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Abstract

In this paper, we consider a linear one-dimensional thermoelastic Bresse system with
second sound consisting of three hyperbolic equations and two parabolic equations
coupled in a certain manner under mixed homogeneous Dirichlet—-Neumann boundary
conditions, where the heat conduction is given by Cattaneo’s law. Only the longitu-
dinal displacement is damped via the dissipation from the two parabolic equations,
and the vertical displacement and shear angle displacement are free. We prove the
well-posedness of the system and some exponential, non exponential and polynomial
stability results depending on the coefficients of the equations and the smoothness of
initial data. Our method of proof is based on the semigroup theory and a combination
of the energy method and the frequency domain approach.
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1 Introduction

In this paper, we consider the following linear Bresse system with second sound:

P1@ —k (px + ¥ +1w), —lko (wy —lp) =0 in (0, 1) x (0, 00),
P2V — bYxx +k(ox + ¥ +1w) =0 in (0, 1) x (0, 00),
p1wy — ko (wy — 1), + 1k (px + ¢ +1w) +80x =0 in (0, 1) x (0, 00),
030 + qx + 8wy, =0 in (0, 1) x (0, 00),
tq: +Bg+6,=0 in (0, 1) x (0, c0)
(1.1)

with the initial data

@ x,0) =90 (x), ¢ (x,0) =91 (x) in (0,1),
¥ (x,0) =90 (), ¥ (x,0) =91 (x) 1in (0, 1),

w (. 0) = wo (x), w (x.0) = wi (¥) in (O, 1), 42
0 (x,0) =6 (x), g (x,0) =qo(x) in (0, 1)
and mixed homogeneous Dirichlet—-Neumann boundary conditions
epx(L,y=9y A, 0)=w(l,1)=q,1)=0 in (0,00), '

where p1, p2, p3, b, k, ko, T, B, § and [ are positive constants, the initial data ¢,
©1, Yo, ¥1, wo, wi, By and go belong to a suitable Hilbert space, and the unknowns of
(1.1)—(1.3) are the following variables:

(9, ¥, w,0,9) : (0, 1) x (0, 00) — R,
The Bresse system [3] is consisting of three coupled hyperbolic equations

P19t — k(o + ¥ +1w), —lko (wy —lp) = F1 in (0, L) x (0, 00),
P2 — by +k(px + ¥ +1lw) = F in (0, L) x (0, 00),
prwy — ko (wy —1@), +1k(px +¥ +1w)=F3 in (0, L) x (0,00),

(1.4)

where L > 0,
Fi: (0,L) x (0,00) > R

are the external forces (controllers) and w, ¢ and i represent, respectively, the longi-
tudinal, vertical and shear angle displacements. For more details, we refer to [15] and
[16].

For the last few years, many researchers studied the well-posedness and the stability
of Bresse systems (1.4). Under different types of controls F;, various stability results
have been obtained depending on the nature and the number of controls, the regularity
of initial data and the following parameters:
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b ko
S1=—, 8§ =— and §3 = —; (1.5)
o1 02 o1

for this purpose, we refer the reader to [1,2,4,7,9,21,24-26] and [27] in case of (local
or global, linear or nonlinear) frictional damping, and [5,11,12] and [10] in case of
memories. In some papers, it was proved that, when each equation of (1.4) is directly
damped; that is

FiFF3 #0,

the stability of (1.4) holds regardless to s1, s; and s3. However, when at least one Eq.
in (1.4) is free; that is

FiFaF3 =0 and (F1, F2, F3) #(0,0,0),

system (1.4) is still stable depending on the relation between the coefficients sy, 52
and s3 like:

S =Sj, i,j (S {1,2, 3}.
When
(F1, F2, F3) = (0,0, 0),
system (1.4) is conservative, which means that the energy is conserved and equal to
the energy of initial data along the trajectory of solutions.
When the Bresse system is indirectly damped via the coupling (in a certain manner)

with other equations, we mention here the work [18], where the authors studied the
stability of a thermoelastic Bresse system consisting of the following equations:

P19t — k (@x + 9 +1w), — lko (wy —Ilp) +180 =0 in (0, L) x (0, 00),

PV — by +k(px + ¥ +1w) +8g, =0 in (0, L) x (0, 00),
p1we — ko (wy — lg), + 1k (px + ¢ +1w) + 380, = 0in (0, L) x (0, 00),
P30 — Oxx + B (wx —1p), =0 in (0, L) x (0, 00),
03qr — Gxx + B =0 in (0, L) x (0, 00)
(1.6)

with homogeneous Dirichlet—-Neumann—Neumann boundary conditions

p(x.1) =Y (x, 1) =wx(x, 1) =0(x, 1) =q(x,1) =0, x=0, L, 1 €(0,00)
1.7
or homogeneous Dirichlet—Dirichlet-Dirichlet boundary conditions

o, t) =y, t)=wkx,t) =0(x,t) =qx,t) =0, x=0,L,1te(0,00).
(1.8)
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They proved that the norm of solutions in the energy space decays exponentially to
zero at infinity if

S1 = §) = 3. (1.9)

Otherwise, the norm of solutions decays polynomially to zero with rates depending
1
on the regularity of the initial data. For the classical solutions, these rates were t~31¢

. Loe. . . ..
in case (1.7), and ¢ 8¢ in case (1.8), where € is an arbitrary positive constant.

In [8], the authors considered the following coupled Bresse system with only one
heat equation:

P1@ —k(ox + ¥ +1w), —lko (wy —Ilp) =0 in (0, L) x (0, 00),
2V — by +k(ox + ¥ +1w) + 86, =0 in (0, L) x (0, 00),
p1wy — ko (wy — @)y + 1k (pxr + ¥ +1w) =0 in (0, L) x (0, 00),
030 — Oxx + (BY)x =0 in (0, L) x (0, 00)
(1.10)

with (1.7) or (1.8). They proved that the exponential stability of (1.10) is equivalent
to (1.9). On the other hand, when (1.9) is not satisfied, the obtained decay rate in [§]
for classical solutions is t_%“ in general, and t_%Jre when s1 # s> and 51 = s3. The
results of [8] were extended in [20] to the case where the thermal dissipation is locally
distributed; that is § and 8 are non negative functions on x such that theirs minimums
on some open interval I C (0, L) are positive. Moreover, when (1.9) is not satisfied,
the authors of [20] improved the polynomial stability estimates of [8] by getting the
decay rates =% and 1~ instead of £~67€ and t_%“, respectively.
In [14], the authors considered the following coupled system:

P19 —k (0x + ¥ +1w), —lko (wy —Ilp) =0 in (0, 1) x (0, 00),

2V — by + k(@ +¥ +1w) + 60, =0 in (0,1) x (0, 00),

p1wy — ko (wy — @)y + 1k (px + ¥ +1w) =0 in (0,1) x (0, 00),

030 +qx + Yy =0 in (0, 1) x (0, 00),

tq: + Bg +6,=0 in (0, 1) x (0, 00) .
(1.11)

They proved that (1.11) is exponentially stable if

k 82
51 = 3, (ﬂ_&) 1_rp3 = and [ small,
k b Pl b

and (1.11) is not exponentially stable if

P P tkp3 782
PL_ P2y (- =
Ao (k b)( m)#b
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Moreover, when

k 82
S1 =583, (ﬂ — &> 1-— AL * o and [ small,
k b o1 b

the polynomial stability for (1.11) was proved in [14] with the decay rate 3.

In (1.6) and (1.10), the heat equations are governed by Fourier’s law of heat con-
duction. However, the heat conduction in (1.1) and (1.11) is given by Cattaneo’s law
(for more details, see [14]).

In [6], the author considered the following coupled system:

P19 — k (ox + ¥ +1w), — lko (wy —lp) =0,
o2V — by +k (ox + ¥ +1w) + 86, =0,
p1we — ko (wy —lg) + 1k (px + ¢ +1w) =0,
P30 — ki f()oog(s)gxx(t —s)ds +y¥x =0,

(1.12)

with homogeneous Dirichlet—-Neumann boundary conditions
px, 1) =Yx(x, 1) =wx(x, 1) =0(x,1) =0, x=0,L, 1€ (0,00) (1.13)

He proved that (1.12) is exponentially stable if and if

o1 1 p1 P2 1 piy?
k = ko, — = e —— =0. 1.14
0 (pzk g(0)k1) (F=5) s0m miz (19

On the other hand if (1.14) is not satisfied no decay rates was derived in [6]. We need
to mention here, that the coupling (through the second equation) and the boundary
conditions considered in [6] are not the same as the one considered in this paper.
Notice that, when the three hyperbolic equations in Bresse system are (all or some of
them) directly damped; that is

(F1, F2, F3) #(0,0,0),

system (1.4) is dissipative. However, systems (1.1), (1.6), (1.10) and (1.11) are con-
sisting of coupled conservative three hyperbolic equations with one or two parabolic
equations, so the stability of the overall system is preserved thanks to the dissipation
generated by the parabolic equations. On the other hand, we remark that in (1.6), the
second and third hyperbolic equations are indirectly damped by the coupling with
the heat equations, and the first hyperbolic one is only weakly damped through the
coupling with the second and the third hyperbolic equations. On the other hand, in
(1.10) and (1.11), only the second hyperbolic equation is effectively damped by the
dissipation coming from the parabolic equations.

