls are acting cooperatively, allowing each control to vanish on the whole domain. We give an explicit and general characterization of the decay rate depending on the growth of g at infinity and h at zero, by considering the case when (1.1) holds and the opposite case. In the latter case, we give a general decay estimate depending on the smoothness of the initial data and the growth of g at infinity.

The proof is based on the multipliers method and an approach introduced by the first author in $[9,11]$, for a class of abstract hyperbolic systems of single or coupled equations with one infinite memory. In the case when (1.1) does not hold, we use also some ideas given in [10] to get a relation between the decay rate of solutions and the general growth of g at infinity characterized by the condition (2.8) below introduced in [9].

The paper is organized as follows. In Section 2, we set up the hypotheses, discuss briefly the well-posedness and present our stability results. The proofs of these stability results will be given in Section 3, for the equal-speed case, in Section 4, for the nonequal-speed case, and in Section 5, when h is linear. Finally, in Section 6, we discuss some applications to other Timoshenko-type systems.

2 Preliminaries

2.1 Hypotheses

We consider the following hypotheses:
(H1) $a, b:[0, L] \rightarrow \mathbb{R}_{+}$are such that

$$
\begin{gather*}
a \in C^{1}([0, L]), b \in L^{\infty}([0, L]), \tag{2.1}\\
\inf _{x \in[0, L]}\{a(x)+b(x)\}>0, \tag{2.2}\\
a \equiv 0 \text { or } \inf _{x \in[0, L]}\{a(x)\}>0 . \tag{2.3}
\end{gather*}
$$

(H2) $h: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable non-decreasing function such that there exist constants $\epsilon_{1}, c^{\prime}, c_{1}^{\prime}>0$, and a convex and increasing function $H: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$of class $C^{1}\left(\mathbb{R}_{+}\right) \cap C^{2}(] 0,+\infty[)$ satisfying $H(0)=0$ and

$$
H \text { is linear on }\left[0, \epsilon_{1}\right]
$$

or

$$
\left.\left.H^{\prime}(0)=0 \text { and } H^{\prime \prime}>0 \text { on }\right] 0, \epsilon_{1}\right]
$$

such that

$$
\begin{gather*}
c^{\prime}|s| \leq|h(s)| \leq c_{1}^{\prime}|s| \quad \text { if }|s| \geq \epsilon_{1} \tag{2.4}\\
s^{2}+h^{2}(s) \leq H^{-1}(s h(s)) \quad \text { if }|s|<\epsilon_{1} \tag{2.5}
\end{gather*}
$$

(H3) $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a non-increasing differentiable function such that $g(0)>0$ and

$$
\begin{equation*}
g_{0}\|a\|_{\infty}<\frac{k_{1} k_{2}}{k_{0} k_{1}+k_{2}}, \tag{2.6}
\end{equation*}
$$

where $g_{0}=\int_{0}^{+\infty} g(s) \mathrm{d} s, k_{0}$ is the smallest positive constant satisfying (Poincaré's inequality)

$$
\int_{0}^{L} v^{2} \mathrm{~d} x \leq k_{0} \int_{0}^{L} v_{x}^{2} \mathrm{~d} x, \forall v \in H_{*}^{1}(] 0, L[)
$$

and

$$
H_{*}^{1}(] 0, L[)=\left\{v \in H^{1}(] 0, L[), \int_{0}^{L} v(x) \mathrm{d} x=0\right\} .
$$

(H4) There exist a positive constant $c^{\prime \prime}$ and an increasing strictly convex function G : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$of class $C^{1}\left(\mathbb{R}_{+}\right) \cap C^{2}(] 0,+\infty[)$ satisfying

$$
G(0)=G^{\prime}(0)=0 \quad \text { and } \quad \lim _{t \rightarrow+\infty} G^{\prime}(t)=+\infty
$$

such that

$$
\begin{equation*}
g^{\prime}(t) \leq-c^{\prime \prime} g(t), \forall t \geq 0 \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{g(t)}{G^{-1}\left(-g^{\prime}(t)\right)} \mathrm{d} t+\sup _{t \in \mathbb{R}_{+}} \frac{g(t)}{G^{-1}\left(-g^{\prime}(t)\right)}<+\infty . \tag{2.8}
\end{equation*}
$$

Remark 2.1 1. The hypothesis (2.8) was introduced in [9] and it allows a wider class of relaxation functions than the ones considered in $[7,27]$ (see examples given in $[9,14]$).
2. Hypothesis (H2) (with $\epsilon_{1}=1$) was introduced and used in $[20,21]$ to get the asymptotic behavior of solutions of nonlinear wave equations with nonlinear boundary damping, where they obtained decay estimates depending on the solution of an explicit nonlinear ordinary differential equation.
3. Using the second equation and boundary conditions in (P), we easily verify that

$$
\partial_{t t}\left(\int_{0}^{L} \psi(x, t) \mathrm{d} x\right)+\frac{k_{1}}{\rho_{2}} \int_{0}^{L} \psi(x, t) \mathrm{d} x=0
$$

By solving this ordinary differential equation and using the initial data of ψ, we find

$$
\int_{0}^{L} \psi(x, t) \mathrm{d} x=\left(\int_{0}^{L} \psi_{0}(x) \mathrm{d} x\right) \cos \left(\sqrt{\frac{k_{1}}{\rho_{2}}} t\right)+\sqrt{\frac{\rho_{2}}{k_{1}}}\left(\int_{0}^{L} \psi_{1}(x) \mathrm{d} x\right) \sin \left(\sqrt{\frac{k_{1}}{\rho_{2}}} t\right) .
$$

Let

$$
\tilde{\psi}(x, t)=\psi(x, t)-\frac{1}{L}\left(\int_{0}^{L} \psi_{0}(x) \mathrm{d} x\right) \cos \left(\sqrt{\frac{k_{1}}{\rho_{2}}} t\right)-\frac{1}{L} \sqrt{\frac{\rho_{2}}{k_{1}}}\left(\int_{0}^{L} \psi_{1}(x) \mathrm{d} x\right) \sin \left(\sqrt{\frac{k_{1}}{\rho_{2}}} t\right) .
$$

Then, one can easily check that

$$
\int_{0}^{L} \tilde{\psi}(x, t) \mathrm{d} x=0
$$

and, hence, Poincaré's inequality is applicable for $\tilde{\psi}$. In addition, $(\varphi, \tilde{\psi})$ satisfies (P) with initial data

$$
\tilde{\psi}_{0}(x)=\psi_{0}(x)-\frac{1}{L} \int_{0}^{L} \psi_{0}(x) \mathrm{d} x \quad \text { and } \quad \tilde{\psi}_{1}(x)=\psi_{1}(x)-\frac{1}{L} \int_{0}^{L} \psi_{1}(x) \mathrm{d} x
$$

instead of ψ_{0} and ψ_{1}, respectively. In the sequel, we work with $\tilde{\psi}$ instead of ψ, but, for simplicity of notation, we use ψ instead of $\tilde{\psi}$.
4. Thanks to Poincaré's inequality (applied for ψ), we have

$$
k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x \geq k_{1}(1-\hat{\epsilon}) \int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x+k_{0} k_{1}\left(1-\frac{1}{\hat{\epsilon}}\right) \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x
$$

for any $0<\hat{\epsilon}<1$. Then, thanks to (2.6), we can choose $\hat{\epsilon}>0$ such that

$$
\frac{k_{0} k_{1}}{k_{0} k_{1}+k_{2}}<\hat{\epsilon}<\frac{1}{k_{1}}\left(k_{1}-g_{0}\|a\|_{\infty}\right)
$$

and obtain

$$
\begin{equation*}
\hat{k} \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x \leq \int_{0}^{L}\left(-g_{0}\|a\|_{\infty} \varphi_{x}^{2}+k_{2} \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi\right)^{2}\right) \mathrm{d} x \tag{2.9}
\end{equation*}
$$

where $\hat{k}=\min \left\{k_{1}(1-\hat{\epsilon})-g_{0}\|a\|_{\infty}, k_{2}+k_{0} k_{1}\left(1-\frac{1}{\hat{\epsilon}}\right)\right\}>0$.
Because $\int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x$ and $\int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x$ define norms, for φ and ψ on $H_{0}^{1}(] 0, L[)$ and $H_{*}^{1}(] 0, L[)$, respectively, then

$$
\int_{0}^{L}\left(-g_{0}\|a\|_{\infty} \varphi_{x}^{2}+k_{2} \psi_{x}^{2}+k_{1}\left(\varphi_{x}+\psi\right)^{2}\right) \mathrm{d} x
$$

defines a norm on $H_{0}^{1}(] 0, L[) \times H_{*}^{1}(] 0, L[)$, for (φ, ψ), equivalent to the one induced by $\left(H^{1}(] 0, L[)\right)^{2}$.

2.2 Well-Posedness

We give here a brief idea about the existence, uniqueness and smoothness of solution of (P). Following the idea of [6], let

$$
\eta(x, t, s)=\varphi(x, t)-\varphi(x, t-s), \quad \text { for }(x, t, s) \in] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+}\right.
$$

Then

$$
\begin{cases}\eta_{t}+\eta_{s}-\varphi_{t}=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+} \times \mathbb{R}_{+}\right. \\ \eta(0, t, s)=\eta(L, t, s)=0, & \text { in } \mathbb{R}_{+} \times \mathbb{R}_{+} \\ \eta(x, t, 0)=0, & \text { in }] 0, L\left[\times \mathbb{R}_{+}\right.\end{cases}
$$

Let $\eta_{0}(x, s)=\eta(x, 0, s)=\varphi_{0}(x, 0)-\varphi_{0}(x, s)$, for $\left.(x, s) \in\right] 0, L\left[\times \mathbb{R}_{+}\right.$,

$$
\mathcal{H}= \begin{cases}H_{0}^{1}(] 0, L[) \times H_{*}^{1}(] 0, L[) \times L^{2}(] 0, L[) \times L_{*}^{2}(] 0, L[) & \text { if } a \equiv 0 \\ H_{0}^{1}(] 0, L[) \times H_{*}^{1}(] 0, L[) \times L^{2}(] 0, L[) \times L_{*}^{2}(] 0, L[) \times L_{g} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

where

$$
L_{*}^{2}(] 0, L[)=\left\{v \in L^{2}(] 0, L[), \int_{0}^{L} v(x) \mathrm{d} x=0\right\}
$$

and

$$
L_{g}=\left\{v: \mathbb{R}_{+} \rightarrow H_{0}^{1}(] 0, L[), \int_{0}^{L} a \int_{0}^{+\infty} g(s) v_{x}^{2}(s) \mathrm{d} s \mathrm{~d} x<+\infty\right\}
$$

endowed with the inner product

$$
\langle v, w\rangle_{L_{g}}=\int_{0}^{L} a \int_{0}^{+\infty} g(s) v_{x}(s) w_{x}(s) \mathrm{d} s \mathrm{~d} x
$$

The space \mathcal{H} is equipped with the inner product defined, if $a \equiv 0$, by

$$
\begin{aligned}
\langle V, W\rangle_{\mathcal{H}}= & k_{1} \int_{0}^{L}\left(\partial_{x} v_{1}+v_{2}\right)\left(\partial_{x} w_{1}+w_{2}\right) \mathrm{d} x \\
& +\int_{0}^{L}\left(k_{2} \partial_{x} v_{2} \partial_{x} w_{2}+\rho_{1} v_{3} w_{3}+\rho_{2} v_{4} w_{4}\right) \mathrm{d} x
\end{aligned}
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T} \in \mathcal{H}$ and $W=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T} \in \mathcal{H}$, and, if $\inf _{x \in[0, L]}\{a(x)\}>0$, by

$$
\begin{aligned}
\langle V, W\rangle_{\mathcal{H}}= & \left\langle v_{5}, w_{5}\right\rangle_{L_{g}}+k_{1} \int_{0}^{L}\left(\partial_{x} v_{1}+v_{2}\right)\left(\partial_{x} w_{1}+w_{2}\right) \mathrm{d} x \\
& +\int_{0}^{L}\left(-g_{0} a \partial_{x} v_{1} \partial_{x} w_{1}+k_{2} \partial_{x} v_{2} \partial_{x} w_{2}+\rho_{1} v_{3} w_{3}+\rho_{2} v_{4} w_{4}\right) \mathrm{d} x
\end{aligned}
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)^{T} \in \mathcal{H}$ and $W=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)^{T} \in \mathcal{H}$. Let

$$
\begin{gathered}
U= \begin{cases}\left(\varphi, \psi, \varphi_{t}, \psi_{t}\right)^{T} & \text { if } a \equiv 0, \\
\left(\varphi, \psi, \varphi_{t}, \psi_{t}, \eta\right)^{T} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0,\end{cases} \\
U_{0}= \begin{cases}\left(\varphi_{0}, \psi_{0}, \varphi_{1}, \psi_{1}\right)^{T} & \text { if } a \equiv 0, \\
\left(\varphi_{0}(\cdot, 0), \psi_{0}, \varphi_{1}, \psi_{1}, \eta_{0}\right)^{T} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
\end{gathered}
$$

and A is the operator defined by $A\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T}=\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}, \tilde{v}_{4}\right)^{T}$, for any $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T} \in$ $D(A)$, where

$$
\left\{\begin{array}{l}
\tilde{v}_{1}=-v_{3} \\
\tilde{v}_{2}=-v_{4} \\
\tilde{v}_{3}=-\frac{k_{1}}{\rho_{1}} \partial_{x}\left(\partial_{x} v_{1}+v_{2}\right)+\frac{b}{\rho_{1}} h\left(v_{3}\right) \\
\tilde{v}_{4}=-\frac{k_{2}}{\rho_{2}} \partial_{x x} v_{2}+\frac{k_{1}}{\rho_{2}}\left(\partial_{x} v_{1}+v_{2}\right)
\end{array}\right.
$$

if $a \equiv 0$, and $A\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)^{T}=\left(\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}, \tilde{v}_{4}, \tilde{v}_{5}\right)^{T}$, for any $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)^{T} \in D(A)$, where

$$
\left\{\begin{array}{l}
\tilde{v}_{1}=-v_{3} \\
\tilde{v}_{2}=-v_{4} \\
\tilde{v}_{3}=-\frac{k_{1}}{\rho_{1}} \partial_{x}\left(\partial_{x} v_{1}+v_{2}\right)+\frac{g_{0}}{\rho_{1}} \partial_{x}\left(a \partial_{x} v_{1}\right)-\frac{1}{\rho_{1}} \int_{0}^{+\infty} g(s) \partial_{x}\left(a \partial_{x} v_{5}(s)\right) \mathrm{d} s+\frac{b}{\rho_{1}} h\left(v_{3}\right), \\
\tilde{v}_{4}=-\frac{k_{2}}{\rho_{2}} \partial_{x x} v_{2}+\frac{k_{1}}{\rho_{2}}\left(\partial_{x} v_{1}+v_{2}\right), \\
\tilde{v}_{5}=-v_{3}+\partial_{s} v_{5}
\end{array}\right.
$$

if $\inf _{x \in[0, L]}\{a(x)\}>0$. The system (P) is equivalent to

$$
\left\{\begin{array}{l}
U^{\prime}(t)+A U(t)=0 \quad \text { on } \mathbb{R}_{+} \tag{P}\\
U(0)=U_{0}
\end{array}\right.
$$