In our case (1.1), only the third hyperbolic equation is indirectly damped through
the coupling with the heat equations. Our objective, first is to consider (1.1)—(1.3), we
prove the well-posedness and we establish some decay rates for the solutions (like:
exponential stability, non exponential stability and polynomial stability) depending
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on the relationship between the coefficients of (1.1) and the smoothness of the initial
data.

Without loss of generality, we consider the domain (0, 1) instead of (0, L). The
proof of the well-posedness is based on the semigroup theory. However, the stability
results are proved using the energy method combining with the frequency domain
approach.

The paper is organized as follows. In Sect. 2, we prove the well-posedness of (1.1)—
(1.3). In Sects. 3 and 4, we show, respectively, our non exponential and exponential
stability results for (1.1)—(1.3). The proof of our polynomial decay for (1.1)—(1.3) is
proved in Sect. 5.

2 Well-posedness of (1.1)-(1.3)
In this section, we prove the existence, uniqueness and smoothness of solutions for

(1.1)—(1.3) using the semigroup theory. In order to transform (1.1)—(1.3) into a first
order evolution system on a suitable Hilbert space, we introduce the vector functions

_ T
® = (fﬂ, o, ¥, ¥, w, w, 0, 61) and ®¢ = (o, ¢1, Yo, V1, wo, wi, 6o, qo)”

where ¢ = ¢, ¥ = y; and b = w;. System (1.1) with initial data (1.2) can be written
as

®, = AP in (0, 00),
{ P (0) = Py, @D
where A is a linear operator defined by
7
k lko
—(px+ ¥ +lw), + — (we —lyp)
o1 . P
b k
wax - E((px_i_l/f"f'lw)
Ad = T . (2.2)
ko lk 8
— (wy —lp)y — — (px + ¥ +1w) — —b;
L1 1 P1
1 5 .
_qu - wa
B 1
——q — _ex
T T
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Now, we introduce the following spaces:

Hy 0, 1) ={f€H"©,D:f(0)=0},

H! 0. D)={feH' 0 1:f(1)=0},
H2(0,1) = H>(0, ) N H! (0, 1),

H2(0,1)=H*(©,1)n H!©0,1)

and the energy space is given by
1 2 1 2 1 2 3
H=H'(0,1)x L*(0, 1) x H' (0, 1) x L2 (0,1) x H' (0, 1) x (L (0,1))

equipped with the inner product, for ®; = (¢;, ¢, ¥j, ¥j, wj, w;, 05, ¢;)7 €
H5 J = 1527

(D1, P2)y = k ((@1x + Y1 1 w1), (pox + V2 +1w2))p200.1) + b (Yix, Yaxd 2001y
+ko (wix —lg1), (wax —192)) 20,1y + P1{P1, P2)12(0,1)
+ 2 (¥, &2)1}(0,1) + p1 (W1, w2) 12001y + 3 (01, 02) 20,1y
+7(q1,92)1200,1) »

and the corresponding norm in the energy space will be given by

IDI13, =k llgx + ¥ +1wlFag ) +b 1l gy + ko llwx =l
+01181720.1) + 200 15201 + 01 1017200, 1) + 03 1011721,
+ 907201, -

The domain of the operator A will be
DA) ={@®eH| AP e H, ¢x (1) = ¥x (0) = wy (0) = 0}.

Based on the definition of A and H, one can see that

PeH|pe HXO,1); ¢, we H2(0,1); ¢, 0 € H! (0, 1);
U, W, g€ HN0,1); ¢ (1) = ¢, (0) = wy (0) =0

D(A) =

Since the homogeneous Dirichlet—-Neumann boundary conditions in (1.3) are included

in the definition of H, (0, 1), H} (0, 1) and D (A), it follows that, if ® € D (A) and
satisfies (2.1), then (1.1)—(1.3) holds.
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It is clear from the homogeneous Dirichlet boundary conditions in H! (0, 1) and

H/} (0, 1) that, if (¢, ¥, w) € H} (0, 1) x H} (0, 1) x H} (0, 1) satisfying
kll (@ + ¥ + 1w 701y + D 1Vl 1 + ko l(we = 10) 1724, =0,
then
Y =0, ¢=—csin(lx) and w = ccos (Ix),

where c is a constant such thatc =0 or/ = % + m, for some m € N. Furthermore,
wegetp = =w =0if

| £ % +mx, VmeN. 2.3)

Here and after we assume that (2.3) is satisfied. Thus, H is a Hilbert space and D (A)
is dense in H. If the domain (0, 1) is replaced by (0, L), then (2.3) becomes

lL#%—i—mn, Vm € N.

Now, we prove that the operator A generates a C semigroup of contractions on
‘H. For this purpose, it is sufficient to prove that A is maximal monotone. A direct
calculation gives

(AD, D)3y = =B llgl 721 1) <O (2.4)
Hence, A is dissipative in . On the other hand, it is easy to show that 0 € p (A);
that is, for any F = (f1,..., fs)! € H, there exists Z = (z1,...,28)] € D (A)
satisfying
AZ =F. 2.5)
Indeed, from the 1st, 3rd and 5th Egs. in (2.5), we get

2=/f1, z4=f;3 and z¢ = f5, (2.6)

and then

22 € H(0,1) and z4, z6 € H! (0,1). (2.7)

Substituting z, into the 7th Eq. in (2.5), we conclude from the last two equations in
(2.5) that

27y = —Pzg — 1 fy and zgy = =0 f5x — p3f7. (2.8)
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By a direct integration, we see that (2.8) has a unique solution satisfying

z7€ H(0,1) and zzg € H!(0,1). (2.9)
Finally, the second, fourth and sixth equations in (2.5) become

k (zix + 23 +1z5), +lko (z5x — lz1) = p1 f2,
bzixx —k (z1x + 23 +125) = p2 fa, (2.10)
ko (zsx — 1z1)y — lk (z1x + 23 + 1 25) = 8z7¢ + o1 f6-

To prove that (2.10) admits a solution satisfying
2t € H (0D, z3,zs€ HI(0.1) and z1:(1) = 23:(0) = z5¢(0) = 0,

(2.11)
we define the following bilinear form:

G1 ((v1, v2, v3), (W1, w2, w3)) =k (Viy + V2 + 13, Wiy + w2 +1W3) 20 1)
+ b (vax, wax) 20,1
+ ko (v3x — lvi, w3y — lw1>L2(0,1) )

Y (v, v2, v3)T ., (wi, wa, w3)" € Ho x Ho,
and the following linear form:

G2 (v1, v2, v3) = (v1, P1f2)2(0,1) + V2, L2S4) 20,1y
+ (v3, 8275 + p1fe) 20y - VY (V1. v2, v3)" € Ho,

where

Ho=H!(0,1)x H' (0,1)x H! (0, 1)
Thus, the variational formulation of (2.10) is given by

G1((z1, 23, 25)» (Wi, w2, w3)) = Go (w1, w2, w3), ¥ (wi, wa, w3)’ € Ho.
(2.12)
From Lax—Milgram theorem, it follows that (2.12) has a unique solution

(z1, 23, 25) € Ho.