Note that, thanks to (2.4) and the fact that h is continuous, we have

$$
\exists h_{0}>0:|h(s)| \leq h_{0}(1+|s|), \quad \forall s \in \mathbb{R}
$$

thus $h\left(v_{3}\right) \in L^{2}(] 0, L[)$, for any $v_{3} \in L^{2}(] 0, L[)$. The domain $D(A)$ of A can be characterized by

$$
D(A)=\left\{V=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T} \in \mathcal{H}, A V \in \mathcal{H}, \partial_{x} v_{2}(0)=\partial_{x} v_{2}(L)=0\right\}
$$

if $a \equiv 0$, and

$$
D(A)=\left\{V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)^{T} \in \mathcal{H}, A V \in \mathcal{H}, \partial_{x} v_{2}(0)=\partial_{x} v_{2}(L)=0, v_{5}(0)=0\right\}
$$

if $\inf _{x \in[0, L]}\{a(x)\}>0$. We use the classical notation $D\left(A^{0}\right)=\mathcal{H}, D\left(A^{1}\right)=D(A)$ and

$$
D\left(A^{n}\right)=\left\{V \in D\left(A^{n-1}\right), A V \in D\left(A^{n-1}\right)\right\}, \quad \text { for } n=2,3, \cdots
$$

endowed with the graph norm $\|V\|_{D\left(A^{n}\right)}=\sum_{k=0}^{n}\left\|A^{k} V\right\|_{\mathcal{H}}$.
As in [10] where the frictional damping and infinite memory were considered on the second equation of (P), we can prove that the operator A is maximal monotone; that is $-A$ is dissipative and $I d+A$ is surjective. Then we deduce that A is an infinitesimal generator of a contraction semigroup on \mathcal{H}, which implies the following results of existence, uniqueness and smoothness of the solution of (\mathcal{P}) (see [19, 32]):

Theorem 2.0 1. For any $U_{0} \in \mathcal{H}$, one has a unique solution

$$
U \in C\left(\mathbb{R}_{+} ; \mathcal{H}\right)
$$

2. If $U_{0} \in D(A)$, then the solution

$$
U \in W^{1, \infty}\left(\mathbb{R}_{+} ; \mathcal{H}\right) \cap L^{\infty}\left(\mathbb{R}_{+} ; D(A)\right)
$$

3. If h is linear (then A is linear) and $U_{0} \in D\left(A^{n}\right)$ (for $n \in \mathbb{N}$), then the solution

$$
U \in \bigcap_{k=0}^{n} C^{n-k}\left(\mathbb{R}_{+} ; D\left(A^{k}\right)\right)
$$

2.3 Stability

The energy functional associated with (P) is defined by

$$
\begin{equation*}
E(t):=\frac{1}{2} g \circ \varphi_{x}+\frac{1}{2} \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+k_{1}\left(\varphi_{x}+\psi\right)^{2}+k_{2} \psi_{x}^{2}-g_{0} a \varphi_{x}^{2}\right) \mathrm{d} x \tag{2.10}
\end{equation*}
$$

where

$$
\phi \circ v=\int_{0}^{L} a \int_{0}^{+\infty} \phi(s)(v(t)-v(t-s))^{2} \mathrm{~d} s \mathrm{~d} x
$$

for any $v: \mathbb{R} \rightarrow L^{2}(] 0, L[)$ and $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.
Now, we give our first main stability result which concerns the case (1.1).
Theorem 2.1 Assume that (1.1) and (H1)-(H4) are satisfied and let $U_{0} \in \mathcal{H}$ such that $a \equiv 0$ or (2.7) holds or

$$
\begin{equation*}
\sup _{t \in \mathbb{R}_{+}} \int_{t}^{+\infty} \frac{g(s)}{G^{-1}\left(-g^{\prime}(s)\right)} \int_{0}^{L} \varphi_{0 x}^{2}(x, s-t) \mathrm{d} x \mathrm{~d} s<+\infty \tag{2.11}
\end{equation*}
$$

Then there exist positive constants $\epsilon_{0}, \tau_{0}, c_{1}^{\prime \prime}$ and $c_{2}^{\prime \prime}$, for which E satisfies

$$
\begin{equation*}
E(t) \leq c_{1}^{\prime \prime} \hat{G}^{-1}\left(c_{2}^{\prime \prime} t\right), \quad \forall t \geq 0 \tag{2.12}
\end{equation*}
$$

where $\hat{G}(t)=\int_{t}^{1} \frac{1}{\hat{G}_{0}(s)} \mathrm{d} s$,

$$
\hat{G}_{0}(s)= \begin{cases}H_{0}(s) & \text { if } a \equiv 0 \text { or }(2.7) \text { holds }, \tag{2.13}\\ H_{0}(s) G^{\prime}\left(\epsilon_{0} H_{0}(s)\right) & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0,(2.8) \text { holds and }(2.7) \text { does not hold }\end{cases}
$$

and

$$
H_{0}(s)= \begin{cases}s & \text { if } H \text { is linear on }\left[0, \epsilon_{1}\right] \tag{2.14}\\ s H^{\prime}\left(\tau_{0} s\right) & \text { otherwise }\end{cases}
$$

Remark 2.2 1. Because $\lim _{t \rightarrow 0^{+}} G_{1}(t)=+\infty$, then (2.12) implies that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} E(t)=0 \tag{2.15}
\end{equation*}
$$

2. If $a \equiv 0$ or (2.7) holds, and $b \equiv 0$ or H is linear near zero, then

$$
\begin{equation*}
E(t) \leq c_{1}^{\prime \prime} e^{-c_{2}^{\prime \prime} t}, \quad \forall t \geq 0 \tag{2.16}
\end{equation*}
$$

which is the best decay rate given by (2.12). For specific examples of decay rates given by (2.12), see [10].

When (1.1) does not hold, we consider the following additional hypothesis:
(H5) Assume that (H2) is satisfied such that H is linear,

$$
h \in C^{1}(\mathbb{R}) \quad \text { and } \quad \inf _{t \in \mathbb{R}} h^{\prime}(t)>0
$$

Theorem 2.2 Assume that (H1)-(H5) hold and $U_{0} \in D(A)$ such that $a \equiv 0$ or (2.7) holds or

$$
\begin{equation*}
\sup _{t \in \mathbb{R}_{+}} \max _{k=0,1} \int_{t}^{+\infty} \frac{g(s)}{G^{-1}\left(-g^{\prime}(s)\right)} \int_{0}^{L}\left(\frac{\partial^{k} \varphi_{0 x}(x, s-t)}{\partial s^{k}}\right)^{2} \mathrm{~d} x \mathrm{~d} s<+\infty \tag{2.17}
\end{equation*}
$$

Then there exist positive constants ϵ_{0} and c_{1} such that

$$
\begin{equation*}
E(t) \leq G_{0}^{-1}\left(\frac{c_{1}}{t}\right), \quad \forall t>0 \tag{2.18}
\end{equation*}
$$

where

$$
G_{0}(s)= \begin{cases}s & \text { if } a \equiv 0 \text { or (2.7) holds } \tag{2.19}\\ s G^{\prime}\left(\epsilon_{0} s\right) & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0,(2.8) \text { holds and (2.7) does not hold. }\end{cases}
$$

Remark 2.3 If $a \equiv 0$ or (2.7) holds, then (2.18) becomes

$$
E(t) \leq \frac{c_{1}}{t}, \quad \forall t>0
$$

which is the best decay rate given by (2.18).
In the particular case where h is linear and the initial data are more regular, we prove a more general stability result than (2.18).

Theorem 2.3 Assume that h is linear, and (H1)-(H4) are satisfied. Let $n \in \mathbb{N}^{*}$ and $U_{0} \in D\left(A^{n}\right)$ such that $a \equiv 0$ or (2.7) holds or

$$
\begin{equation*}
\sup _{t \in \mathbb{R}_{+}} \max _{k=0, \cdots, n} \int_{t}^{+\infty} \frac{g(s)}{G^{-1}\left(-g^{\prime}(s)\right)} \int_{0}^{L}\left(\frac{\partial^{k} \varphi_{0 x}(x, s-t)}{\partial s^{k}}\right)^{2} \mathrm{~d} x \mathrm{~d} s<+\infty . \tag{2.20}
\end{equation*}
$$

Then there exist positive constant ϵ_{0} and c_{n} such that

$$
\begin{equation*}
E(t) \leq G_{n}\left(\frac{c_{n}}{t}\right), \quad \forall t>0 \tag{2.21}
\end{equation*}
$$

where $G_{m}(s)=G_{1}\left(s G_{m-1}(s)\right)$, for $m=2, \cdots, n$ and $s \in \mathbb{R}_{+}, G_{1}=G_{0}^{-1}$ and G_{0} is defined in (2.19).

Remark 2.4 If $n=1$, then (2.18) and (2.21) are the same. On the other hand, if $a \equiv 0$ or (2.7) holds, then (2.21) becomes

$$
\begin{equation*}
E(t) \leq \frac{c_{n}}{t^{n}}, \quad \forall t>0 \tag{2.22}
\end{equation*}
$$

which is the best decay rate given by (2.21). For specific examples of decay rates given by (2.21), see [11].

3 Proof of Teorem 2.1

We will use c (sometimes c_{τ} which depends on some parameter τ), throughout this paper, to denote a generic positive constant. Before starting the proofs of our stability resuls, we give the following identity on the derivative of E :

Lemma 3.1 The energy functional satisfies

$$
\begin{equation*}
E^{\prime}(t)=\frac{1}{2} g^{\prime} \circ \varphi_{x}-\int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x \leq 0 \tag{3.1}
\end{equation*}
$$

Proof By multiplying the first two equations in (P), respectively, by φ_{t} and ψ_{t}, integrating over $] 0, L$, and using the boundary conditions, we obtain (3.1) (note that g is non-increasing and $\operatorname{sh}(s) \geq 0$, for all $s \in \mathbb{R}$, because h is non-decreasing and $h(0)=0$ thanks to (2.5)). The estimate (3.1) shows that (P) is dissipative, where the entire dissipation is generated by the frictional damping and/or infinite memory.

Lemma 3.2 The following inequalities hold:

$$
\begin{gather*}
\exists d_{1}>0:\left(\int_{0}^{L} a \int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x\right)^{2} \leq d_{1} g \circ \varphi_{x} \tag{3.2}\\
\exists d_{2}>0:\left(\int_{0}^{L} a \int_{0}^{+\infty} g^{\prime}(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x\right)^{2} \leq-d_{2} g^{\prime} \circ \varphi_{x} \tag{3.3}\\
\exists d_{3}>0:\left(\int_{0}^{L} a^{\prime} \int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x\right)^{2} \leq d_{3} g \circ \varphi_{x} \tag{3.4}\\
\left(\int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s\right)^{2} \leq g_{0} \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} s \tag{3.5}\\
\left(\int_{0}^{+\infty} g^{\prime}(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s\right)^{2} \leq-g(0) \int_{0}^{+\infty} g^{\prime}(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} s \tag{3.6}
\end{gather*}
$$

Proof If $a \equiv 0,(3.2)-(3.4)$ are trivial. If $\inf _{x \in[0, L]}\{a(x)\}>0$, we use the fact that a and a^{\prime} are bounded and apply Hölder's and Poincaré's inequalities to get (3.2)-(3.4). Using again Hölder's inequality, (3.5) and (3.6) hold.

Lemma 3.3 The functional

$$
\begin{equation*}
I_{1}(t):=-\rho_{1} \int_{0}^{L} a \varphi_{t} \int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x \tag{3.7}
\end{equation*}
$$

satisfies, for any $\delta>0$,

$$
\begin{align*}
I_{1}^{\prime}(t) \leq & -\rho_{1} g_{0} \int_{0}^{L} a \varphi_{t}^{2} \mathrm{~d} x+\delta \int_{0}^{L}\left(\varphi_{t}^{2}+\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x \\
& +c_{\delta} \int_{0}^{L} b h^{2}\left(\varphi_{t}\right) \mathrm{d} x+c_{\delta} g \circ \varphi_{x}-c_{\delta} g^{\prime} \circ \varphi_{x} \tag{3.8}
\end{align*}
$$

Proof First, note that

$$
\begin{aligned}
& \partial_{t}\left(\int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s\right) \\
= & \partial_{t}\left(\int_{-\infty}^{t} g(t-s)(\varphi(t)-\varphi(s)) \mathrm{d} s\right) \\
= & \int_{-\infty}^{t} g(t-s) \varphi_{t}(t) \mathrm{d} s+\int_{-\infty}^{t} g^{\prime}(t-s)(\varphi(t)-\varphi(s)) \mathrm{d} s \\
= & g_{0} \varphi_{t}(t)+\int_{0}^{+\infty} g^{\prime}(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s .
\end{aligned}
$$

Then, by differentiating I_{1}, and using the first equation and boundary conditions in (P), we find

$$
\begin{aligned}
I_{1}^{\prime}(t)= & -\rho_{1} g_{0} \int_{0}^{L} a \varphi_{t}^{2} \mathrm{~d} x-\rho_{1} \int_{0}^{L} a \varphi_{t} \int_{0}^{+\infty} g^{\prime}(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x \\
& +k_{1} \int_{0}^{L} a\left(\varphi_{x}+\psi\right) \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x \\
& +\int_{0}^{L} a b h\left(\varphi_{t}\right) \int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x \\
& +\int_{0}^{L} a^{2}\left(\int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s\right)^{2} \mathrm{~d} x \\
& -g_{0} \int_{0}^{L} a^{2} \varphi_{x} \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x \\
& +\int_{0}^{L} a a^{\prime}\left(\int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s\right)\left(\int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s\right) \mathrm{d} x \\
& +k_{1} \int_{0}^{L} a^{\prime}\left(\varphi_{x}+\psi\right) \int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x \\
& -g_{0} \int_{0}^{L} a a^{\prime} \varphi_{x} \int_{0}^{+\infty} g(s)(\varphi(t)-\varphi(t-s)) \mathrm{d} s \mathrm{~d} x .
\end{aligned}
$$

Therefore, applying Hölder's and Young's inequalities, for the last heigh terms of the above equality, and using (3.2), (3.3), (3.4), (3.5), Poincaré's inequality, for φ, and the fact that a, b and a^{\prime} are bounded, we get (3.8).

Lemma 3.4 The functional

$$
I_{2}(t):=\int_{0}^{L}\left(\rho_{1} \varphi \varphi_{t}+\rho_{2} \psi \psi_{t}\right) \mathrm{d} x
$$

satisfies, for any $\delta>0$,

$$
I_{2}^{\prime}(t) \leq \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}\right) \mathrm{d} x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-k_{2} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x
$$

$$
\begin{equation*}
+g_{0} \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x+\delta \int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x+c_{\delta} \int_{0}^{L} b h^{2}\left(\varphi_{t}\right) \mathrm{d} x+c_{\delta} g \circ \varphi_{x} . \tag{3.9}
\end{equation*}
$$

Proof By differentiating I_{2}, and using the first two equations and boundary conditions in (P), we have

$$
\begin{aligned}
I_{2}^{\prime}(t)= & \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}\right) \mathrm{d} x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-k_{2} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x \\
& +g_{0} \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x-\int_{0}^{L} b \varphi h\left(\varphi_{t}\right) \mathrm{d} x-\int_{0}^{L} a \varphi_{x} \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x
\end{aligned}
$$

Consequently, aplying Hölder's and Young's inequalities, for the last two terms of the above equality, and using (3.5), Poincaré's inequality, for φ, and the fact that a and b are bounded, we find (3.9).

Lemma 3.5 The functional

$$
I_{3}(t):=-\rho_{2} \int_{0}^{L} \psi_{t}\left(\varphi_{x}+\psi\right) \mathrm{d} x-\frac{k_{2} \rho_{1}}{k_{1}} \int_{0}^{L} \psi_{x} \varphi_{t} \mathrm{~d} x+\frac{\rho_{2}}{k_{1}} \int_{0}^{L} a \psi_{t} \int_{0}^{+\infty} g(s) \varphi_{x}(t-s) \mathrm{d} s \mathrm{~d} x
$$

satisfies, for any $\delta, \delta_{1}>0$,

$$
\begin{align*}
I_{3}^{\prime}(t) \leq & k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-\rho_{2} \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x \\
& +g_{0}\left(\frac{\delta_{1}}{2}-1\right) \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x+\frac{g_{0} k_{0}\|a\|_{\infty}}{2 \delta_{1}} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x+c_{\delta} \int_{0}^{L} b h^{2}\left(\varphi_{t}\right) \mathrm{d} x \\
& +\delta \int_{0}^{L}\left(\psi_{t}^{2}+\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x+c_{\delta}\left(g \circ \varphi_{x}-g^{\prime} \circ \varphi_{x}\right) \\
& +\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{3.10}
\end{align*}
$$

Proof Similarly to (3.8) and using that $\lim _{s \rightarrow+\infty} g(s)=0$, we see that

$$
\begin{aligned}
\partial_{t}\left(\int_{0}^{+\infty} g(s) \varphi_{x}(t-s) \mathrm{d} s\right) & =\partial_{t}\left(\int_{-\infty}^{t} g(t-s) \varphi_{x}(s) \mathrm{d} s\right) \\
& =g(0) \varphi_{x}(t)+\int_{-\infty}^{t} g^{\prime}(t-s) \varphi_{x}(s) \mathrm{d} s \\
& =g(0) \varphi_{x}(t)+\int_{0}^{+\infty} g^{\prime}(s)\left(\varphi_{x}(t-s)-\varphi_{x}(t)+\varphi_{x}(t)\right) \mathrm{d} s \\
& =-\int_{0}^{+\infty} g^{\prime}(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s
\end{aligned}
$$

Therefore, exploiting the first two equations and boundary conditions in (P), we have

$$
\begin{aligned}
I_{3}^{\prime}(t)= & k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-\rho_{2} \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x+\left(\frac{k_{2} \rho_{1}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \\
& -g_{0} \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x-g_{0} \int_{0}^{L} a \varphi_{x} \psi \mathrm{~d} x+\int_{0}^{L} a\left(\varphi_{x}+\psi\right) \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x \\
& -\frac{\rho_{2}}{k_{1}} \int_{0}^{L} a \psi_{t} \int_{0}^{+\infty} g^{\prime}(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x+\frac{k_{2}}{k_{1}} \int_{0}^{L} b \psi_{x} h\left(\varphi_{t}\right) \mathrm{d} x .
\end{aligned}
$$

By applying Young's inequality, for the last four terms, Poincaré's inequality, for ψ, and using (3.5), (3.6) and the fact that a and b are bounded, (3.10) is established.

Now, as in [4], we use a function w to get a crucial estimate.
Lemma 3.6 The function

$$
\begin{equation*}
w(x, t)=\int_{0}^{x} \psi(y, t) \mathrm{d} y \tag{3.11}
\end{equation*}
$$

satisfies the estimates

$$
\begin{align*}
& \int_{0}^{L} w_{x}^{2} \mathrm{~d} x=\int_{0}^{L} \psi^{2} \mathrm{~d} x, \quad \forall t \geq 0 \tag{3.12}\\
& \int_{0}^{L} w_{t}^{2} \mathrm{~d} x \leq c \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x, \quad \forall t \geq 0 \tag{3.13}
\end{align*}
$$

Proof We just have to note that $w_{x}=\psi$ to get (3.12). On the other hand,

$$
w_{t}(0, t)=0 \quad \text { and } \quad w_{t}(L, t)=\int_{0}^{L} \psi_{t}(y, t) \mathrm{d} y=\partial_{t} \int_{0}^{L} \psi(y, t) \mathrm{d} y=0
$$

Then, applying (3.12) to w_{t} and using Poincaré's inequality, for w_{t}, we arrive at (3.13).
Lemma 3.7 The functional

$$
I_{4}(t):=\rho_{1} \int_{0}^{L}\left(w \varphi_{t}+\varphi \varphi_{t}\right) \mathrm{d} x
$$

satisfies, for any $\delta, \epsilon, \epsilon^{\prime}>0$,

$$
\begin{align*}
I_{4}^{\prime}(t) \leq & \left(\rho_{1}+\frac{c}{\epsilon}\right) \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x+c \epsilon \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x \\
& +\left(g_{0}\|a\|_{\infty}\left(1+\frac{\epsilon^{\prime}}{2}\right)-k_{1}\right) \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x+\frac{g_{0} k_{0}\|a\|_{\infty}}{2 \epsilon^{\prime}} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x \\
& +\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x+c_{\delta} \int_{0}^{L} b h^{2}\left(\varphi_{t}\right) \mathrm{d} x+c_{\delta} g \circ \varphi_{x} \tag{3.14}
\end{align*}
$$

Proof Using the first two equations and boundary conditions in (P), and exploiting the fact that $w(0, t)=w(L, t)=0$ and $w_{x}=\psi$, we find

$$
\begin{aligned}
I_{4}^{\prime}(t)= & \rho_{1} \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x+g_{0} \int_{0}^{L} a \varphi_{x}\left(\varphi_{x}+\psi\right) \mathrm{d} x+\rho_{1} \int_{0}^{L} w_{t} \varphi_{t} \mathrm{~d} x \\
& -\int_{0}^{L} b(w+\varphi) h\left(\varphi_{t}\right) \mathrm{d} x-\int_{0}^{L} a\left(\varphi_{x}+\psi\right) \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x
\end{aligned}
$$

Applying Young's inequality, for the last four terms, Poincaré's inequality, for φ and ψ, and exploiting (3.5), (3.12), (3.13) and the fact that a and b are bounded, we get (3.14).

For $N, N_{1}, N_{2}, N_{3}>0$, let

$$
\begin{equation*}
I_{5}(t):=N E(t)+N_{1} I_{1}(t)+N_{2} I_{2}(t)+I_{3}(t)+N_{3} I_{4}(t) \tag{3.15}
\end{equation*}
$$

Let $a_{0}:=\inf _{x \in[0, L]}\{a(x)\}$ and $b_{0}:=\inf _{x \in[0, L]}\{b(x)\}$. Noting that

$$
-N_{1} \rho_{1} g_{0} a=-N_{1} \rho_{1} g_{0} a-N_{1} b+N_{1} b \leq-N_{1}\left(\rho_{1} g_{0} a_{0}+b_{0}\right)+N_{1} b
$$

Then, by combining (3.1), (3.8), (3.9), (3.10) and (3.14), we obtain

$$
\begin{aligned}
I_{5}^{\prime}(t) \leq & -\int_{0}^{L}\left(l_{0} \varphi_{t}^{2}+l_{1} \psi_{t}^{2}+l_{2}\left(\varphi_{x}+\psi\right)^{2}+l_{3} \psi_{x}^{2}\right) \mathrm{d} x+l_{4} g_{0} \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x \\
& +\delta c_{N_{1}, N_{2}, N_{3}} \int_{0}^{L}\left(\varphi_{t}^{2}+\psi_{t}^{2}+\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x-N \int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{align*}
& +c_{N_{1}, N_{2}, N_{3}, \delta}\left(\int_{0}^{L} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x+g \circ \varphi_{x}\right) \\
& +\left(\frac{N}{2}-c_{N_{1}, \delta}\right) g^{\prime} \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x, \tag{3.16}
\end{align*}
$$

where

$$
\begin{gathered}
l_{0}=N_{1}\left(\rho_{1} g_{0} a_{0}+b_{0}\right)-\left(N_{2}+N_{3}\right) \rho_{1}-\frac{c_{0} N_{3}}{\epsilon}, \\
l_{1}=\rho_{2}\left(1-N_{2}\right)-c_{0} \epsilon N_{3}, \quad l_{2}=k_{1}\left(N_{2}+N_{3}-1\right)-g_{0}\|a\|_{\infty}\left(1+\frac{\epsilon^{\prime}}{2}\right) N_{3}, \\
l_{3}=k_{2} N_{2}-\frac{g_{0} k_{0}\|a\|_{\infty}}{2}\left(\frac{N_{3}}{\epsilon^{\prime}}+\frac{1}{\delta_{1}}\right), \quad l_{4}=N_{2}+\frac{\delta_{1}}{2}-1
\end{gathered}
$$

and $c_{0}>0$, independent of $N, N_{i}, \delta, \delta_{1}, \epsilon$ and ϵ^{\prime}. At this point, we choose carefully the constants $N, N_{i}, \delta, \delta_{1}, \epsilon$ and ϵ^{\prime} to get desired signs of l_{i}.

Case $1 \quad a \equiv 0$: the second integral in (3.16) drops, $g \circ \varphi_{x}=g^{\prime} \circ \varphi_{x}=0$ and the constants l_{0}, l_{1}, l_{2} and l_{3} do not depent on δ_{1} and ϵ^{\prime}. Therefore, we choose

$$
N_{3}=1, \quad 0<N_{2}<1, \quad 0<\epsilon<\frac{\rho_{2}}{c_{0}}\left(1-N_{2}\right) \quad \text { and } \quad N_{1}>\frac{1}{b_{0}}\left(N_{2}+N_{3}\right)+\frac{c_{0} N_{3}}{\epsilon b_{0}}
$$

(note that $b_{0}>0$ thanks to (2.2)). According to these choices, we get

$$
L:=\min \left\{\frac{l_{0}}{\rho_{1}}, \frac{l_{1}}{\rho_{2}}, \frac{l_{2}}{k_{1}}, \frac{l_{3}}{k_{2}}\right\}>0,
$$

and then, using (2.9), (2.10) and (3.16),

$$
\begin{aligned}
I_{5}^{\prime}(t) \leq & -(2 L-c \delta) E(t)-N \int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x \\
& +\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x+c_{\delta} \int_{0}^{L} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x
\end{aligned}
$$

Case $2 a_{0}>0$: we choose

$$
\begin{gathered}
\epsilon^{\prime}=\frac{k_{1}-g_{0}\|a\|_{\infty}}{g_{0}\|a\|_{\infty}}, \quad \delta_{1}=\frac{k_{0} g_{0}\|a\|_{\infty}}{k_{2}}, \\
\frac{k_{1} \delta_{1}}{2 k_{1}-g_{0}\|a\|_{\infty}\left(2+\epsilon^{\prime}\right)}<N_{3}<\epsilon^{\prime}\left(\frac{k_{2}\left(2-\delta_{1}\right)}{g_{0} k_{0}\|a\|_{\infty}}-\frac{1}{\delta_{1}}\right), \\
\max \left\{1-N_{3}\left(1-\frac{g_{0}\|a\|_{\infty}\left(2+\epsilon^{\prime}\right)}{2 k_{1}}\right), \frac{g_{0} k_{0}\|a\|_{\infty}}{2 k_{2}}\left(\frac{N_{3}}{\epsilon^{\prime}}+\frac{1}{\delta_{1}}\right)\right\}<N_{2}<1-\frac{\delta_{1}}{4}, \\
0<\epsilon<\min \left\{\left(2\left(1-N_{2}\right)-\frac{\delta_{1}}{2}\right) \frac{\rho_{2}}{c_{0} N_{3}}, \frac{\rho_{2}\left(1-N_{2}\right)}{c_{0} N_{3}}\right\}
\end{gathered}
$$

and

$$
N_{1}>\max \left\{\frac{\left(N_{2}+N_{3}\right) \rho_{1}+\frac{c_{0} N_{3}}{\epsilon}}{\rho_{1} g_{0} a_{0}+b_{0}}, \frac{\left(2 N_{2}+N_{3}+\frac{\delta_{1}}{2}-1\right) \rho_{1}+\frac{c_{0} N_{3}}{\epsilon}}{\rho_{1} g_{0} a_{0}+b_{0}}\right\} .
$$

Note that ϵ^{\prime} and δ_{1} are positive thanks to (2.6) and $g_{0}\|a\|_{\infty}>0, N_{2}$ exists according to the choice of N_{3}, ϵ exists from the choice of N_{2}, and N_{1} exists because $\rho_{1} g_{0} a_{0}+b_{0}>0$. On the other hand, using the definitions of ϵ^{\prime} and δ_{1}, we see that N_{3} exists if and only if

$$
k_{0}^{2} k_{1}\left(g_{0}\|a\|_{\infty}\right)^{3}<k_{2}\left(k_{2}-k_{0} g_{0}\|a\|_{\infty}\right)\left(k_{1}-g_{0}\|a\|_{\infty}\right)^{2} .
$$

Let $\left.y_{0}=\frac{k_{1} k_{2}}{k_{0} k_{1}+k_{2}}, y=g_{0}\|a\|_{\infty} \in\right] 0, y_{0}[($ see (2.6)) and

$$
f(y)=k_{0}^{2} k_{1} y^{3}-k_{2}\left(k_{2}-k_{0} y\right)\left(k_{1}-y\right)^{2} .
$$

We have

$$
f^{\prime}(y)=3\left(k_{0}^{2} k_{1}+k_{0} k_{2}\right) y^{2}-2\left(2 k_{0} k_{1} k_{2}+k_{2}^{2}\right) y+k_{0} k_{1}^{2} k_{2}+2 k_{1} k_{2}^{2}
$$

and

$$
f^{\prime \prime}(y)=6\left(k_{0}^{2} k_{1}+k_{0} k_{2}\right) y-2\left(2 k_{0} k_{1} k_{2}+k_{2}^{2}\right)
$$

Let $y_{1}=\frac{2 k_{0} k_{1} k_{2}+k_{2}^{2}}{3\left(k_{0}^{2} k_{1}+k_{0} k_{2}\right)}$. We notice that f^{\prime} is decreasing on $] 0, y_{1}[$, it is increasing on $] y_{1},+\infty[$ and

$$
f^{\prime}\left(y_{0}\right)=\frac{k_{0}^{2} k_{1}^{3} k_{2}+2 k_{0} k_{1}^{2} k_{2}^{2}}{k_{0} k_{1}+k_{2}}>0
$$

Moreover, $y_{1} \leq y_{0}$ if and only if $k_{2} \leq k_{0} k_{1}$, and, if $k_{2} \leq k_{0} k_{1}$,

$$
f^{\prime}\left(y_{1}\right)=\frac{5 k_{0}^{2} k_{1}^{2} k_{2}^{2}-k_{2}^{4}+2 k_{0} k_{1} k_{2}^{3}+3 k_{0}^{3} k_{1}^{3} k_{2}}{3\left(k_{0}^{2} k_{1}+k_{0} k_{2}\right)} \geq \frac{9 k_{2}^{4}}{3\left(k_{0}^{2} k_{1}+k_{0} k_{2}\right)}>0
$$

Therefore, f^{\prime} is positive on $] 0, y_{0}\left[\right.$, and then $f(y)<f\left(y_{0}\right)$, for any $\left.y \in\right] 0, y_{0}\left[\right.$. But $f\left(y_{0}\right)=0$, hence f is negative on $] 0, y_{0}\left[\right.$. This guarantees the existence of N_{3}.