Therefore, using classical elliptic regularity arguments, we conclude that (z1, z3, z5)
solves (2.10) and satisfies the regularity and boundary conditions (2.11). This proves
that (2.5) has a unique solution Z € D (A). By the resolvent identity, we have Al —
A is surjective, for any A > 0 (see [19]), where I denotes the identity operator.
Consequently, the Lumer-Phillips theorem implies that A is the infinitesimal generator
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of a linear Cp semigroup of contractions on H. Thus, the well-posedness result for
(2.1) is stated in the following (see [22]):

Theorem 2.1 Assume that (2.3) holds. For any p € N and ®y € D(AP), system (2.1)
admits a unique solution

® e nf_,Cr (Rys D (A7), (2.13)

where D (A7) is endowed by the graph norm Il p(aiy = i:o IA" |5

In the next three sections, we will show some exponential, non exponential and
polynomial stability results for (2.1). The proof of these results is based on the fol-
lowing frequency domain theorems:

Theorem 2.2 ([13] and [23]) A Co semigroup of contractions on a Hilbert space H
generated by an operator A is exponentially stable if and only if

iRC p(A) and su H iu—A*IH < o0. 2.14
o (A) Aeﬂg ( ) £ (2.14)

Theorem 2.3 ([17]) If a bounded C¢ semigroup ¢'"A on a Hilbert space H generated
by an operator A satisfies, for some j € N¥,

1
iIRcp(A) and sup —
=1 A

Al — A)~ ”L(H) < 0. 2.15)

Then, for any p € N¥, there exists a positive constant c,, such that

p
Int\7;
ez HH < ¢p llzoll pear) (%) JInt, Vzoe D(AP), ¥t >0. (2.16)

3 Lack of Exponential Stability of (1.1)-(1.3)

Our objective here is to show that the semigroup associated with our Bresse system with
second sound (2.1) is not exponentially stable depending on the following relations:

_ P 2 b — ko =
(k ko)(pg Tk) 8°=bp1 —kpy =0 (3.1

and

[

ko + p1b 2 k
Z#M(z—i—mn) T— Vm e 7. (3.2)

o2ko 2 p2 (k + ko)’

Theorem 3.1 We assume that (2.3) holds, and (3.1) or (3.2) does not hold. Then the
semigroup associated with (2.1) is not exponentially stable.
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Proof We use Theorem 2.2 by proving that the first or second condition in (2.14) is
not satisfied. First, we prove that the first condition in (2.14) is equivalent to (3.2).
Note that, according to the fact that 0 € p (A) (see Sect. 2), A~ is bounded and it
is a bijection between H and D(A). Since D(A) has a compact embedding into H,
so it follows that A~! is a compact operator, which implies that the spectrum of A is
discrete. Let A € R*. We will prove that the unique

- ~ . T
¢ = (so, @V, ¥, w, w,9,q> € D(A)
satisfying
Ad=ird (3.3)

is ® = 0if and only if (3.2) holds; that is the fact that i A is not an eigenvalue of A4 is
equivalent to (3.2). But Eq. (3.3) is equivalent to

¢ =ik, ¥ =iy, w=ilw,

k lko s
—(ox + V¥ +Hlw), + — (wy —lp) = iA,
o1 01

b k -

—Yxx — —(ox + ¥ +lw) =idy, (3.4)
,;C)z P2 .
0

lk 1) -
— (wy —lp), — — (px + ¥ +1lw) — —60, =iAw,
P L1

1 1

1 5 . ) B 1 i

——qy — —Wy =iA0, ——q— =0y =1i)q.
P3 T T

Using (2.4), we find
- B ||q||i2(oyl) = Re (A®, @)y = Re (ir @, ®)yy = Reil [|®]|3, = 0.
Then
qg=0. (3.5)

Taking into account that 6 € H*1 (0, 1), using (3.5) and the eight equation in (3.4), we
deduce that

0 =0. (3.6)
Inserting (3.5) and (3.6) into the seventh equation in (3.4), we find

wy = 0. 3.7
Then, the third equation in (3.4), implies that

wy = 0. (3.8)
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Asw € Hj (0, 1), we have
w=w=0. 3.9
Using (3.5), (3.6) and (3.9), then the system (3.4) is reduced into:

¢=irp, ¥ =iry,

k (§0x + W)x - lzko‘/’ = _pl)‘zq)v (3 10)
2 .

by —k(ox + V) = —p2A°Y,

—koypx —k (px + ) =0,

which is equivalent to ¢ = iAg, ¥ = iAy and

(ko — p12%) @ — k (px +¥), =0,

—poA2 Y — by + k (px + 1Y) =0, (3.11)
ko
Ox + 1// = _?(Px

By deriving (3.11)3 and combining with (3.11), we see that ¢ satisfy the following
equation:

@rx tap =0, (3.12)

2 2
Whereazlkok—p')‘
0

Case 122 = %. Then

. At this stage, we distinguish three cases.

px) =cix + 2,
for ¢y, ¢y € C. Using the boundary conditions
¢ (0) = (1) =0, (3.13)
we find
¢ =0, (3.14)
which implies that, using the first two equations in (3.10) and the last one in (3.11),
¢=0 (3.15)

and

(3.16)

<
Il

2
Il
=]
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Consequently, we get
P =0. (3.17)
Case2 1> > %. Then

p(x) = cle‘/qx + cze_‘/q".

Using again the boundary conditions (3.13), we find (3.14), and similarly as before,
we arrive at (3.17).

Case3 2% < %. Then
¢(x) = cj cos (ﬁx) + ¢ sin (ﬂx) .
Using the boundary conditions (3.13), we deduce that ¢; = 0, and
T 2
=0 or EImeZ:a=<E+m7r> . (3.18)

If ¢ = 0, then (3.14) holds, and as before, we find (3.17).
If ¢ # 0, then, by (3.18),

%kg — p1A2 2
ImeZ: 0—m=(z+mn) . (3.19)
ko

Therefore, (3.11)3 is equivalent to

) = —c2 (1 ; ’%) Jacos (Vaix). (3.20)

and then the first two equations in (3.11) are reduced to

2 ko [kko + bI* (k + ko)
"~ (k+ko) (kopa +bp1) |

We see that (3.19) and (3.21) lead to

(3.21)

2
Im e ,zzwg ,,) L

p2ko 2 p2 (k + ko)’

that is (3.2) does not hold. So, if (3.2) holds, we get a contradiction, and hence, ¢c; = 0
and, as before, we find (3.17).
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If (3.2) does not hold, then, for A € R satisfying (3.21), the function

d(x) = cz<sin (Vex), itsin (Vax), — (1 + %) Ve cos (Vax),
—in (1 n %) Vacos (vax),0,0,0, O)T

is a solution of (3.3), for any ¢, € C, and then iA ¢ p (A). Thus, we proved that
i R C p (A) is equivalent to (3.2).

Now, we show that the second condition in (2.14) does not hold if (3.1) is not
satisfied, i.e. we assume that (3.1) is not satisfied and we will prove that there exists a
sequence (A,), C R such that

”()””I _'A)_IHL(H) %

which is equivalent to prove that there exists (Fj,), C H with || F, ||y < 1, for which
we have

G — A" Fyllp — o0, (3.22)
N—
@,
therefore, we have
rn®, — AD, = F,. (3.23)

Our objective is to show that the solution ®,, is not bounded when F}, is bounded in
‘H. The equation (3.23) implies that

[An®n — &n = fin
iMuP19y — k (Qnx + Y + 1wy, — lko (Wnx — Lon) + 86ux = p1 fou,
i)"nwn - 1//;1 = f3na

iAoy — bUnxx + k (@nx + Vn +Lwy) = 2 fan, (3.24)
idpwy — J)n = fsn,

“Vnpl&;n — ko (Wpx — l(pn)x + Ik (@nx + Y + Lwy) = plfﬁna

iAnTqn + Ban + Onx = T f1n,

i)\np3en + gnx + 517)71)( = p3f8n-

We will show that, for all n € N, given ¢4 € C* and

Fu(x) = (0,0,0, cqcos (Nx),0,0,0,0)7,
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where N = (Z"#, there exists A, € R and ®, = (ir, — A)~'F, € D(A) such
that

lim [|®,lly = oo.
Ap—>00
The system (3.24) will be written as

idn@n — @ =0, idgy — W, =0, idywy — wy =0,

32 P19 — k (Pnx + Yn + L wy)y — ko Wy — lga) =0,

33 02¥n — bWnxx +k (@ux + Y +1wy) = pacs cos (Nx), (3.25)
—A2p1wn — ko (Wax — lgn)y + 1k (@nx + Y + 1 W) + 86, =0,

i A 0360 + Gux + Swny =0,

iAnTqn + Bgn + Onx = 0.

Because of the boundary conditions, one can take the following solution:

{ on(x) = ay sin (Nx), ¥, (x) = azcos (Nx), w,(x) = az cos (Nx), (3.26)

On(x) = aa sin (Nx), gn(x) = ascos (Nx),
where the constants o, o2, @3, a4 and a5 are the solution of the following system:
(=22p1 + N2k + IPko)ay + kNaa + (k + ko)l Nas = 0,
kNay + (—)»%,02 +bN? + ks + kl az = paca,
(ko + )INay + lkay + (—A2py + koN? + 12k + DWatth0aN>_ o

(iA2p3T+inp3B—iN?)
(iA203T + Ayp3B — iN?)as + Sr,a3N? =0,
(iiyT + B)as = —ayN.

(3.27)
We distinguish two cases.
b ko Pl 2 2 koo
Case 1 — = — and [k — ko] [,03 — —k] — 67 #0.LetA; = —N* + A, where
T L1

P2 L1
A is a constant to be chosen later. Then form (3.27) we have

ko — k
(((Opﬁm + (k= Ap) ) (ko — Ap1) — k2N2) -
1

LGk + ko) (ko — k
= — ok ey — (R “’ZN—‘++(kko—Apz(k+ko>—kz)Nl)aa,
1
ko — k
((MM + (k- Ap2)> (1%ko — Ap1) — k2N2) 0[2
P1

= 0 [lzko — A,Ol] c4 + (l (k + k())k ]V2 — kl (lzk() — A,Ol)) o3
(3.28)

@ Springer



Applied Mathematics & Optimization

and o3 must satisfy

1%ko — Ap1 ] (ko — k 12 (k + ko)
([ 0 — Ap1] (ko )p27k2, (k + ko)~ p2 (ko — k) N*
Pl P1
Pk — Apr) [Iko — Ap1] (ko — k) p2
+( ( )[ > ] —(lzk—Apl)kz )N2 o3
+ (k — Ap2) [Iko — Ap1] (ko — k) — (k — Ap2) I (k + ko)? + 12k% (k + ko)

HKEN + [IPko — Ap1 ] (1Pk — Apr) (k — Ap) — I2k* [1%ko — Ap1 ]

({(ko;&z\ﬂ + (k — Apg)] [12ko — Ap1] — K2N?
1

A
82N2|:—Tk — At +iBN (k + >}
p1

(3.29)
P1 N2
+
[(1 - r”3")1\12 Atps +ip3pN (" +A2)}
p1 N
[Pko — Ap1 — (k + ko) N*] pakl

c4.
<[(k0;k)p2N2+(k—Ap2)] [lsz—Am]—kzNz)
1

o3

Now, we distinguish four subcases.

k
ko—k=0and 1 — iicid = 0, then, from (3.28) and (3.29), we have
P1

((k — Ap) [IPko — Apll —k*N?) a;

= —pokNey — [kko — k* — Apa (k + ko) | IN a3,

(k= Ap2) [Pko — Ap1] — K*N?) a2

= p2 [IPko — Ap1] ca + (I (k + ko) kN* — kI [I*ko — Ap1]) @3

(3.30)

and o3 satisfies
[12k% (k + ko) — (I%k — Ap1) k* — (k — Ap2) I? (k + ko)*| N?
AN + [Iko — Api | (IPk — Apr) (k — Apa) — I%K* [IPko — Apr] ) ©°
((k — Apa) [IPko — Ap1] — k>N?)

82N? [_ﬁm — At +ipN /( k + i)}

Pl N (3.31)
+ o3
T3k ) k A
1— —=)N2—Atps +ip3pN || — + —
L1 P1 N
[Pko — Ap1 — (k + ko) N*?]
- ,02le4.
(k — Ap2] [IPko — Ap1] — k2N2)
We choose A so that
2 [kp1 + p212k0]2
[kp1 + p2l°ko] + N[ 4p2p1k? + N NE
A= ~ . (332)
2p2p1 02P1
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then with (3.32), we have
(k — Apa) [12k0 _ Apl] — K2N? = %kkq, (3.33)

since, our concern is the asymptotic behavior of the constants, so, for N large enough,
we obtain

A3
Apik® + Apal? (k + ko)* = —5 ot o2 + 12K (K + ko)

((k = Apo) [Pko — Ap1] — K2N?)
k82

1 - Pl
p1
[(%ko — Ap1 — (k + ko) N?]

~ — klcy. 3.34
(Ik— A2l [Pho — Apr] — k2N7) 20 539

N2013

By using (3.32), we have

V/P2P1

BT etk NY

and

o1k

= ek + k)

so, we deduce with expression of « that

[Pnll3y —> oo

k
ko—k=0and 1 — 225 — 0, then we have from (3.28), (3.29) and (3.33)
p1

((k — Ap2) [IPko — Ap1] — kK*N?) oy
= —pokNcy — I [kko — Apa (k + ko) — k*] Na,
(k — Ap) [IPko — Ap1] — K*N?) (3.35)

I (k + ko) kN?
= p2 [Pko — Ap1] ca + (—kl [lzkoo— Am])
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and

(= (IPk = Ap1) & — (k = Apo) I? (k + ko) + K2 (k + ko)) N* )
HIAN + [IPko — Api ] (Pk — Apr) (k — App) — 2K [1Pko — Api] )
12kkg

k K A
82N2[—T—N2—Ar+iﬁN (—+—)}
P1 P1

N2

. k A
—Atps +ip3N o + Nz

[1%ko — Apy — (k + ko) N?]
2kko

poklcy. (3.36)

o3 = —

k
Using 1 — L =0, (3.32), (3.35) and (3.36) when N large enough, we deduce that
p1

[ Wwpzpsﬂf}

[ g) et

P2P1

o3 =

P3

o) 2]

oy >~ Ncy,

S0, we obtain

[Pnll3y —> oo.

k
ko—k #0and 1 — ot = 0, then we have from (3.28) and (3.29)
£1
(kO - k) P2 N2
o [ﬂko - A,ol] — K2N?
+(k — Ap2)

L (k + ko) (ko — k) P2 3
o) = —pkNcy — P1 o3
+ [kko — Apa (k + ko) — k*] N1

and
(ko —k) p2, »
o0 N [12k0 — Apl] — 2N?
+(k — Ap2)
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I (k + ko) kN>
oy = P [12k0 — A,Ol] c4 + (—k; [IZkOO)_ Apl] ) 3.

Also, we have

ko — Apy] (ko — k 2 2
([ 0 — Ap1] (ko )pz_kz_l (k +ko)” p2 (ko — k) N*
p1 p1
1%k — Ap1) [12kog — Apy | (ko — k
+( ( p1) [IPko — Ap1] (ko — k) p2 (k= Ap) 2 )N2 o
o1
+ (k — Ap) [1Pko — Ap1] (ko — k) — (k — Ap2) 1% (k + ko) + 12k? (k + ko)

+IN + [IPko — Ap1] (IPk — Apr) (k — Apa) — IPK2 [IPko — Ap1]

([L _plk) PN 4k - A,og):| [2ko — Api] — k2N2)

k K A
82N | —ZEN2 — Ar +iBN (— + 7)
P1 1 N

Atps +ip3N k + A)
Tp3 +ip3 PRI
[Pko — Apy — (k + ko) N?]

=~ TEH p2klcy,
({OTMNZ + k- A,oz):| [1%ko — Ap1] — k2N2)
1

(3.37)

o3

Here we choose A as follow:

[(ko — k) p2N* — kp1 — pal®ko]

1%ko (ko — k)
+\/ [(ko = k) p2N? = (kp1 + p21%ko) | = 4021 [W -

e

20201

. 2
. k- N? (3.38)

o1

then we have

[(ko —k) p2

N2tk — A,02:| [12k0 - Apl] —KPN? = Pkky,  (3.39)
p1

therefore, for N large enough and using (3.37), (3.38) and (3.39), we have

2lko p2
03 X ————————4,
(ko — k)> N2
o P2 =R) G40
2T Phkg -

so, we deduce that
|yl —> oo.
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Tp3k

ko —k #0and 1 — —— # 0, then, using (3.28), (3.29) and (3.39), we obtain the
p1
same result as before
2lko 2

a3 X ————————c4,
(ko — k) N2 (3.41)

o~ 20— ) o

2 ke 4,

so, we get

[Pnll3y —> o0.

b ki k
Case2 — # 2 Let )\5 = — N? + A, then from (3.25) we have
P2 P1 P1

[—Ap1 + Pko] ot + kNaa +1 (k + ko) N3 = 0,
ook
kNoz1+[ b—— N? - A;O2+k:|052+kloé3=,02€4,
[(ko — k) N? — Am + k] oz + 1 (k + ko) Nory + lkar + §Nawg = 0,
sN | —TEN2 — ar+ipN k+A
—_—— J— ‘L’ [E—
o1 : N2 (3.42)
o4 = as,
r,o3k k A
1-— N2 —1p3A +ip3N +—
o1 N?
i8hy N2
a5 = — A a3,
[N2 = tp3A2 +ip3Bhn]