By vertue of these choices, we notice that

$$
L:=\min \left\{\frac{l_{0}}{\rho_{1}}, \frac{l_{1}}{\rho_{2}}, \frac{l_{2}}{k_{1}}, \frac{l_{3}}{k_{2}}\right\}>0 \quad \text { and } \quad l_{4} \leq L
$$

and then, as in case 1 , using (2.9), (2.10) and (3.16), we find

$$
\begin{align*}
I_{5}^{\prime}(t) \leq & -(2 L-c \delta) E(t)+c_{\delta} g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \\
& +c_{\delta} \int_{0}^{L} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x-N \int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x+\left(\frac{N}{2}-c_{\delta}\right) g^{\prime} \circ \varphi_{x} \tag{3.17}
\end{align*}
$$

Choosing $\delta>0$ small enough in (3.17), we deduce in both cases $a \equiv 0$ and $\inf _{x \in[0, L]}\{a(x)\}>0$ that

$$
\begin{align*}
I_{5}^{\prime}(t) \leq & -c E(t)+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \\
& +c \int_{0}^{L} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x-N \int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x+\left(\frac{N}{2}-c\right) g^{\prime} \circ \varphi_{x} \tag{3.18}
\end{align*}
$$

Now, by the definitions of the functionals $I_{1}-I_{4}$ and E, there exists a positive constant β satisfying

$$
\left|N_{1} I_{1}+N_{2} I_{2}+I_{3}+N_{3} I_{4}\right| \leq \beta E
$$

which implies that

$$
(N-\beta) E \leq I_{5} \leq(N+\beta) E
$$

To estimate the last two integrals of (3.18), we use some ideas from [19, 20, 22]. Let

$$
\begin{equation*}
\Omega_{+}=\{x \in] 0, L\left[:\left|\varphi_{t}\right| \geq \epsilon_{1}\right\} \quad \text { and } \quad \Omega_{-}=\{x \in] 0, L\left[:\left|\varphi_{t}\right|<\epsilon_{1}\right\} \tag{3.19}
\end{equation*}
$$

where ϵ_{1} is defined in (H2). Using (2.4), we get (note that $\operatorname{sh}(s) \geq 0$)

$$
c \int_{\Omega_{+}} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x-N \int_{0}^{L} b \psi_{t} h\left(\varphi_{t}\right) \mathrm{d} x \leq(c-N) \int_{\Omega_{+}} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x .
$$

Then we choose N large enough so that $c-N \leq 0$ (so the right hand side of the above inequality is non-positive), $\frac{N}{2}-c \geq 0$ (so the last term of (3.18) is non-positive) and $N>\beta$ (that is $I_{5} \sim E$), we get from (3.18)

$$
\begin{equation*}
I_{5}^{\prime}(t) \leq-c E(t)+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x+c \int_{\Omega_{-}} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x . \tag{3.20}
\end{equation*}
$$

Case $1 H$ is linear on $\left[0, \epsilon_{1}\right]$: then (2.4) is satisfied on \mathbb{R}, and therefore

$$
c \int_{0}^{L} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x-N \int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x \leq(c-N) \int_{0}^{L} b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x .
$$

So, with the same choice of N, we get from (3.20), for $H_{0}=I d$ in this case,

$$
\begin{equation*}
I_{5}^{\prime}(t) \leq-c H_{0}(E(t))+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x . \tag{3.21}
\end{equation*}
$$

Case $2 H^{\prime}(0)=0$ and $H^{\prime \prime}>0$ on $\left.] 0, \epsilon_{1}\right]$: without loss of generality, we can assume that H^{\prime} defines a bijection from \mathbb{R}_{+}to \mathbb{R}_{+}. Let H^{*} denote the dual function of the convex function H given by

$$
H^{*}(t)=\sup _{s \in \mathbb{R}_{+}}\{t s-H(s)\}, \quad \forall t \in \mathbb{R}_{+} .
$$

For $t \in \mathbb{R}_{+}$, the function $s \mapsto t s-H(s)$ reaches its maximum on \mathbb{R}_{+}at the unique point $\left(H^{\prime}\right)^{-1}(t)$. Therefore

$$
H^{*}(t)=t\left(H^{\prime}\right)^{-1}(t)-H\left(\left(H^{\prime}\right)^{-1}(t)\right), \quad \forall t \in \mathbb{R}_{+} .
$$

Because H is convex and $H(0)=0$, then, for any $s_{0} \in \mathbb{R}_{+}$,

$$
H\left(\frac{b}{\max \left\{1,\|b\|_{\infty}\right\}} s_{0}\right) \leq \frac{b}{\max \left\{1,\|b\|_{\infty}\right\}} H\left(s_{0}\right)+\left(1-\frac{b}{\max \left\{1,\|b\|_{\infty}\right\}}\right) H(0) \leq b H\left(s_{0}\right),
$$

which implis that, for $s_{0}=H^{-1}\left(\varphi_{t} h\left(\varphi_{t}\right)\right)$,

$$
b H^{-1}\left(\varphi_{t} h\left(\varphi_{t}\right)\right) \mathrm{d} x \leq \max \left\{1,\|b\|_{\infty}\right\} H^{-1}\left(b \varphi_{t} h\left(\varphi_{t}\right)\right)
$$

Thus, using (2.5),

$$
\int_{\Omega_{-}} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x \leq \int_{\Omega_{-}} b H^{-1}\left(\varphi_{t} h\left(\varphi_{t}\right)\right) \mathrm{d} x \leq c \int_{\Omega_{-}} H^{-1}\left(b \varphi_{t} h\left(\varphi_{t}\right)\right) \mathrm{d} x .
$$

Therefore, using Jensen's inequality and (3.1), we find

$$
\int_{\Omega_{-}} b\left(\varphi_{t}^{2}+h^{2}\left(\varphi_{t}\right)\right) \mathrm{d} x \leq c H^{-1}\left(\int_{\Omega_{-}} c b \varphi_{t} h\left(\varphi_{t}\right) \mathrm{d} x\right) \leq c H^{-1}\left(-c E^{\prime}(t)\right) .
$$

Consequently, recalling (3.20), we get

$$
I_{5}^{\prime}(t) \leq-c E(t)+c H^{-1}\left(-c E^{\prime}(t)\right)+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x .
$$

Let $\tau_{0}, \tau^{\prime}>0$. The fact that $E^{\prime} \leq 0, H^{\prime \prime} \geq 0$ and $I_{5} \geq 0$ imply that

$$
\begin{aligned}
& \left(H^{\prime}\left(\tau_{0} E(t)\right) I_{5}(t)+\tau^{\prime} E(t)\right)^{\prime} \\
= & \tau_{0} E^{\prime}(t) H^{\prime \prime}\left(\tau_{0} E(t)\right) I_{5}(t)+H^{\prime}\left(\tau_{0} E(t)\right) I_{5}^{\prime}(t)+\tau^{\prime} E^{\prime}(t) \\
\leq & H^{\prime}\left(\tau_{0} E(t)\right)\left(-c E(t)+c H^{-1}\left(-c E^{\prime}(t)\right)+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x\right)+\tau^{\prime} E^{\prime}(t) .
\end{aligned}
$$

Hence, Young's inequality gives

$$
H^{-1}\left(-c E^{\prime}(t)\right) H^{\prime}\left(\tau_{0} E(t)\right) \leq-c E^{\prime}(t)+H^{*}\left(H^{\prime}\left(\tau_{0} E(t)\right)\right)
$$

and the fact that $H^{*}(t) \leq t\left(H^{\prime}\right)^{-1}(t)$ and $H^{\prime}\left(\tau_{0} E\right)$ is non-increasing leads to

$$
\begin{aligned}
& \left(H^{\prime}\left(\tau_{0} E(t)\right) I_{5}(t)+\tau^{\prime} E(t)\right)^{\prime} \\
\leq & \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) H^{\prime}\left(\tau_{0} E(t)\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \\
& +c H^{\prime}\left(\tau_{0} E(0)\right) g \circ \varphi_{x}-c H^{\prime}\left(\tau_{0} E(t)\right) E(t)+c H^{*}\left(H^{\prime}\left(\tau_{0} E(t)\right)\right)+\left(\tau^{\prime}-c\right) E^{\prime}(t) \\
\leq & \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) H^{\prime}\left(\tau_{0} E(t)\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \\
& +c H^{\prime}\left(\tau_{0} E(0)\right) g \circ \varphi_{x}-c H_{0}(E(t))+c \tau_{0} H_{0}(E(t))+\left(\tau^{\prime}-c\right) E^{\prime}(t),
\end{aligned}
$$

where $H_{0}(t)=t H^{\prime}\left(\tau_{0} t\right)$ in this case. By choosing τ_{0} small enough and τ^{\prime} large enough, we arrive at

$$
\begin{equation*}
\left(\frac{H_{0}(E(t))}{E(t)} I_{5}(t)+\tau^{\prime} E(t)\right)^{\prime} \leq-c H_{0}(E(t))+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \frac{H_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{3.22}
\end{equation*}
$$

Let

$$
I_{6}=\frac{H_{0}(E)}{E} I_{5}+\tau^{\prime} E
$$

where H_{0} is defined by (2.14) ($I_{6}=I_{5}$ if H is linear on $\left.\left[0, \epsilon_{1}\right]\right)$. The functional I_{6} satidfies $I_{6} \sim E$ (because $I_{5} \sim E$ and $\frac{H_{0}(E)}{E}$ is non-increasing) and, using (3.21) and (3.22),

$$
\begin{equation*}
I_{6}^{\prime}(t) \leq-c H_{0}(E(t))+c g \circ \varphi_{x}+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \frac{H_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{3.23}
\end{equation*}
$$

Now, we estimate the term $g \circ \varphi_{x}$ in (3.23).
Case $1 a \equiv 0$ or (2.7) holds: then, using (3.1),

$$
\begin{equation*}
g \circ \varphi_{x} \leq-c g^{\prime} \circ \varphi_{x} \leq-c E^{\prime}(t) \tag{3.24}
\end{equation*}
$$

Case $2 a_{0}>0,(2.8)$ holds and (2.7) does not hold: we apply here the approach introduced in $[9,11]$ and we get this lemma.

Lemma 3.8 For any $\epsilon_{0}>0$, we have

$$
\begin{equation*}
G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g \circ \varphi_{x} \leq-c E^{\prime}(t)+c \epsilon_{0} H_{0}(E(t)) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) \tag{3.25}
\end{equation*}
$$

Proof Because E is non-increasing,

$$
\begin{aligned}
\int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x & \leq 2\|a\|_{\infty} \int_{0}^{L} \varphi_{x}^{2}(t) \mathrm{d} x+2\|a\|_{\infty} \int_{0}^{L} \varphi_{x}^{2}(t-s) \mathrm{d} x \\
& \leq \begin{cases}c E(0) \\
c E(0)+2 \int_{0}^{L} \varphi_{0 x}^{2}(s-t) \mathrm{d} x & \text { if } s \geq t\end{cases} \\
& :=M(t, s) .
\end{aligned}
$$

Let $\epsilon_{0}, \tau_{1}(t, s), \tau_{2}(t, s)>0$ and $K(s)=\frac{s}{G^{-1}(s)}$ for $s \in \mathbb{R}_{+}$. The function K is non-decreasing, and therefore,

$$
K\left(-\tau_{2}(t, s) g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x\right) \leq K\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right)
$$

Using this inequality, we get

$$
\begin{aligned}
g \circ \varphi_{x}= & \frac{1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{1}{\tau_{1}(t, s)} G^{-1}\left(-\tau_{2}(t, s) g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x\right) \\
& \times \frac{\tau_{1}(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g(s)}{-\tau_{2}(t, s) g^{\prime}(s)} K\left(-\tau_{2}(t, s) g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x\right) \mathrm{d} s \\
\leq & \frac{1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{1}{\tau_{1}(t, s)} G^{-1}\left(-\tau_{2}(t, s) g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x\right) \\
& \times \frac{\tau_{1}(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g(s)}{-\tau_{2}(t, s) g^{\prime}(s)} K\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right) \mathrm{d} s \\
\leq & \frac{1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{1}{\tau_{1}(t, s)} G^{-1}\left(-\tau_{2}(t, s) g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x\right) \\
& \times \frac{M(t, s) \tau_{1}(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g(s)}{G^{-1}\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right)} \mathrm{d} s .
\end{aligned}
$$

Let G^{*} denote the dual function of G defined by

$$
G^{*}(t)=\sup _{s \in \mathbb{R}_{+}}\{t s-G(s)\}, \quad \forall t \in \mathbb{R}_{+}
$$

Thanks to (H4), G^{\prime} is increasing and defines a bijection from \mathbb{R}_{+}to \mathbb{R}_{+}, and then, for any $t \in \mathbb{R}_{+}$, the function $s \mapsto t s-G(s)$ reaches its maximum on \mathbb{R}_{+}at the unique point $\left(G^{\prime}\right)^{-1}(t)$. Therfore

$$
G^{*}(t)=t\left(G^{\prime}\right)^{-1}(t)-G\left(\left(G^{\prime}\right)^{-1}(t)\right), \quad \forall t \in \mathbb{R}_{+}
$$