+(k — Ap2)
—k>N?
k + ko) N?
=m <12k0 - A,O]) cq4 + |:_(([2k0 0_)A,01) :| klas, (3.43)
P2k 2
b— N
o ) (12k0 - Apl) —12N? |
+ (k — Ap2)
_ PkY 2 _
— —pokNey — | KT RO [(b Py >2N + & A”Z)] INes (344)

—k
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and

(—|:(k+ko)[<b—/ﬁk)Nz-i-k—Apz}—kjlz(k+ko)N2)
1
I

+ [k + ko) N2 — (I%ko — Ap1) ] k*1

(ko — k) N> — Apy + I’k +
P2k o 2 282
b— N2 +k—Apy | (IPko — Ap1) — k2N

o3
P1

k A
NZ

+ a3
‘[,03]{ k A
1— N% —tp3A +ip3N f+ —
Pl N
lkps (I%ko — Ap1) ca — p2k NI (k + ko) Neg

- :
[(b r2 >N2+k Apz] (ko — Apy) — K2N?
P1

272 Tk
82NZ| ——N2 — At +iBN
P1

(3.45)

Now, we choose A such that

ok
[ (b——)N2+p212ko+kpl]
P1
ok 2 k
+J[ (0= 282t | —amen ([ (- 22) et - 2] w2 - )
A= P1 P1

2p102
k
(b - pi) N2
N o1

, (3.46)
02

where B is another constant to be chosen later. So, by using (3.46), we have

o2k
[(b _ ) N2 (k — Apz)] <12k0 _ Apl) —K2N? = 1kko + B. (3.47)
P1
From (3.45) and by using (3.47), we have

[(ko — k) N* — Apy + 1%k]
— [(k—i—ko) [(b —~ p;—k> N%+ (k — Apy) | — k> | 1% (k + ko) N?
1

a3
N + [k + ko) N* — (I%ko — Ap1) ] k21
(I%kko + B)
k kA
N2 | SN2 — AT +iBN (— + —2)
P1 L1 N
a3
k kA
(1 703 ) N2 —1p3A +ip3 BN <— + —2>
P1
Ik (Pko — Ap1) c4 — p2k NI (k + ko) NC4
2kko + B (3.48)
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From (3.48) and by using (3.46), we deduce, for N large enough, the following:

b
, <k0+ Pl)
[ko——pl]Nz N 2N
P2

o
(ko + B) ’
brs?
_ 02 N4oz3
To3b . b
1-— N2 4+ip3BN. [ —
02 02
—Ap1 — (k + ko) N*
= — lkprcy. 3.49
(Pkko + B) 02C4 (3.49)
Here, we distinguish two subcases.
T03b
1— = 0, then we have
02
b 02
k2038 (5,01 + ko) >
o3 = —1i c 3.50
’ 762 (Pkko + B) N ! -0
and
pib—kpy 5
=————-N
= T Pkkg+ B ¢
By choosing B = 0, we deduce that
Dy llyy —> o0.
T03b
1 — —— # 0, then, from (3.48), we have
P2
b bts?
ko + 2 :
P2 1212 P2 2
ko — k-l N
0 Pt ko + B |_ hsb @3
- 0 (3.51
b
ko + %
2 2
= ——IlkpyN~cy,
Pkko + B 2N
here, we choose B such that
b b
B=-"2(ko+221) (1= 22 22 — i, (3.52)
b2 02 P2
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so, by (3.52), we obtain

b bts?
ko + 2P ¢
P2 4272 02
2kko + B | to3b
P2

then we deduce from (3.48) and (3.52) that

bt82p)
a3 = cq4
T03b b
2kl (1 — —) [ko - —,01:|
P2 P2
and
bts? kobt8?
ap = — p2k+ Necs,
bpi to3b\ 5 T03b b
p2 | ko + — 1——— ) k4l 1-— ko — —p1
02 02 02 02
thus we have
kot2b*s* _
Wnyx (¥) — lpp(x) = 3 Ncysin (Nx),
’ Tp3b b bpi
P2kl {1 — ko——p1 || ko+—
02 02 02
hence
@l —> o0.
The proof of our theorem is then completed. O

4 Exponential Stability of (1.1)-(1.3)

In this section, we use again Theorem 2.2 to prove that the semigroup associated with
(2.1) is exponentially stable provided that (2.3), (3.1) and (3.2) hold.

Theorem 4.1 We assume that (2.3), (3.1) and (3.2) hold. Then the semigroup associ-
ated with (2.1) is exponentially stable.

Proof In Sect. 3, we have proved that the first condition in (2.14) is equivalent to (3.2).
Now, by contradiction, we will prove the second condition in (2.14). So, we assume
that the second condition in (2.14) is false, then there exist sequences (®,), C D (A)
and (1,), C R satisfying

@l = 1, ¥n =0, 4.1
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lim |x,| = o0 4.2)
n—oo
and
lim (A1 — A) @pully = 0, 4.3)
n—oo
which implies that

iA@n —@n —> 0'in H' (0, 1),
i)\nplﬁon —k (‘pnx + Wn + lwn)x - lkO (wnx - l(pn) —> 0 in L2 (O» 1) s
idn¥n — Yy —> 0in H! (0, 1),

~

ilpo2Yrn — b¥nxx +k (@px + ¥ +1w,) —> O in L? 0, 1),
iAgw, —w, —> 0in H!(0,1),
i)tnpllgn — ko (Wpx — Loy + 1k (Qnx + Yy +1wy) + 66, —> Oin L? 0, 1),

iAnp36n 4 Gux+8Wny —> 0in L2 (0, 1),
idnTqn + Bgn + 6 —> 0in L2 (0, 1),

4.4
where the notation — means the limit when n goes to infinity. In the following, we
will check the second condition in (2.14) by finding a contradiction with (4.1). Our
proof is divided into several steps.

Step 1 Taking the inner product of (i A, I — A) &, with ®,, in H and using (2.4),
we get

Re((idn I = A) @, @a)yy = Bllgnll7ag - 4.5)
Using (4.1) and (4.3), we deduce that
gn —> 01in L (0, 1). (4.6)

Step 2 Applying triangle inequality, we have

Onx SR , . B
N =1 lidnTgn + Bgn + nx||L2(0,1)+ lTQn+A_Qn .
n 1L2(0,1) [Anl n L2(0,1)
By (4.2), (4.4)g and (4.6), we get
0,
% —0in L?(0, 1). 4.7)

n

Multiplying (4.4)1, (4.4)3 and (4.4)5 by Aln, and using (4.1) and (4.2), we deduce that
¢n —> 0in L% (0, 1),
Y, — 0in L% (0, 1), }. 4.8)
w, — 01in L% (0, 1).
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6
Step 3 Taking the inner product of (4.4)7 with l}\—" in L (0, 1), integrating by parts
and using the boundary conditions, we get "

2 ienx ~ ienx
02 ”0)'[” 2 - <an > - 8 <wn7 > — 0’
LoD A [1200,1 An [1200,1

then, from (4.1) and (4.7), we get
6, — 01in L (0, 1). (4.9)

Applying triangle inequality, we have

w 1 . ~
H nxx Hl)\nplwn — ko (Wnx —Ion),

=
An L2(0,1) ko |Anl
+ Lk (onx + Y +1lwy) + aenx”Lz(O,l)

L~ Lko lk
01 Wy + —@nx + — (@ux + Y +1wy) +6
An An

Onx

n 1
ko n LZ(O,l).