Using the general Young's inequality: $t_{1} t_{2} \leq G\left(t_{1}\right)+G^{*}\left(t_{2}\right)$, for

$$
t_{1}=G^{-1}\left(-\tau_{2}(t, s) g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x\right)
$$

and

$$
t_{2}=\frac{M(t, s) \tau_{1}(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g(s)}{G^{-1}\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right)}
$$

we get

$$
\begin{aligned}
g \circ \psi_{x} \leq & \frac{-1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{\tau_{2}(t, s)}{\tau_{1}(t, s)} g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x \mathrm{~d} s \\
& +\frac{1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{1}{\tau_{1}(t, s)} G^{*}\left(\frac{M(t, s) \tau_{1}(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g(s)}{G^{-1}\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right)}\right) \mathrm{d} s
\end{aligned}
$$

Using the fact that $G^{*}(t) \leq t\left(G^{\prime}\right)^{-1}(t)$, we get

$$
\begin{aligned}
g \circ \varphi_{x} \leq & \frac{-1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{\tau_{2}(t, s)}{\tau_{1}(t, s)} g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x \mathrm{~d} s \\
& +\int_{0}^{+\infty} \frac{M(t, s) g(s)}{G^{-1}\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right)}\left(G^{\prime}\right)^{-1}\left(\frac{M(t, s) \tau_{1}(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right) g(s)}{G^{-1}\left(-M(t, s) \tau_{2}(t, s) g^{\prime}(s)\right)}\right) \mathrm{d} s
\end{aligned}
$$

Condition (2.8) implies that

$$
\sup _{s \in \mathbb{R}_{+}} \frac{g(s)}{G^{-1}\left(-g^{\prime}(s)\right)}=m_{1}<+\infty
$$

Then, using the fact that $\left(G^{\prime}\right)^{-1}$ is non-decreasing (thanks to (H4)), we get, for $\tau_{2}(t, s)=\frac{1}{M(t, s)}$,

$$
g \circ \varphi_{x} \leq \frac{-1}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} \int_{0}^{+\infty} \frac{1}{\tau_{1}(t, s) M(t, s)} g^{\prime}(s) \int_{0}^{L} a\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right)^{2} \mathrm{~d} x \mathrm{~d} s
$$

$$
+\int_{0}^{+\infty} \frac{M(t, s) g(s)}{G^{-1}\left(-g^{\prime}(s)\right)}\left(G^{\prime}\right)^{-1}\left(m_{1} \tau_{1}(t, s) M(t, s) G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)\right) \mathrm{d} s
$$

Choosing $\tau_{1}(t, s)=\frac{1}{m_{1} M(t, s)}$, and using (3.1) and the fact that

$$
\int_{0}^{+\infty} \frac{M(t, s) g(s)}{G^{-1}\left(-g^{\prime}(s)\right)} \mathrm{d} s=m_{2}<+\infty
$$

(thanks to (2.8), (2.11) and the definition of $M(t, s)$), we obtain

$$
g \circ \varphi_{x} \leq \frac{-2 m_{1}}{G^{\prime}\left(\epsilon_{0} H_{0}(E(t))\right)} E^{\prime}(t)+\epsilon_{0} m_{2} H_{0}(E(t)),
$$

thus (3.25) holds.
Using (3.23), (3.24) and (3.25), we see that, in both cases,

$$
\frac{\hat{G}_{0}(E(t))}{H_{0}(E(t))} I_{6}^{\prime}(t) \leq-\left(c-c \epsilon_{0}\right) \hat{G}_{0}(E(t))-c E^{\prime}(t)+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \frac{\hat{G}_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x,
$$

where \hat{G}_{0} and H_{0} are defined in (2.13) and (2.14), respectively. Choosing ϵ_{0} small enough, we get

$$
\begin{equation*}
\frac{\hat{G}_{0}(E(t))}{H_{0}(E(t))} I_{6}^{\prime}(t) \leq-c \hat{G}_{0}(E(t))-c E^{\prime}(t)+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \frac{\hat{G}_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{3.26}
\end{equation*}
$$

Let $\tau>0$ and

$$
\begin{equation*}
F=\tau\left(\frac{\hat{G}_{0}(E)}{H_{0}(E)} I_{6}+c E\right) \tag{3.27}
\end{equation*}
$$

We have $F \sim E$ (because $I_{6} \sim E$ and $\frac{\hat{G}_{0}(E)}{H_{0}(E)}$ is non-increasing) and, using (3.26),

$$
\begin{equation*}
F^{\prime}(t) \leq-c \tau \hat{G}_{0}(E(t))+\tau\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \frac{\hat{G}_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x . \tag{3.28}
\end{equation*}
$$

Thanks to (1.1), the last term of (3.28) vanishes. Then, for $\tau>0$ such that

$$
\begin{equation*}
F \leq E \quad \text { and } \quad F(0) \leq 1 \tag{3.29}
\end{equation*}
$$

we get, for $c_{2}^{\prime \prime}=c \tau>0$ (since \hat{G}_{0} is increasing),

$$
\begin{equation*}
F^{\prime} \leq-c_{2}^{\prime \prime} \hat{G}_{0}(F) \tag{3.30}
\end{equation*}
$$

Then (3.30) implies that $(\hat{G}(F))^{\prime} \geq c_{2}^{\prime \prime}$, where $\hat{G}(t)=\int_{t}^{1} \frac{1}{\hat{G}_{0}(s)} \mathrm{d}$. Integrating over $[0, t]$ yields

$$
\hat{G}(F(t)) \geq c_{2}^{\prime \prime} t+\hat{G}(F(0)) .
$$

Because $F(0) \leq 1, \hat{G}(1)=0$ and \hat{G} is decreasing, we obtain $\hat{G}(F(t)) \geq c_{2}^{\prime \prime} t$ which implies that $F(t) \leq \hat{G}^{-1}\left(c_{2}^{\prime \prime} t\right)$. The fact that $F \sim E$ gives (2.12). This completes the proof of Theorem 2.1.

4 Proof of Teorem 2.2

In this section, we treat the case when (1.1) does not hold which is more realistic from the physics point of view. We will estimate the last term of (3.28) using the system (P2) resulting from differentiating (P) with respect to time

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t t}-k_{1}\left(\varphi_{x t}+\psi_{t}\right)_{x}+\int_{0}^{+\infty} g(s)\left(a \varphi_{x t}(t-s)\right)_{x} \mathrm{~d} s+b h^{\prime}\left(\varphi_{t}\right) \varphi_{t t}=0 \tag{P2}\\
\rho_{2} \psi_{t t t}-k_{2} \psi_{x x t}+k_{1}\left(\varphi_{x t}+\psi_{t}\right)=0 \\
\varphi_{x t}(0, t)=\psi_{t}(0, t)=\varphi_{x t}(L, t)=\psi_{t}(L, t)=0
\end{array}\right.
$$

System (P2) is well posed for initial data $U_{0} \in D(A)$. Let E_{2} be the second-order energy (the energy of (P2)) defined by $E_{2}(t)=E_{1}\left(\varphi_{t}, \psi_{t}\right)(t)$, where $E_{1}(\varphi, \psi)(t)=E(t)$, defined by (2.10). A simple calculation (as for (3.1)) implies that

$$
\begin{equation*}
E_{2}^{\prime}(t)=\frac{1}{2} g^{\prime} \circ \varphi_{x t}-\int_{0}^{L} b h^{\prime}\left(\varphi_{t}\right) \varphi_{t t}^{2} \mathrm{~d} x \tag{4.1}
\end{equation*}
$$

Because $\inf _{t \in \mathbb{R}} h^{\prime}(t)>0$ thanks to hypothesis (H5), we have

$$
\begin{equation*}
E_{2}^{\prime}(t) \leq \frac{1}{2} g^{\prime} \circ \varphi_{x t}-c \int_{0}^{L} b \varphi_{t t}^{2} \mathrm{~d} x \leq 0 \tag{4.2}
\end{equation*}
$$

Let $\tau=1$ in (3.27). Thanks to (H5), H is linear and then (3.28) holds for $H_{0}=I d$. Thus,

$$
\begin{equation*}
F^{\prime}(t) \leq-c G_{0}(E(t))+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{4.3}
\end{equation*}
$$

where G_{0} is defined in (2.19). Now, we proceed as in [7] and we use some ideas of [10].
Lemma 4.1 For any $\epsilon>0$, we have

$$
\begin{align*}
& \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \mathrm{~d} t \\
\leq & \epsilon \int_{S}^{T} G_{0}(E(t)) \mathrm{d} t+c_{\epsilon} \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)}\left(g \circ \varphi_{x t}-g^{\prime} \circ \varphi_{x}\right) \mathrm{d} t \\
& +c_{\epsilon} \frac{G_{0}(E(0))}{E(0)}\left(E(S)+E_{2}(S)\right), \quad \forall T \geq S \geq 0 \tag{4.4}
\end{align*}
$$

Proof We distinguish two cases (corresponding to hypothesis (2.3)).
Case $1 \inf _{x \in[0, L]}\{a(x)\}>0$: we have $\inf _{x \in[0, L]}\{a(x)\}:=a_{0}>0$, and then

$$
\begin{align*}
& \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \\
= & \frac{\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}}{a_{0} g_{0}} \int_{0}^{L} a_{0} \psi_{t} \int_{0}^{+\infty} g(s) \varphi_{x t}(t-s) \mathrm{d} s \mathrm{~d} x \\
& +\frac{\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}}{a_{0} g_{0}} \int_{0}^{L} a_{0} \psi_{t} \int_{0}^{+\infty} g(s)\left(\varphi_{x t}(t)-\varphi_{x t}(t-s)\right) \mathrm{d} s \mathrm{~d} x \tag{4.5}
\end{align*}
$$

Using Young's inequality and (3.5) (for $\varphi_{x t}$ instead of φ_{x}), we get for all $\epsilon>0$

$$
\begin{aligned}
& \frac{\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}}{a_{0} g_{0}} \int_{0}^{L} a_{0} \psi_{t} \int_{0}^{+\infty} g(s)\left(\varphi_{x t}(t)-\varphi_{x t}(t-s)\right) \mathrm{d} s \mathrm{~d} x \\
\leq & c \int_{0}^{L} a\left|\psi_{t}\right| \int_{0}^{+\infty} g(s)\left|\varphi_{x t}(t)-\varphi_{x t}(t-s)\right| \mathrm{d} s \mathrm{~d} x \\
\leq & \frac{\epsilon}{2} E(t)+c_{\epsilon} g \circ \varphi_{x t} .
\end{aligned}
$$

On the other hand, by integrating by parts and using (3.6), we obtain

$$
\begin{aligned}
& \frac{\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}}{a_{0} g_{0}} \int_{0}^{L} a_{0} \psi_{t} \int_{0}^{+\infty} g(s) \varphi_{x t}(t-s) \mathrm{d} s \mathrm{~d} x \\
= & \frac{\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}}{a_{0} g_{0}} \int_{0}^{L} a_{0} \psi_{t}\left(g(0) \varphi_{x}+\int_{0}^{+\infty} g^{\prime}(s) \varphi_{x}(t-s) \mathrm{d} s\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}}{a_{0} g_{0}} \int_{0}^{L} a_{0} \psi_{t} \int_{0}^{+\infty}\left(-g^{\prime}(s)\right)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x \\
& \leq \frac{\epsilon}{2} E(t)-c_{\epsilon} g^{\prime} \circ \varphi_{x}
\end{aligned}
$$

Inserting these last two inequalities into (4.5), multiplying by $\frac{G_{0}(E)}{E}$, integrating over $[S, T]$, noting that $\frac{G_{0}(E)}{E}$ is non-increasing and using (3.1), we obtain (4.4).

Case $2 \quad a \equiv 0$: according to (2.2), we have $\inf _{x \in[0, L]}\{b(x)\}:=b_{0}>0$, and then, by integration with respect to t and using the definition of $\frac{G_{0}(E)}{E}, E$ and E_{2} and their non-increasingness, we get

$$
\begin{aligned}
& \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi_{t} \varphi_{x t} \mathrm{~d} x \mathrm{~d} t \\
= & \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right)\left[\frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi \varphi_{x t} \mathrm{~d} x\right]_{S}^{T}-\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T}\left(\frac{G_{0}(E(t))}{E(t)}\right)^{\prime} \int_{0}^{L} \psi \varphi_{x t} \mathrm{~d} x \mathrm{~d} t \\
& -\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi \varphi_{x t t} \mathrm{~d} x \mathrm{~d} t .
\end{aligned}
$$

Using the fact that (by vertue of Poincare's inequality)

$$
\left|\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \psi \varphi_{x t} \mathrm{~d} x\right| \leq c\left(E(t)+E_{2}(t)\right) \leq c\left(E(S)+E_{2}(S)\right), \quad \forall t \geq S \geq 0
$$

Therefore, by integrating by parts the last integral with respect to x and noting that $\frac{G_{0}(E)}{E}$ is non-increasing, we have

$$
\begin{aligned}
& \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi_{t} \varphi_{x t} \mathrm{~d} x \mathrm{~d} t \\
\leq & c \frac{G_{0}(E(0))}{E(0)}\left(E(S)+E_{2}(S)\right)-c\left(E(S)+E_{2}(S)\right) \int_{S}^{T}\left(\frac{G_{0}(E(t))}{E(t)}\right)^{\prime} d t \\
& +\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi_{x} \varphi_{t t} \mathrm{~d} x \mathrm{~d} t, \quad \forall T \geq S \geq 0
\end{aligned}
$$

Using the fact that $\inf _{x \in[0, L]}\{b(x)\}>0$, we deduce that

$$
\begin{aligned}
& \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi_{t} \varphi_{x t} \mathrm{~d} x \mathrm{~d} t \\
\leq & c \frac{G_{0}(E(0))}{E(0)}\left(E(S)+E_{2}(S)\right)+c \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} b\left|\psi_{x} \| \varphi_{t t}\right| \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

Therefore, using Young's inequality and (4.2), we estimate the last integral as follows:

$$
\begin{align*}
& \left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} \int_{0}^{L} \psi_{t} \varphi_{x t} \mathrm{~d} x \mathrm{~d} t \\
\leq & c \frac{G_{0}(E(0))}{E(0)}\left(E(S)+E_{2}(S)\right)+\epsilon \int_{S}^{T} G_{0}(E(t)) \mathrm{d} t-c_{\epsilon} \frac{G_{0}(E(0))}{E(0)} \int_{S}^{T} E_{2}^{\prime}(t) \mathrm{d} t \\
\leq & c_{\epsilon} \frac{G_{0}(E(0))}{E(0)}\left(E(S)+E_{2}(S)\right)+\epsilon \int_{S}^{T} G_{0}(E(t)) \mathrm{d} t, \quad \forall T \geq S \geq 0 . \tag{4.6}
\end{align*}
$$

This implies (4.4).

Now, exploiting (4.3) and (4.4) and choosing ϵ small enough, we get

$$
\begin{aligned}
\int_{S}^{T} F^{\prime}(t) \mathrm{d} t \leq & -c \int_{S}^{T} G_{0}(E(t)) \mathrm{d} t+c \frac{G_{0}(E(0))}{E(0)}\left(E(S)+E_{2}(S)\right) \\
& +c \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)}\left(g \circ \varphi_{x t}-g^{\prime} \circ \varphi_{x}\right) \mathrm{d} t, \quad \forall T \geq S \geq 0
\end{aligned}
$$

and recalling (3.1) and the fact that $F \sim E$ and $\frac{G_{0}(E)}{E}$ is non-increasing, we have

$$
\begin{equation*}
\int_{S}^{T} G_{0}(E(t)) \mathrm{d} t \leq c\left(1+\frac{G_{0}(E(0))}{E(0)}\right)\left(E(S)+E_{2}(S)\right)+c \int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} g \circ \varphi_{x t} \mathrm{~d} t \tag{4.7}
\end{equation*}
$$

To estimate the last term in (4.7), we distingish two cases.
Case $1 \quad a \equiv 0$ or (2.7) holds: we have $G_{0}=I d$. Using (4.2), we get

$$
\frac{G_{0}(E(t))}{E(t)} g \circ \varphi_{x t}=g \circ \varphi_{x t} \leq-c g^{\prime} \circ \varphi_{x t} \leq-c E_{2}^{\prime}(t)
$$

Case $2 \inf _{x \in[0, L]}\{a(x)\}>0,(2.8)$ holds and (2.7) does not hold: in this case, $G_{0}(s)=$ $s G^{\prime}\left(\epsilon_{0} s\right)$ with $\epsilon_{0}>0$. Therefore, using (2.17) and similarly to (3.25) for $g \circ \varphi_{x t}$ instead of $g \circ \varphi_{x}$ (here $H_{0}=I d$), we get, using also (4.2),

$$
\frac{G_{0}(E(t))}{E(t)} g \circ \varphi_{x t} \leq-c E_{2}^{\prime}(t)+c \epsilon_{0} G_{0}(E(t)), \quad \forall \epsilon_{0}>0
$$

Then we get in both cases

$$
\int_{S}^{T} \frac{G_{0}(E(t))}{E(t)} g \circ \varphi_{x t} \mathrm{~d} t \leq-c \int_{S}^{T} E_{2}^{\prime}(t) \mathrm{d} t+c \epsilon_{0} \int_{S}^{T} G_{0}(E(t)) \mathrm{d} t, \quad \forall \epsilon_{0}>0, \quad \forall T \geq S \geq 0
$$

Inserting this inequality into (4.7) and choosing ϵ_{0} small enough, we deduce that

$$
\begin{equation*}
\int_{S}^{T} G_{0}(E(t)) \mathrm{d} t \leq c\left(1+\frac{G_{0}(E(0))}{E(0)}\right)\left(E(S)+E_{2}(S)\right), \quad \forall T \geq S \geq 0 \tag{4.8}
\end{equation*}
$$

Choosing $S=0$ in (4.8) and using the fact that $G_{0}(E)$ is non-increasing, we get

$$
G_{0}(E(T)) T \leq \int_{0}^{T} G_{0}(E(t)) \mathrm{d} t \leq c\left(1+\frac{G_{0}(E(0))}{E(0)}\right)\left(E(0)+E_{2}(0)\right), \quad \forall T \geq 0
$$

which gives (2.18) with $c_{1}=c\left(1+\frac{G_{0}(E(0))}{E(0)}\right)\left(E(0)+E_{2}(0)\right)$.

5 Proof of Theorem 2.3

We prove (2.21) by induction on n. For $n=1$, condition (2.20) coincides with (2.17), and (2.21) is exactly (2.18).

Now, suppose that (2.21) holds and let $U_{0} \in D\left(A^{n+1}\right)$ satisfying (2.20), for $n+1$ instead of n. We have $U_{t}(0) \in D\left(A^{n}\right)$ (thanks to Theorem 2.0-3), $U_{t}(0)$ satisfies (2.20) (because U_{0} satisfies (2.20), for $n+1$) and U_{t} satisfies the first two equations and the boundary conditions of (P), and then the energy E_{2} of (P2) (defined in Section 4) also satisfies, for some positive constant \tilde{c}_{n},

$$
\begin{equation*}
E_{2}(t) \leq G_{n}\left(\frac{\tilde{c}_{n}}{t}\right), \quad \forall t>0 \tag{5.1}
\end{equation*}
$$

Now, choosing $S=\frac{T}{2}$ in (4.8), combining with (2.21) and (5.1), and using the fact that $G_{0}(E)$ is non-increasing, we deduce that

$$
G_{0}(E(T)) T \leq 2 \int_{\frac{T}{2}}^{T} G_{0}(E(t)) \mathrm{d} t \leq c\left(1+\frac{G_{0}(E(0))}{E(0)}\right)\left(G_{n}\left(\frac{2 c_{n}}{T}\right)+G_{n}\left(\frac{2 \tilde{c}_{n}}{T}\right)\right)
$$

this implies that, for $c_{n+1}=\max \left\{c\left(1+\frac{G_{0}(E(0))}{E(0)}\right), 2 c_{n}, 2 \tilde{c}_{n}\right\}$,

$$
E(T) \leq G_{0}^{-1}\left(\frac{c_{n+1}}{T} G_{n}\left(\frac{c_{n+1}}{T}\right)\right)=G_{n+1}\left(\frac{c_{n+1}}{T}\right)
$$

This proves (2.21), for $n+1$. The proof of Theorem 2.3 is completed.
Remark 5.1 One important system related to (P) is the following system:

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi\right)_{x}+b(x) h\left(\varphi_{t}\right)+\int_{0}^{+\infty}\left(a(x) g(s) \varphi_{x}(t-s)\right)_{x} \mathrm{~d} s=0 \\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi\right)-\int_{0}^{+\infty} a(x) g(s) \varphi_{x}(t-s) \mathrm{d} s=0
\end{array}\right.
$$

which results from the governing equations

$$
\rho_{1} \varphi_{t t}=S_{x} \quad \text { and } \quad \rho_{2} \psi_{t t}=M_{x}-S
$$

taking into account the action on two tensors

$$
S=k_{1}\left(\varphi_{x}+\psi\right)-\int_{0}^{+\infty} a(x) g(s) \varphi_{x}(t-s) \mathrm{d} s \quad \text { and } \quad M=k_{2} \psi_{x}
$$

This system looks more realistic than (P) from the physics point view. However the energy given by (2.10) is not dissipative.

We believe that such a system is worth looking at and a "modified" energy needs to be defined, as well the functionals used to prove stability.

6 Applications

In this section, we give applications of our results of section 2 to some Timoshenko-type systems.

6.1 Timoshenko-heat

We start by considering coupled Timoshenko-heat system on $] 0, L[$ under Fourier's law of heat conduction and in the presence of an infinite memory acting on the first equation. That is,

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi\right)_{x}-\gamma \theta_{x}+\int_{0}^{+\infty}\left(a g(s) \varphi_{x}(t-s)\right)_{x} \mathrm{~d} s=0 \tag{6.1}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi\right)=0 \\
\rho_{3} \theta_{t}-\kappa \theta_{x x}+\gamma \varphi_{x t}=0 \\
\varphi(0, t)=\varphi(L, t)=\psi_{x}(0, t)=\psi_{x}(L, t)=\theta_{x}(0, t)=\theta_{x}(L, t)=0 \\
\varphi(x,-t)=\varphi_{0}(x, t), \quad \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x, 0)=\psi_{0}(x), \quad \psi_{t}(x, 0)=\psi_{1}(x), \quad \theta(x, 0)=\theta_{0}(x)
\end{array}\right.
$$

where φ, ψ and θ are functions of (x, t) and denote the transverse displacement of the beam, the rotation angle of the filament, and the difference temperature, respectively, $\rho_{i}, k_{i}, \gamma, \kappa, L$ are positive constants, and the functions a and g are as in Section 2.

From the third equation in (6.1) and the boundary conditions, we easily verify that

$$
\partial_{t} \int_{0}^{L} \theta(x, t) \mathrm{d} x=0
$$

By solving this ordinary differential equation and using the initial data of θ, we get

$$
\int_{0}^{L} \theta(x, t) \mathrm{d} x=\int_{0}^{L} \theta_{0}(x) \mathrm{d} x
$$

So, we set

$$
\tilde{\theta}(x, t)=\theta(x, t)-\frac{1}{L} \int_{0}^{L} \theta_{0}(x) \mathrm{d} x
$$

to conclude that $(\varphi, \tilde{\psi}, \tilde{\theta})$ satisfies (6.1), with initial data

$$
\tilde{\theta}_{0}(x)=\theta_{0}(x)-\frac{1}{L} \int_{0}^{L} \theta_{0}(x) \mathrm{d} x
$$

instead of θ_{0}, and more importantly

$$
\int_{0}^{L} \tilde{\theta}(x, t) \mathrm{d} x=0
$$

which implies that Poincarés inequality is applicable for $\tilde{\theta}$. In the sequel, we work with $\tilde{\theta}$ instead of θ, but, for simplicity of notation, we use θ instead of $\tilde{\theta}$.

6.1.1 Well-Posedness

By combining arguments from the Subsection 2.2 above and Subsection 6.1 of [14], one can easily establish the well-posedness of (6.1). For this purpose, we define η as in Subsection 2.2 and set

$$
\mathcal{H}= \begin{cases}\tilde{\mathcal{H}} & \text { if } a \equiv 0 \\ \tilde{\mathcal{H}} \times L_{g} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

where L_{g} and its inner product are given in Subsection 2.2, and

$$
\tilde{\mathcal{H}}=H_{0}^{1}(] 0, L[) \times H_{*}^{1}(] 0, L[) \times L^{2}(] 0, L[) \times L_{*}^{2}(] 0, L[) \times L_{*}^{2}(] 0, L[)
$$

If $a \equiv 0$, the space \mathcal{H} is equipped with the inner product

$$
\begin{aligned}
\langle V, W\rangle= & k_{1} \int_{0}^{L}\left(\partial_{x} v_{1}+v_{2}\right)\left(\partial_{x} w_{1}+w_{2}\right) \mathrm{d} x \\
& +\int_{0}^{L}\left(k_{2} \partial_{x} v_{2} \partial_{x} w_{2}+\rho_{1} v_{3} w_{3}+\rho_{2} v_{4} w_{4}+\rho_{3} v_{5} w_{5}\right) \mathrm{d} x
\end{aligned}
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)^{T}, W=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)^{T} \in \mathcal{H}$, and if $\inf _{x \in[0, L]}\{a(x)\}>0$, we equip \mathcal{H} with the inner product

$$
\begin{aligned}
\langle V, W\rangle= & \left\langle v_{6}, w_{6}\right\rangle_{L_{g}}+k_{1} \int_{0}^{L}\left(\partial_{x} v_{1}+v_{2}\right)\left(\partial_{x} w_{1}+w_{2}\right) \mathrm{d} x \\
& +\int_{0}^{L}\left(-g_{0} a \partial_{x} v_{1} \partial_{x} w_{1}+k_{2} \partial_{x} v_{2} \partial_{x} w_{2}+\rho_{1} v_{3} w_{3}+\rho_{2} v_{4} w_{4}+\rho_{3} v_{5} w_{5}\right) \mathrm{d} x
\end{aligned}
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)^{T}, W=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)^{T} \in \mathcal{H}$. By letting

$$
U= \begin{cases}\left(\varphi, \psi, \varphi_{t}, \psi_{t}, \theta\right)^{T} & \text { if } a \equiv 0 \\ \left(\varphi, \psi, \varphi_{t}, \psi_{t}, \theta, \eta\right)^{T} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

and

$$
U_{0}= \begin{cases}\left(\varphi_{0}, \psi_{0}, \varphi_{1}, \psi_{1}, \theta_{0}\right)^{T} & \text { if } a \equiv 0 \\ \left(\varphi_{0}(., 0), \psi_{0}, \varphi_{1}, \psi_{1}, \theta_{0}, \eta_{0}\right)^{T} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

problem (6.1) can be written as

$$
\left\{\begin{array}{l}
U^{\prime}+A U=0 \quad \text { on } \mathbb{R}_{+} \tag{6.2}\\
U(0)=U_{0}
\end{array}\right.
$$

where, if $a \equiv 0$,

$$
A V=\left\{\begin{array}{l}
-v_{3} \\
-v_{4} \\
-\frac{k_{1}}{\rho_{1}} \partial_{x}\left(\partial_{x} v_{1}+v_{2}\right)-\frac{\gamma}{\rho_{1}} \partial_{x} v_{5} \\
-\frac{k_{2}}{\rho_{2}} \partial_{x x} v_{2}+\frac{k_{1}}{\rho_{1}}\left(\partial_{x} v_{1}+v_{2}\right) \\
-\frac{\kappa}{\rho_{3}} \partial_{x x} v_{5}+\frac{\gamma}{\rho_{3}} v_{3}
\end{array}\right.
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)^{T} \in D(A)$ and, if $\inf _{x \in[0, L]}\{a(x)\}>0$,

$$
A V=\left\{\begin{array}{l}
-v_{3} \\
-v_{4}, \\
-\frac{k_{1}}{\rho_{1}} \partial_{x}\left(\partial_{x} v_{1}+v_{2}\right)+\frac{g_{0}}{\rho_{1}} \partial_{x}\left(a \partial_{x} v_{1}\right)-\frac{1}{\rho_{1}} \int_{0}^{+\infty} g(s) \partial_{x}\left(a \partial_{x} v_{6}(s)\right) \mathrm{d} s-\frac{\gamma}{\rho_{1}} \partial_{x} v_{5} \\
-\frac{k_{2}}{\rho_{2}} \partial_{x x} v_{2}+\frac{k_{1}}{\rho_{1}}\left(\partial_{x} v_{1}+v_{2}\right) \\
-\frac{\kappa}{\rho_{3}} \partial_{x x} v_{5}+\frac{\gamma}{\rho_{3}} v_{3} \\
-v_{3}+\partial_{s} v_{5}
\end{array}\right.
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)^{T} \in D(A)$. By noting that (6.2) is linear and exploiting the semigroup theory [19, 32], one can easily prove the following:

Theorem 6.1 For any $n \in \mathbb{N}$ and $U_{0} \in D\left(A^{n}\right)$, problem (6.2) has a unique solution

$$
U \in \bigcap_{k=0}^{n} C^{n-k}\left(\mathbb{R}_{+} ; D\left(A^{k}\right)\right)
$$

6.1.2 Stability

Similarly to (P), we establish a general stability result for solutions of (6.1), under the hypotheses (H3) and (H4). we define the first-order energy of (6.1) by

$$
\begin{equation*}
E(t)=\frac{1}{2} g \circ \varphi_{x}+\frac{1}{2} \int_{0}^{L}\left(\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+k_{1}\left(\varphi_{x}+\psi\right)^{2}+k_{2} \psi_{x}^{2}-g_{0} a \varphi_{x}^{2}+\rho_{3} \theta^{2}\right) \mathrm{d} x .\right. \tag{6.3}
\end{equation*}
$$

Straightforward computations yield

$$
\begin{equation*}
E^{\prime}(t)=-\kappa \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x+\frac{1}{2} g^{\prime} \circ \varphi_{x} \leq 0 \tag{6.4}
\end{equation*}
$$

Now, we give our first stability result.
Theorem 6.2 Assume (1.1), (2.1), (2.3), (H3) and (H4) hold, and let $U_{0} \in H$ such that $a \equiv 0$ or (2.7) or (2.11) is satisfied. Then, the energy E satisfies (2.12) with $\hat{G}(t)=\int_{t}^{1} \frac{1}{G_{0}(s)} \mathrm{d} s$ and G_{0} is defined in (2.19).