Then, by (4.1), (4.2), (4.4)¢ and (4.7), we deduce that

1
<k_ w,,xx) is uniformly bounded in L? O, 1). (4.10)
n n

Step 4 Taking the inner product of (4.4); with ”;il in L2 (0, 1), integrating by
parts and using the boundary conditions, we get "

iw . ~ iw
P3 (On, Wnx) 20,1 _<Qn7 ;xx> —8<<lknwnx —wnx), )Lnx>
n [120,1) n | L2(0,1)

+8 lwaxllFa1) — O-

Using (4.1), (4.2), (4.4)5, (4.6), (4.9) and (4.10), we deduce that

waxy —> 0in L% (0, 1), 4.11)
and from (4.4)s, we have
{[)nx . 2
> 0in L2(0, 1). (4.12)
n

As 17),1 in H*1 (0, 1) and by using (4.12), we obtain

% —0inL2(0, 1). (4.13)

n
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i, . . .
T in L” (0, 1), integrating by parts

n

Step 5 Taking the inner product of (4.4)¢ with

and using the boundary conditions, we get

2 iw
L20.1) + ko <(wnx —lg,), )\nx>
’ " L2001

~

L1 H Wp

. o .
+lk<(<pnx+wn+lwn), lw”> +8<ﬂ,iwn> — 0.
P L2(0,1) n L2(0,1)

Using (4.1), (4.7), (4.12) and (4.13), we obtain
w, — 0in L2(0, 1), (4.14)
and with (4.4)s5, we find
Anwp, —> 0in L? (0, 1) . (4.15)

Step 6 Taking the inner product of k (¢, + ¥, + [w,) with 6, in L? (0, 1), inte-
grating by parts and using the boundary conditions, we get

k {((@nx + Yn +1wy) , Onx) = —k <((an + Y+ lwp) 9")L2(O,1)

- <(iknp1<;,, — k (@nx + Yn +1wn), — ko (Wax — 19n) 9")>Lz<o D

— Anp1 <i<ﬂ;z, 0n>L2(O,1) + ko ((Wnx — lon), 911)]42(0,1) ,
then, by using (4.1), (4.4), and (4.9),

K@+ + 100) 60) 20,1y + 1 (i, en)Lz(O L0 @16

Taking the inner product of (¢, + ¥, + lw,) with i), 17),1 in L% (0, 1), integrating
by parts and using the boundary conditions, we get

<(§0nx + Y +lwy), i)\ng}n>L2(0,1)

<i)\n wm wn> —1 <i)hnwn, wn>L2(0,l)

2

= — <i)hn(pn)m wn>

L2(0,1) a L2(0,1)

SR B (GRS
<Wn wn>L2(07l) IApWp — Wy ), Wy L20.1) Wp L20.1)
——{(ir _N>,~> (~,~~> (i _ ,w
<(’ n®Pnx — $nx | > Wn 120.1) + {@n, Wix 120.1) iy — Yy, Wp oD
~ ~ ~ ~ |12
= (¥ == n) ) =1
<1//n wn>L2(0‘1) IApWy — Wy ), Wy 120.1) Wy
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Then, by using (4.1), (4.4)1, (4.4)3, (4.4)5 and (4.14), we deduce that

(@nr 9+ 1w i) = (o) 0. @17)

L2(0,1) L2(0,1)

Taking the inner product of gz;;l with wyy in L2 (0, 1), we get

2

gy =05 o~
<§0n nx>L2(O’1) <§0n < nx (pn>>L2(0’1) ©n L20.1)
= - <(;nv (i)\nwnx - J)nx>>l‘2(011) + <§0~n, (i)»n§0;1 - (;n)>L2(O,l)

~ 2
+ <(Pn, idg (Wpy — (pn)>

~
(pn

L2(0,1) + ’ L2(0,1)°

then, by (4.1), (4.4) and (4.4)5, we have

~ ~ 2
- ((pl’ls wnx>

+ |l

An ((;;17 i (Wyx — (pn)> L200.1) ’

— 0. (4.18)

L2(0,1) L2(0,1)

Taking the inner product of (4.4), with (w,x — lg,) in L? (0, 1), integrating by parts
and using the boundary conditions, we get

(ixnman, Wiy — l¢n>> K@+ v+ Lwn) s (Wi = )20

L2(0,1
— lko | (wnx = lp)l1 7201, — O,

which implies that

Anp1 (i‘;nv (Wnx — l(pn)>

k
— — {(@nx + V¥ +1wy),
ko

L2(0,1)

X (301100 = Ko (s = L)y + 1k (P + Y + 1) + 86, )

1k? 5
+ K ||(<an + 'ﬁn + lw")”L2(0,1)

L2(0,1)

kp1 L~
+ K <((an + Y +lwy), l)"nwn>L2(0,l)

8k
+ E ((@nx + Y +1wy), 9:1x>L2((),1) — lko | (wnx — lﬁon)”iz(oﬁl) — 0.

Using (4.1), (4.4)6, (4.8) and (4.11) , we get

~ kpi L~
— Anpi1 <(Pn, i (Wpx — l‘pn)>L2(0’1) + E <(<an + Y +lwy) , l)&nwn>L2(0’])
1k? Sk

g 1@+ + lw)l17.1) + T (ons
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+ Ipn + lwn) , an)Lz(O’l) —> O, (419)

then, by (4.16), (4.17), (4.18) and (4.19), we obtain

k ~ o~ ) ~
= 1) pr (G e = o (i, 6]
<k0 )m O Wnx] ooy ™ ko PN I 2o

1k? 2
T e Y+ 1w )+ 1 | — 0. 420

+ Dn 1200.1)

Step 7 Taking the inner product of (4.4)g with (¢, + ¥, + [w,) in L? 0, 1), we
get

(iAnTqn Jan)LZ(o,l) — 7 {qn, l')»n‘ﬂn)LZ(o,l) — It {gn, i)»nwn)LZ(o,U
+(Ban, (Pnx + V¥u + lwn))Lz(O,l) + <9nx ) ((pn,x + Y+ lw"))Lz(O,l) — 0,

then

(iAnTqn, (pnx)LZ(o,l) -7 <‘1ns <i)hnl/fn - 1ﬂn)> -1 <‘Zn , 1ﬂn>
1200, 1) 1200,1)

—lr <q” ’ (M”w” N w")>L2(0,1) i <q,,, w”>L2(0,1)
+ (Bqn, (Pnx + Vu + lwn))LZ(O,l) + (Onx> (Pnx + Vn + lwn))Lz(O,l) — 0.

By using (4.1), (4.4)3, (4.4)5, (4.6) and (4.16), we have

(l)\'_’: )2 _)\np1<9 lN> —)0
nTqn, Pnx)12(0,1) k n LY L2(0,1) ’

integrating by parts and using the boundary conditions, we obtain

. AnP1 .~
— AT {iGnxs ¥n)12(0,1) — & <9n’ 1% >L2(0,1) — U,
therefore
—AnT (i (i)\np?yen + Gnx + 817)1”) s (Pn>L2(O 1l — AT 0“11,03911 , §0n>L2(0,1)

+a 18<i171 (p> —A”p‘<0 i&) 0
n nxs n LZ(O,I) k ns n L2(0’1) k]

hence

T <(i)»,,,039n + gnx + 5w”x> ’ (i)»n(ﬂn - wn))Lz(O,l)

+7 <(i)\np39n + Gnx + 517),”) s 927\;1>L2(0,1)
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— AT <ip30n! (i)\n(ﬂn - (/;;1>> AnT <i1)39n, (/;;L>

2o 12(0.1)

~ . ~ ~ ~ Anp1 N

+ 16 <wn, (l}\n(/)n - (pn)X>L2(O,1) ) <wn)m §0n>L2(0’1) - X <9ns l(/)n>L2(0’1) s
so, using (4.1), (4.4)1, (4.4)7, we get
7)) (s 90)

— =) A, 6y, — 16 ,

(T:OS X n\Un, 1¢n L200.1) TO\Wnx, ¥n L20.1)

AnT <i,039n, (ixn% - 5,1)>L2(0’1) —0. 421)

On the other hand, integrating by parts and using the boundary conditions, we find
that

S
n \LP36n, | LAR@n — ¢n L20.1)
= <(i)»np39n + gnx + 81;7”) ’ (i)‘”w” - (/;;1)>L2(0,1)
- <an, (M"w" B (;”»Lz(o,l) -0 <'7)’”" (M"QD" B (;"»LZ(O,I)
= <<i)\n:039n + Gnx + 517),,)[) ) (“\n‘l’n - (/;n>>

+ <C]ns (i)"nﬁonx - ;nx>>

L2(0,1)

3. (e =005 ))
L2(0,1)+ Wp l n(pnx (pnx Lz(O,l)

so, by using (4.4)1, (4.4)7, (4.6) and (4.14), we deduce that

o (10360, (i%apn = ‘;")>L2<o,1> —0, (4.22)
therefore, (4.21) and (4.22) give
(r —ﬂ))\ <i~ 9) —r5<” » > —50 (4.23)
03 A n\l®n, n 1200.1) @On> Wnx 1200.1) , .

and then, multiplying (4.23) by 24 (,5—0 - 1) and adding (4.20), we obtain

P1An [ ( ,01) 2]( ~ >
B2k — k -—)-3 0
o ( 0) {03 ok tPns On L2(0,1)
IK2 > ~ |2
+% I (@nx + ¥n +lw")”L2(0,l) + 01 ‘ @n L2(0,1)