In order to prove our main result, we adopt several functionals from section 2 and prove several lemmas.

Lemma 6.3 The functional

$$
I_{2}(t)=\int_{0}^{L}\left(\rho_{1} \varphi \varphi_{t}+\rho_{2} \psi \psi_{t}\right) \mathrm{d} x
$$

satisfies, for any $\delta>0$,

$$
\begin{align*}
I_{2}^{\prime}(t) \leq & \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}\right) \mathrm{d} x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-k_{2} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x \\
& +g_{0} \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x+\delta \int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x+c_{\delta} g \circ \varphi_{x}+c_{\delta} \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x \tag{6.5}
\end{align*}
$$

Proof By using equations (6.1), a simple integration leads to

$$
\begin{aligned}
I_{2}^{\prime}(t)= & \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}\right) \mathrm{d} x-k_{2} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x \\
- & \gamma \int_{0}^{L} \varphi \theta_{x} \mathrm{~d} x+\int_{0}^{L} \varphi_{x}\left(\int_{0}^{+\infty} a(x) g(s) \varphi_{x}(t) \mathrm{d} s\right) \mathrm{d} x \\
& +\int_{0}^{L} \varphi_{x}\left(\int_{0}^{+\infty} a g(s)\left(\varphi_{x}(t-s)-\varphi_{x}(t)\right) \mathrm{d} s\right) \mathrm{d} x
\end{aligned}
$$

Exploiting Young's and Poincaré's inequalities, (6.5) follows.
Lemma 6.4 The functional

$$
I_{3}(t)=-\rho_{2} \int_{0}^{L} \psi_{t}\left(\varphi_{x}+\psi\right) \mathrm{d} x-\frac{\rho_{1} k_{2}}{k_{1}} \int_{0}^{L} \varphi_{t} \psi_{x} \mathrm{~d} x+\frac{\rho_{2}}{k_{1}} \int_{0}^{L} a \psi_{t} \int_{0}^{+\infty} g(s) \varphi_{x}(t-s) \mathrm{d} s \mathrm{~d} x
$$

satisfies, for any $\delta, \delta_{1}>0$,

$$
\begin{align*}
I_{3}^{\prime}(t) \leq & k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-\rho_{2} \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x+g_{0}\left(\frac{\delta_{1}}{2}-1\right) \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x \\
& +\frac{g_{0} k_{0}\|a\|_{\infty}}{2 \delta_{1}} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x+\delta \int_{0}^{L}\left(\psi_{t}^{2}+\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x+c_{\delta} g \circ \varphi_{x}-c_{\delta} g^{\prime} \circ \varphi_{x} \\
& +c_{\delta} \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{6.6}
\end{align*}
$$

Proof Differentiation of I_{3}, using equations (6.1), gives

$$
\begin{aligned}
I_{3}^{\prime}(t)= & k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x-\rho_{2} \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x+\frac{k_{2}}{k_{1}} \gamma \int_{0}^{L} \psi_{x} \theta_{x} \mathrm{~d} x \\
& -\frac{\rho_{2}}{k_{1}} \int_{0}^{L} a \psi_{t} \int_{0}^{+\infty} g^{\prime}(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{L} a\left(\varphi_{x}+\psi\right) \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x \\
& -g_{0} \int_{0}^{L} a\left(\varphi_{x}+\psi\right) \varphi_{x} \mathrm{~d} x+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x
\end{aligned}
$$

By using Young's and Poincaré's inequalities and recalling (3.2), (3.5) and (3.6), estimate (6.6) follows.

By using w defined in (3.11) and repeating the proof of Lemma 3.7, we can easily establish this lemma.

Lemma 6.5 The functional

$$
I_{4}(t)=\rho_{1} \int_{0}^{L}\left(w \varphi_{t}+\varphi \varphi_{t}\right) \mathrm{d} x
$$

satisfies, for any $\delta, \epsilon, \epsilon^{\prime}>0$,

$$
\begin{align*}
I_{4}^{\prime}(t) \leq & \left(\rho_{1}+\frac{c}{\epsilon}\right) \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x+c \epsilon \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x \\
& +\left(g_{0}\|a\|_{\infty}\left(1+\frac{\epsilon}{2}\right)-k_{1}\right) \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x+\frac{g_{0} k_{0}\|a\|_{\infty}}{2 \epsilon^{\prime}} \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x \\
& +\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x+c_{\delta} g \circ \varphi_{x}+c_{\delta} \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x . \tag{6.7}
\end{align*}
$$

Proof Differentiation of I_{3}, using equations (6.1), leads to

$$
\begin{aligned}
I_{4}^{\prime}(t)= & \rho_{1} \int_{0}^{L} w_{t} \varphi_{t} \mathrm{~d} x+\rho_{1} \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x-k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x \\
& +g_{0} \int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x+g_{0} \int_{0}^{L} \varphi_{x} \psi \mathrm{~d} x-\gamma \int_{0}^{L} w \theta_{x} \mathrm{~d} x-\gamma \int_{0}^{L} \varphi \theta_{x} \mathrm{~d} x \\
& -\int_{0}^{L} a\left(\varphi_{x}+\psi\right) \int_{0}^{+\infty} g(s)\left(\varphi_{x}(t)-\varphi_{x}(t-s)\right) \mathrm{d} s \mathrm{~d} x
\end{aligned}
$$

Again, Young's and Poincaré's inequalities, (3.5), (3.12) and (3.13) give the desired result.
Finally, we need the following lemma:
Lemma 6.6 The functional

$$
I_{5}(t)=\rho_{1} \rho_{3} \int_{0}^{L} \varphi_{t}\left(\int_{0}^{x} \theta(y, t) \mathrm{d} y\right) \mathrm{d} x
$$

for any $\delta>0$,

$$
\begin{equation*}
I_{5}^{\prime}(t) \leq-\frac{\gamma \rho_{1}}{2} \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x+\delta \int_{0}^{L}\left(\varphi_{x}^{2}+\psi_{x}^{2}\right) \mathrm{d} x+c_{\delta} \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x+c_{\delta} g \circ \varphi_{x} \tag{6.8}
\end{equation*}
$$

Proof By using equations (6.1), a simple integration keeping in mind that θ stands for $\tilde{\theta}$, leads to

$$
\begin{aligned}
I_{5}^{\prime}(t)= & \rho_{3} \int_{0}^{L}\left(k_{1}\left(\varphi_{x}+\psi\right)_{x}+\gamma \theta_{x}-\int_{0}^{+\infty}\left(a(x) g(s) \varphi_{x}(t-s)\right)_{x} \mathrm{~d} s\right)\left(\int_{0}^{x} \theta(y, t) \mathrm{d} y\right) \mathrm{d} x \\
& +\rho_{1} \int_{0}^{L} \varphi_{t}\left(\int_{0}^{x}\left(\kappa \theta_{x x}-\gamma \varphi_{x t}\right) \mathrm{d} y\right) \mathrm{d} x \\
= & -\rho_{3} \int_{0}^{L}\left(k_{1}\left(\varphi_{x}+\psi\right)+\gamma \theta-\int_{0}^{+\infty} a g(s) \varphi_{x}(t-s) \mathrm{d} s\right) \theta \mathrm{d} x
\end{aligned}
$$

$$
\left.+\rho_{1} \int_{0}^{L} \varphi_{t}\left(\int_{0}^{x} \kappa \theta_{x}-\gamma \varphi_{t}\right) \mathrm{d} y\right) \mathrm{d} x
$$

By using Young's and Poincaré's inequalities and (3.5), (6.8) is established.
For N, N_{2}, N_{3}, N_{4}, we set

$$
I_{6}=N E+N_{2} I_{2}+I_{3}+N_{3} I_{4}+N_{4} I_{5}
$$

Direct calculations, using (6.4)-(6.8), yield

$$
\begin{align*}
I_{6}^{\prime}(t) \leq & -\left(N \kappa-c_{\delta}\left(1+N_{2}+N_{3}+N_{4}\right)\right) \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x+\left(\frac{N}{2}-c_{\delta}\right) g^{\prime} \circ \varphi_{x} \\
& +\left(1+N_{2}+N_{3}+N_{4}\right) c_{\delta} g \circ \varphi_{x}-\left(N_{4} \frac{\gamma \rho_{1}}{2}-N_{2} \rho_{1}-N_{3}\left(\rho_{1}+\frac{c}{\epsilon}\right)\right) \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x \\
& -\left(N_{2} k_{2}-\frac{g_{0} k_{0}\|a\|_{\infty}}{2 \delta_{1}}-\delta-N_{3}\left(\frac{g_{0} k_{0}\|a\|_{\infty}}{2 \epsilon^{\prime}}+\delta\right)-\delta N_{4}\right) \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x \\
& -\left(\rho_{2}\left(1-N_{2}\right)-\delta-c \epsilon^{\prime} N_{3}\right) \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x \\
& -\left(\left(N_{2}+N_{3}-1\right) k_{1}-N_{3} g_{0}\|a\|_{\infty}\left(1+\frac{\epsilon}{2}\right)\right) \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x \\
& +\left(N_{2}+\frac{\delta_{1}}{2}-1\right) g_{0} \int_{0}^{L} a \varphi_{x}^{2} \mathrm{~d} x+\delta\left(N_{2}+1+N_{3}+N_{4}\right) \int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x \\
& +\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x . \tag{6.9}
\end{align*}
$$

At this point, we distinguish two cases.
Case $1 a \equiv 0$: in this case (6.9), reduces to

$$
\begin{align*}
I_{6}^{\prime}(t) \leq & -\left(N \kappa-c_{\delta}\left(1+N_{2}+N_{3}+N_{4}\right)\right) \int_{0}^{L} \theta_{x}^{2} \mathrm{~d} x \\
& -\rho_{1}\left(N_{4} \frac{\gamma}{2}-\left(N_{2}+N_{3}\right)\right) \int_{0}^{L} \varphi_{t}^{2} \mathrm{~d} x-\left(N_{2} k_{2}-\delta\left(1+N_{3}+N_{4}\right)\right) \int_{0}^{L} \psi_{x}^{2} \mathrm{~d} x \\
& -\left(\rho_{2}\left(1-N_{2}\right)-\delta\right) \int_{0}^{L} \psi_{t}^{2} \mathrm{~d} x-\left(N_{2}+N_{3}-1\right) k_{1} \int_{0}^{L}\left(\varphi_{x}+\psi\right)^{2} \mathrm{~d} x \\
& +\delta\left(N_{2}+1+N_{3}+N_{4}\right) \int_{0}^{L} \varphi_{x}^{2} \mathrm{~d} x+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{6.10}
\end{align*}
$$

By taking $N_{3}=1,0<N_{2}<1, N_{4}>\frac{2\left(N_{2}+N_{3}\right)}{\gamma}, \delta$ small enough, and N large enough, (6.10) becomes

$$
\begin{equation*}
I_{6}^{\prime}(t) \leq-c E(t)+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x \tag{6.11}
\end{equation*}
$$

where c is a positive constant.
Case $2 \inf _{x \in[0, L]}\{a(x)\}>0$: with the same choice of $\epsilon^{\prime}, \delta_{1}, N_{3}, N_{2}$ and ϵ as in section 3 and

$$
N_{4}>\frac{2\left(N_{2} \rho_{1}+N_{3}\left(\rho_{1}+\frac{c_{0}}{\epsilon}\right)\right)}{\gamma \rho_{1}}
$$

δ small enough, and N large enough, (6.9) becomes

$$
\begin{equation*}
I_{6}^{\prime}(t) \leq-c E(t)+\left(\frac{\rho_{1} k_{2}}{k_{1}}-\rho_{2}\right) \int_{0}^{L} \varphi_{x t} \psi_{t} \mathrm{~d} x+c g \circ \varphi_{x} \tag{6.12}
\end{equation*}
$$

We then proceed, as in Section 3, to complete the proof.
Remark 6.1 When $a \equiv 0$ or g satisfies (2.7), we obtain the exponential decay. That is,

$$
E(t) \leq c_{1}^{\prime \prime} e^{-c_{2}^{\prime \prime} t},
$$

for two positive constants $c_{1}^{\prime \prime}$ and $c_{2}^{\prime \prime}$.
When (1.1) does not hold, we have the following:
Theorem 6.3 Assume (2.1), (2.3), (H3), and (H4) hold and let $n \in \mathbb{N}^{*}$ and $U_{0} \in D\left(A^{n}\right)$ such that $a \equiv 0$ or (2.7) or (2.20) is satisfied. Then, the energy E satisfies (2.21).

Proof The proof goes exactly like that of Theorem 2.3.

6.2 Timoshenko-heat Type III

In this subsection, we consider a coupled Timoshenko-thermoelasticity system of type III on $] 0, L[$ in the presence of an infinite memory acting on the first equation. That is,

$$
\left\{\begin{array}{l}
\rho_{1} \varphi_{t t}-k_{1}\left(\varphi_{x}+\psi\right)_{x}+\gamma \theta_{x}+\int_{0}^{+\infty}\left(a g(s) \varphi_{x}(t-s)\right)_{x} \mathrm{~d} s=0 \tag{6.13}\\
\rho_{2} \psi_{t t}-k_{2} \psi_{x x}+k_{1}\left(\varphi_{x}+\psi\right)=0 \\
\rho_{3} \theta_{t t}-\kappa \theta_{x x}+\gamma \varphi_{x t}-\delta \theta_{x x t}=0 \\
\varphi(0, t)=\varphi(L, t)=\psi_{x}(0, t)=\psi_{x}(L, t)=\theta_{x}(0, t)=\theta_{x}(L, t)=0 \\
\varphi(x,-t)=\varphi_{0}(x, t), \quad \varphi_{t}(x, 0)=\varphi_{1}(x) \\
\psi(x, 0)=\psi_{0}(x), \quad \psi_{t}(x, 0)=\psi_{1}(x) \\
\theta(x, 0)=\theta_{0}(x), \quad \theta_{t}(x, 0)=\theta_{1}(x)
\end{array}\right.
$$

where φ, ψ, and θ are functions of (x, t) and denote the transverse displacement of the beam, the rotation angle of the filament, and the temperature displacement, respectively; $\rho_{i}, k_{i}, \gamma, \kappa, \delta, L$ are positive constants and a and g are as in Section 2. We only give brief comments and state the main results and leave the proofs for the reader since they go exactly like the ones done in Subsection 6.1.

From the third equation in (6.13) and the boundary conditions, we easily verify that

$$
\partial_{t t} \int_{0}^{L} \theta(x, t) \mathrm{d} x=0 .
$$

By solving this ordinary differential equation and using the initial data of θ, we get

$$
\int_{0}^{L} \theta(x, t) \mathrm{d} x=t \int_{0}^{L} \theta_{1}(x) \mathrm{d} x+\int_{0}^{L} \theta_{0}(x) \mathrm{d} x .
$$

So, we set

$$
\tilde{\theta}(x, t)=\theta(x, t)-\frac{t}{L} \int_{0}^{L} \theta_{1}(x) \mathrm{d} x-\frac{1}{L} \int_{0}^{L} \theta_{0}(x) \mathrm{d} x
$$

to conclude that $(\varphi, \tilde{\psi}, \tilde{\theta})$ satisfies (6.13), with initial data

$$
\tilde{\theta}_{0}(x)=\theta_{0}(x)-\frac{1}{L} \int_{0}^{L} \theta_{0}(x) \mathrm{d} x
$$

and

$$
\tilde{\theta}_{1}(x)=\theta_{1}(x)-\frac{1}{L} \int_{0}^{L} \theta_{1}(x) \mathrm{d} x
$$

instead of θ_{0} and θ_{1}, respectively, and more importantly

$$
\int_{0}^{L} \tilde{\theta}(x, t) \mathrm{d} x=0
$$

which implies that Poincarés inequality is applicable for $\tilde{\theta}$. In the sequel, we work with $\tilde{\theta}$ instead of θ, but, for simplicity of notation, we use θ instead of $\tilde{\theta}$.

6.2.1 Well-Posedness

By combining arguments from the Subsection 2.2 above and subsection 6.1 of [14], one can easily establish the well-posedness of (6.13). For this purpose, we define η as in subsection 2.2 and set

$$
\mathcal{H}= \begin{cases}\tilde{\mathcal{H}} & \text { if } a \equiv 0 \\ \tilde{\mathcal{H}} \times L_{g} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

where L_{g} and its inner product are given in Subsection 2.2, and

$$
\tilde{\mathcal{H}}=H_{0}^{1}(] 0, L[) \times H_{*}^{1}(] 0, L[) \times H_{*}^{1}(] 0, L[) \times L^{2}(] 0, L[) \times L_{*}^{2}(] 0, L[) \times L_{*}^{2}(] 0, L[)
$$

If $a \equiv 0$, the space \mathcal{H} is equipped with the inner product

$$
\begin{aligned}
\langle V, W\rangle= & \int_{0}^{L}\left(k_{1}\left(\partial_{x} v_{1}+v_{2}\right)\left(\partial_{x} w_{1}+w_{2}\right)+k_{2} \partial_{x} v_{2} \partial_{x} w_{2}\right) \mathrm{d} x \\
& +\int_{0}^{L}\left(\kappa \partial_{x} v_{3} \partial_{x} w_{3}+\rho_{1} v_{4} w_{4}+\rho_{2} v_{5} w_{5}+\rho_{3} v_{6} w_{6}\right) \mathrm{d} x
\end{aligned}
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)^{T}, W=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)^{T} \in \mathcal{H}$; and if $\inf _{x \in[0, L]}\{a(x)\}>0$, we equip \mathcal{H} with the inner product

$$
\begin{aligned}
\langle V, W\rangle= & \left\langle v_{7}, w_{7}\right\rangle_{L_{g}}+\int_{0}^{L}\left(k_{1}\left(\partial_{x} v_{1}+v_{2}\right)\left(\partial_{x} w_{1}+w_{2}\right)+k_{2} \partial_{x} v_{2} \partial_{x} w_{2}\right) \mathrm{d} x \\
& +\int_{0}^{L}\left(-g_{0} a \partial_{x} v_{1} \partial_{x} w_{1}+\kappa \partial_{x} v_{3} \partial_{x} w_{3}+\rho_{1} v_{4} w_{4}+\rho_{2} v_{5} w_{5}+\rho_{3} v_{6} w_{6}\right) \mathrm{d} x
\end{aligned}
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right)^{T}, W=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right)^{T} \in \mathcal{H}$. By letting

$$
U= \begin{cases}\left(\varphi, \psi, \theta, \varphi_{t}, \psi_{t}, \theta_{t}\right)^{T} & \text { if } a \equiv 0 \\ \left(\varphi, \psi, \theta, \varphi_{t}, \psi_{t}, \theta_{t}, \eta\right)^{T} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

and

$$
U_{0}= \begin{cases}\left(\varphi_{0}, \psi_{0}, \theta_{0}, \varphi_{1}, \psi_{1}, \theta_{1}\right)^{T} & \text { if } a \equiv 0 \\ \left(\varphi_{0}(., 0), \psi_{0}, \theta_{0}, \varphi_{1}, \psi_{1}, \theta_{1}, \eta_{0}\right)^{T} & \text { if } \inf _{x \in[0, L]}\{a(x)\}>0\end{cases}
$$

problem (6.13) can be written as

$$
\left\{\begin{array}{l}
U^{\prime}+A U=0, \quad \text { in } \mathbb{R}_{+} \tag{6.14}\\
U(0)=U_{0}
\end{array}\right.
$$

where, if $a \equiv 0$,

$$
A V=\left\{\begin{array}{l}
-v_{4}, \\
-v_{5} \\
-v_{6}, \\
-\frac{k_{1}}{\rho_{1}} \partial_{x}\left(\partial_{x} v_{1}+v_{2}\right)+\frac{\gamma}{\rho_{1}} \partial_{x} v_{3}, \\
-\frac{k_{2}}{\rho_{2}} \partial_{x x} v_{2}+\frac{k_{1}}{\rho_{1}}\left(\partial_{x} v_{1}+v_{2}\right) \\
-\frac{\kappa}{\rho_{3}} \partial_{x x} v_{3}+\frac{\gamma}{\rho_{3}} \partial_{x} v_{4}-\frac{\delta}{\rho_{3}} \partial_{x x} v_{6}
\end{array}\right.
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)^{T} \in D(A)$ and, if $\inf _{x \in[0, L]}\{a(x)\}>0$,

$$
A V=\left\{\begin{array}{l}
-v_{4}, \\
-v_{5}, \\
-v_{6}, \\
-\frac{k_{1}}{\rho_{1}} \partial_{x}\left(\partial_{x} v_{1}+v_{2}\right)+\frac{g_{0}}{\rho_{1}} \partial_{x}\left(a \partial_{x} v_{1}\right)-\frac{1}{\rho_{1}} \int_{0}^{+\infty} g(s) \partial_{x}\left(a \partial_{x} v_{6}(s)\right) \mathrm{d} s+\frac{\gamma}{\rho_{1}} \partial_{x} v_{3}, \\
-\frac{k_{2}}{\rho_{2}} \partial_{x x} v_{2}+\frac{k_{1}}{\rho_{1}}\left(\partial_{x} v_{1}+v_{2}\right), \\
-\frac{\kappa}{\rho_{3}} \partial_{x x} v_{3}+\frac{\gamma}{\rho_{3}} \partial_{x} v_{4}-\frac{\delta}{\rho_{3}} \partial_{x x} v_{6}, \\
-v_{4}+\partial_{s} v_{7},
\end{array}\right.
$$

for any $V=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right)^{T} \in D(A)$. By noting that (6.14) is linear and exploiting the semigroup theory [19, 32], one can easily show that Theorem 6.1 also holds for (6.14). Hence, the well-posedness for (6.13) is established.

6.2.2 Stability

Similarly to (6.1), we establish a general stability result for solutions of (6.13), under the hypotheses (H3) and (H4). We define the first-order energy of (6.13) by

$$
\begin{equation*}
E(t)=\frac{1}{2} g \circ \varphi_{x}+\frac{1}{2} \int_{0}^{L}\left(\rho_{1} \varphi_{t}^{2}+\rho_{2} \psi_{t}^{2}+k_{1}\left(\varphi_{x}+\psi\right)^{2}+k_{2} \psi_{x}^{2}+\rho_{3} \theta_{t}^{2}+\kappa \theta_{x}^{2}-g_{0} a \varphi_{x}^{2}\right) \mathrm{d} x \tag{6.15}
\end{equation*}
$$

Straightforward computations yield

$$
\begin{equation*}
E^{\prime}(t)=-\kappa \int_{0}^{1} \theta_{x t}^{2} \mathrm{~d} x+\frac{1}{2} g^{\prime} \circ \varphi_{x} \leq 0 \tag{6.16}
\end{equation*}
$$

Remark 6.3 By adopting the same functionals used in the subsection 6.1 and repeating the same steps, one can easily show that Theorems 6.2 and 6.3 remain valid for problem (6.13). In particular, we obtain the exponential stability if $a \equiv 0$ or g decays exponentially.

Acknowledgements This work has been funded by KFUPM under the scientific project IN141015. The authors would like to express their sincere thanks to KFUPM for its continuous support.

References

[1] Alabau-Boussouira F. Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. Nonlinear Diff Equa Appl, 2007, 14: 643-669
[2] Almeida Júnior D S, Santos M L, Muñoz Rivera J E. Stability to weakly dissipative Timoshenko systems. Math Meth Appl Sci, 2013, 36: 1965-1976
[3] Almeida Júnior D S, Santos M L, Muñoz Rivera J E. Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z Angew Math Phys, 2014, 65(6): 1233-1249
[4] Ammar-Khodja F, Benabdallah A, Muñoz Rivera J E, Racke R. Energy decay for Timoshenko systems of memory type. J Diff Equa, 2003, 194: 82-115
[5] Cavalcanti M M, Oquendo H P. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control and Optim, 2003, 42: 1310-1324
[6] Dafermos C M. Asymptotic stability in viscoelasticity. Arch Rational Mech Anal, 1970, 37: 297-308
[7] Fernández Sare H D, Muñoz Rivera J E. Stability of Timoshenko systems with past history. J Math Anal Appl, 2008, 339: 482-502
[8] Fernández Sare H D, Racke R. On the stability of damped Timoshenko systems: Cattaneo versus Fourier's law. Arch Rational Mech Anal, 2009, 194: 221-251
[9] Guesmia A. Asymptotic stability of abstract dissipative systems with infinite memory. J Math Anal Appl, 2011, 382: 748-760
[10] Guesmia A. On the stabilization for Timoshenko system with past history and frictional damping controls. Palestine J Math, 2013, 2: 187-214
[11] Guesmia A. Asymptotic behavior for coupled abstract evolution equations with one infinite memory. Appl Anal, 2015, 94(1): 184-217
[12] Guesmia A, Messaoudi S A. On the control of solutions of a viscoelastic equation. Appl Math Comput, 2008, 206: 589-597
[13] Guesmia A, Messaoudi S A. General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math Meth Appl Sci, 2009, 32: 2102-2122
[14] Guesmia A, Messaoudi S A, Soufyane A. Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-Heat systems. Elec J Diff Equa, 2012, 2012: 1-45
[15] Guesmia A, Messaoudi S, Wehbe A. Uniform decay in mildly damped Timoshenko systems with non-equal wave speed propagation. Dyn Syst Appl, 2012, 21: 133-146
[16] Guesmia A, Messaoudi S A. On the stabilization of Timoshenko systems with memory and different speeds of wave propagation. Appl Math Comput, 2013, 219: 9424-9437
[17] Guesmia A, Messaoudi S A. A general stability result in a Timoshenko system with infinite memory: A new approach. Math Meth Appl Sci, 2014, 37: 384-392
[18] Kim J U, Renardy Y. Boundary control of the Timoshenko beam. SIAM J Control Opt, 1987, 25: 1417-1429
[19] Komornik V. Exact Controllability and Stabilization. The Multiplier Method. Paris: Masson-John Wiley, 1994
[20] Lasiecka I, Tataru D. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ Integral Equ, 1993, 6: 507-533
[21] Lasiecka I, Toundykov D. Regularity of higher energies of wave equation with nonlinear localized damping and source terms. Nonl Anal: TMA, 2008, 69: 898-910
[22] Liu W J, Zuazua E. Decay rates for dissipative wave equations. Ricerche di Matematica, 1999, 48: 61-75
[23] Messaoudi S A, Mustafa M I. On the internal and boundary stabilization of Timoshenko beams. Nonlinear Diff Equa Appl, 2008, 15: 655-671
[24] Messaoudi S A, Mustafa M I. On the stabilization of the Timoshenko system by a weak nonlinear dissipation. Math Meth Appl Sci, 2009, 32: 454-469
[25] Messaoudi S A, Mustafa M I. A stability result in a memory-type Timoshenko system. Dyn Syst Appl, 2009, 18: 457-468
[26] Messaoudi S A, Michael P, Said-Houari B. Nonlinear Damped Timoshenko systems with second: Global existence and exponential stability. Math Meth Appl Sci, 2009, 32: 505-534
[27] Messaoudi S A, Said-Houari Belkacem. Uniform decay in a Timoshenko-type system with past history. J Math Anal Appl, 2009, 360: 459-475
[28] Muñoz Rivera J E, Racke R. Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability. J Math Anal Appl, 2002, 276: 248-278
[29] Muñoz Rivera J E, Racke R. Global stability for damped Timoshenko systems. Disc Contin Dyn Syst, 2003, 9: 1625-1639
[30] Muñoz Rivera J E, Racke R. Timoshenko systems with indefinite damping. J Math Anal Appl, 2008, 341: 1068-1083
[31] Mustafa M I, Messaoudi S A. General energy decay rates for a weakly damped Timoshenko system. Dyn Control Sys, 2010, 16: 211-226
[32] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983
[33] Racke R, Said-Houari B. Global existence and decay property of the Timoshenko system in thermoelasticity with second sound. Nonl Anal, 2012, 75: 4957-4973
[34] Raposo C A, Ferreira J, Santos M L, Castro N N O. Exponential stability for the Timoshenko system with two week dampings. Appl Math Lett, 2005, 18: 535-541
[35] Said-Houari B, Kasimov A. Decay property of Timoshenko system in thermoelasticity. Math Meth Appl Sci, 2012, 35: 314-333
[36] Said-Houari B, Kasimov A. Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same. J Diff Equ, 2013, 255: 611-632
[37] Santos M L, Almeida Júnior D S, Muñoz Rivera J E. The stability number of the Timoshenko system with second sound. J Diff Equ, 2012, 253: 2715-2733
[38] Soufyane A, Wehbe A. Uniform stabilization for the Timoshenko beam by a locally distributed damping. Elec J Diff Equ, 2003, 29: 1-14
[39] Timoshenko S. On the correction for shear of the differential equation for transverse vibrations of prismaticbars. Philisophical Magazine, 1921, 41: 744-746

[^0]: ＊Received September 9，2014；revised February 26， 2015.
 ${ }^{\dagger}$ Corresponding author：Salim MESSAOUDI．