Here we use the fact that (k — ko) (,03 — ,o_]1<> — 8% = 0 (condition (3.1)), we deduce
T
that

k2 2

o I (@nx + ¥ + lwﬂ)”iZ(O,l) o ‘

~

@n

3

L2(0,1)
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then, from (4.8), we have

@nx —> 0in L? (0, 1) (4.24)
and

¢, — 0in L>(0, 1), (4.25)
and using (4.2), (4.4)1 and (4.25), we have

Angn —> 0in L% (0, 1) (4.26)
and

~
(pnx

n

— 0in L2(0, 1). (4.27)

Step 8 Taking the inner product of (4.4)s with (¢,x + ¥, +[w,) in L2(0, 1),
integrating by parts and using the boundary conditions, we get

<i)¥n:02'an ¢nx> + <i)‘np21//n7 ¢n> +1 <i)\nlOQWn» wn>

L2(0,1) L2(0,1) L2(0,1)
b (Vs @nx + Y+ 1wn)e) 20 1y K 1 @n + Y + L) l172 1) — O,

then
~ ~ ~ ~ 112
— A2 <¢l’ls ifpnx> — P2 <Wm <i)\nwn - wn>> — P2 ||¥n
L2(0,1) L2(0,1) L2(0,1)
_102<1ﬂna (i)\nwn _ujn)> _1102<1/fna u7n>
L2(0,1) L2(0,1)
b -
- % <I/fnx: [l)»nPIQDn —k (@nx + Y + lwn)x — lko (wpx — l@n)il>L2(0’1)
b . ~ Lkob
+ % <1/an7 l)\nplfpn>L2(O’1) T e (Vnx, (Wnx — lfpn)>L2(0,1)
+ & llgnx + ¥u + wall72 0 ) — O,
using (4.1), (4.4)2, (4.4)3, (4.4)s, (4.8), (4.11), (4.14) and (4.24), we get
N 2
. bpi ~
— A2 <1[/n, l‘pnx> — 2 | ¥n + —An <wnxs l(pn> N — 0.
L2(0,1) L2(0,1) k L=(0,1)

(4.28)
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Now, we use that

An <wnxai(/’;n> = _<<“\nwnx - 1pnx) a(;;n> _<wnm(;n> s
L2©.1) 12(0.1) 12(0.1)

and by integrating by parts and using the boundary conditions, we have

o (Vi i)

L2(0,1)

= _<i)"n1/’nx _WnXa(;n> +<1//na(p;,r>
L2%(0,1) L2%(0,1)

= - <<i)¥n¢’nx - 1//,”) s 92;1> - <‘/fna (“‘n‘pnx - ;;nx)>
L2(0,1) L2(0,1)

+ <Wr1s i)‘«n§0nx> s

L2(0,1)

therefore, from (4.1), (4.4); and (4.4)3, we see that

(Vi i) An <1/7n, iwnx> —0, (429)

L2(0,1) L2(0,1)

so, inserting (4.29) into (4.28), we obtain

2

~

0. (4.30)

A ~
== (bp1 — kp2) <wnx, ztpn) )
k 12(0,1)

L2(0,1) Y

At this stage, we use the fact that bp; — kpr = 0 (condition (3.1)), then we have from
(4.30)

Yn —> 0in L% (0, 1), (4.31)
and by (4.4)3, we deduce that
Ann —> 0in L (0, 1). (4.32)

Step 9 Taking the inner product of (4.4)4 with v, in L? (0, 1), integrating by parts
and using the boundary conditions, we get

—pP2 <1//na i)\n‘pn> , + b ||y ”iz(o)]) + k ((@nx + Yn + lwy), 1/fn)LZ(O,l) — 0,
L2(0,1)

and by using (4.8), (4.24), (4.31) and (4.32), we obtain
Ynr —> 01inL%(0,1). (4.33)
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A combination of (4.6), (4.8), (4.9), (4.11), (4.14), (4.24), (4.25), (4.31) and (4.33)
leads to

[®nll — 0,

which is a contradiction with (4.1). Hence, the proof of Theorem 4.1 is completed. O

5 Polynomial Stability of (1.1)-(1.3)

In this section, we prove the polynomial decay of the solutions of (2.1) using Theo-
rem 2.3. Our main result is stated as follow:

Theorem 5.1 We assume that (2.3) and (3.2) hold. Then, for each p € N*, there exists
a constant ¢, > 0 such that

0|3

V®g € D (AP), Vi > 0,

‘A Int
40| = cpl@ollpoar (=) ¥ e D)

Proof In Sect. 3, we have proved that the first condition in (2.15) is satisfied if (3.2)
holds. Now, we need to show that

1
sup —
=1 A8

AT — A)~! HH < 0. (5.2)

We establish (5.2) by contradiction. So, if (5.2) is false, then there exist sequences
(®,),, C D(A) and (1), C R satisfying

| @nll7y = 1, Vn €N, (5.3)
lim |A,| = oo (5.4)
n—o0
and
lim A% [[(iag I — A) @ullyy = 0, (5.5)
n—oo

which implies that
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A

8 (i,\n<p,, @n) > 0in HL©O,1),
M

2016 = K (e L) = Tho (e =) | = 0in L2 0.1,

28 (m U, — n) — 0in H,} 0, 1),

" [zxnmm — bYnxx +k (@nx + ¥ + zwn)] — 0in L (0, 1),

A8 (m w, — 17),,) —0in 1;*1 . 1),

AS [zxnmﬁ;n — ko (Wax — 19n), + Ik (Gnx + Y + lwy) + ae,m] ~0in L2 (0, 1),

)‘2 (i)‘np30n + gnx + 677)11)() — 0in L? O, 1),
A8 (i2nTqn + Bgn + Onx) — 0in L2 (0, 1).

(5.6)
Our goal is to derive || ®, ]9y — O as a contradiction with (5.3). This will be estab-
lished through several steps.
Step 1 Taking the inner product of )»,% (ir I — A O, with O, in H, we get (as
for (4.5))

8 /.
Re <<)"n (l )\vn I — -A) cha q)n>L2(0’1)> ﬂ ‘ nqn

so we have

L£2(0,1)

Argn — 0in L2(0,1). (5.7)

Step 2 Applying triangle inequality, we obtain

‘)»29” L2(0,1) ‘ (o Tn =+ Piin + B) oy Hikitq" + g 20,1’
then, using (5.4), (5.6)g and (5.7), we have
A0, —> 0in L2 (0, 1). (5.8)
Knowing that 6, in H*1 (0, 1), then we have
236, — 0in L?(0,1). (5.9)
Step 3 Using (5.3), (5.4), (5.6)1, (5.6)3 and (5.6)5, we obtain
{ o Yn W — O L2O D, }.(5.10)
*n@)n s Mam), , (Aywy), are uniformly bounded in L“ (0, 1) .

Step 4 By triangle inequality, we have

Wnxx
An

I:l)vn,olwn — ko (Wnx — Lon)y + 1k (@ny + ¥ +1wy) + agnx:l

kox L2(0,1)
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@ Ik )
)Ln: + E (Onx + ¥ +1wy) + Eenx

1 ~
+ — |iprw, + lko

ko

’

L2(0,1)
then we deduce from (5.3), (5.4), (5.6)¢ and (5.8) that

Wnxx . . . 2
(T) is uniformly bounded in L~ (0, 1) . (5.11)
n

n

integrating by parts and using the boundary conditions, we have
‘ 2

2 4
)Ln Wy )‘n (Wh, wnx)[?(()’l)

L2(0,1)

)\2 <iwnx» (i)&nwnx - wnx>> ) + )\,31 <iwnx, wnx> )
L+(0,1) L=(0,1)

. 3 /(. ~
1 Wpyx, )‘n (l)\nwnx - wnx>>L2(0 D

1. . N
5 <l Wax, Ay (’)‘”'039” tnr 5w'”)>L2(0,1)

,03< 3 L[ wnxx 4 >
+—Aw,k9> + - (i— A ;
§ VI 2 5< hy £20.1)

then, by using (5.3), (5.4), (5.6)s, (5.6)7, (5.7), (5.8), (5.10) and (5.11), we find

AM2wpe — 0in L2 (0, 1). (5.12)

As w, in 1;*1 (0, 1), we deduce from (5.12) that

2w, — 0in L?(0, 1), (5.13)
and using (5.4) and (5.6)5, we see that

AnWnx — 0in L2 (0, 1) (5.14)
and

Anwn — 0in L2 (0, 1). (5.15)
Also, dividing (5.6)¢ by )\5 and using (5.3), (5.4), (5.8) and (5.15), we deduce that

(Wnxx), 1s uniformly bounded in L? O, 1). (5.16)

[ Wy

A

Step 5 Taking the inner product of (5.6)7 with in L2 (0, 1), integrating by

parts and using the boundary conditions, we get

— pP3 <i)\39n)n )\ﬁwn) 1) <)\i (i)‘nwnx - ljll)m\f) > iwnx>

201 L2(0,1)
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- ()\iCInv iwnxx) + 8)\2 ”w’”‘”%ﬂ(o,l) — 0.

L2(0,1)
Using (5.3), (5.4), (5.6)s, (5.7), (5.8), (5.13) and (5.16), we obtain

hnl3 wny — 0 in L2 (0, 1), (5.17)
and from (5.6)5, we get
|2 e — 0in L2 (0, 1) . (5.18)

Step 6 Applying again triangle inequality, we have

nxx 1 . ~
‘ L < - ‘ b I:l)”npl(/)n —k (@nx + ¥ +lwn)x — lko (Wpx — lgon)]

An 1£2(0,1) k| An L2(0,1)

1. ~ k 1k
+ - lpl‘/’n_*(WnX +lwpy) — i(wnx —lon) ,
k An An 12(0.1)
and using (5.3), (5.4) and (5.6),, we deduce that
<(p;xx > is uniformly bounded in L? O, 1). (5.19)
n n

Taking the inner product of (5.6)¢ with in L2 (0, 1), integrating by parts and using

Pnx
)»8
the boundary conditions, we obtain

(pnxx

L1 <i)\na)ns <an> + kO <)"anXs > +1 (k + kO) ”(pnx”iz(o 1
) L2(0,1) ’

L2(0,1 n

+ Lk (Y + Lwy) , §0nx>L2((),1) + 6 (Onx, Qonx>L2((),1) — 0,
then, from (5.3), (5.4), (5.8), (5.10), (5.12), (5.15) and (5.19), we have

@nx —> 0in L2 (0, 1). (5.20)

(i"; in L2 (0, 1), integrating by parts

n

Step 7 Taking the inner product of (5.6)¢ with

and using the boundary conditions, we get

- P <7’I)na An (i)\nﬂonx - (p;x)> + p1 <)\n77)n)n (;n>

L2(0,1) L2(0,1)

wn.x.x>
M [1200.1)
+ Lk by (Y + Lwy) (an)L2(0,1) + 8 (AnOnx, ‘an)[}(o,l) — 0,

+ ko <xi W, 1+ ko) A lgns g
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hence, using (5.3), (5.4), (5.6)1, (5.8), (5.10), (5.12), (5.19) and (5.20), we obtain

An ||<an||iz(0’1) — 0. (5.21)

Taking the inner product of (5.6), with f—; in L? (0, 1), integrating by parts and using
n
the boundary conditions, we get

~ 112
Pn

= ot (0 (i2agn =) =007
P1AR Py \ TARYn — @y L20.1) PlAn L20.1)

+ kdpy ((@nx + ¥n +1wp) , (pnx)LZ(O,l) — lkoAn ((Wnx — lon) , wn)LZ(O,l) — 0,
which implies

2

Pn

— P1 <¢’m An (i)&n(pn - (pn>>L2(0,1) — P1An L20.1)
+ kdn @l 0 1) + K (¥ + Dinwn) s ) 20,1y

— lko ((Anwnx — [Angn) , §0n>L2(0,1) — 0,

so, using (5.3), (5.4), (5.6)1, (5.10), (5.12) and (5.21), we deduce that

2
A

@ 0, 5.22
n || ®n 2o (5.22)

and from (5.6);, we obtain that

iy llgnll* — 0. (5.23)

1
Step 8 Multiplying (5.6), by T we get

Anl2Z AS

(pn_kfpnxx _kan —l(k—i—k)
IA | Ihn|2 Anl2 Iknl2

P2 5 0in L2 (0, 1),
Anl2

then, using (5.3), (5.4) and (5.22), we deduce that

(pnxx

1
|An]2

—0in L>(0, 1). (5.24)

On the other hand, by integrating by parts and using the boundary conditions, we see
that

A (Wyxxs i)\nﬁonx>L2(0,1) = )M,Z, (iwnx, ‘anx)LZ(O,l)

@ Springer



Applied Mathematics & Optimization

— <)¥n (i)\nwnx — wnx) s (p"“>L2(0,1) + An <wn)ﬁ (pnxx>L2(0’l)
~ 1~
= <)‘r21 (i)LnU)nx - wnx) , %> + <)‘" |)L"|§ W (pnxxl> ’
n 112001 1Anl2 [ 12001

then, using (5.4), (5.6)s, (5.18) and (5.24), we obtain

An (Whxx, ikn¢nx>[,2(0,1) — 0. (5.25)

Furthermore, integrating by parts and using the boundary conditions,

An( n. n l n 7N> =_)‘«n< n. n / n 7Nn>
(Onx + Yn +1wy), (anZ(O,l) (@nx + ¥ +lwy) QDXLZ(O,I)

n

1 ' ~ @
=- <k,21 [zxnplwn — ko (Wpx — l@n)y + 1k (@nx + Yn +1wy) + BGM] , "x>
L2(0,1)

1 ) - ) ~
- — ((zknplwn + 591”) s An (l)\n‘/’nx - ‘ﬂnx)>

Ik L2(0,1)
ko . ~ Moo~

+ E <(wnx - I(Pn)x , An (l)hn@nx - ‘pnx)>L2(O’1) - ﬁ <lplwn)m l‘Pn>L2(0,l)
5 kohn kohy

+ ﬁ (Aﬁenxs i‘ﬂnx>L2(0'1) - 7 (wnXXa l.)hn(pnx)Lz((),l) - k i ||<an ”22(0,1) )

then, using (5.6)1, (5.6)6, (5.8), (5.15), (5.16), (5.18), (5.23) and (5.25), we find

~ ko |
M (s + 1w @)+ L bl — 0. (526)

L2(0,1)

~

Taking the inner product of (5.6); with f—g in L2 (0, 1), we get

n

~

2
)\ —
n$n L2(0,1)

pii | K (s + i + 1), )

L2(0,1)

— 1k (Gt = L) &n>L2(O’1) —0,

then, using (5.26), we obtain
~ |2
An®y

I
Pl L2(0,1)

ko I nx 122 g 1) = ko (atwn = Lrngin) gon)ml) — 0,
and from (5.3), (5.4), (5.6)1, (5.12), (5.22) and (5.23), we deduce that
Ang, —> 0in L2 (0, 1) (5.27)
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and

An@nx —> 0in L2 (0, 1). (5.28)
o 1 .
Step 9 Multiplying (5.6)4 by o we obtain
n

ol — bV
n

k

+ = @ne + Yu +lwy) —> 0 in L%(0,1).
n

By triangle inequality, we deduce from (5.3) and (5.4) that

(%) is uniformly bounded in L2 (0, 1). (5.29)
n

n
nx
8

)‘n

Taking the inner product of (5.6); with in L (0, 1), we get

oy Y 2
P1 <l)»n(ﬂn, l[’nx>Lz(O’1) —k ((pnx)m I/f11)c>L2(()71) —k ”wnx ||L2(0,])

—1(k + ko) (Wnx Vux) 20,1y + I*k0 (@ns Ynx) 1200.1) = O,
then, integrating by parts and using the boundary conditions, we obtain

¢nxx>
n 11201
— I(k + ko) (Wnx, Ynx)r200,1) + ko (g, Vnx)r20.1) = 0,

o1 <i)hn5na an> + k<)\n(pn)m —k ||1/fnx||i2(0’1)

L2(0,1)
s0, using (5.3), (5.4), (5.10), (5.12), (5.27), (5.28) and (5.29), we deduce that

Ynx —> 01in L2 (0, 1). (5.30)

Taking the inner product of (5.6)4 with % in L? (0, 1), integrating by parts and using
the boundary conditions, we get !

—,02<1/fn, (i)\nwn —1/fn>> — P2 I»//n
L2(0,1)
+ (k (@nx + Y +1wn) , Yu) 1200.1) — 0,

2

+ b [Ynx |13,
0.1 L2(0,1)

hence, using (5.3), (5.4), (5.6)3, (5.10) and (5.30), we get

¥, —> 0in L% (0, 1). (5.31)
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A combination of (5.4) and all the above convergence leads to

®nllx — 0,

which is a contradiction with (5.3). Consequently, the proof of our Theorem 5.1 is
completed. O
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