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Abstract
In this paper, we consider a linear one-dimensional thermoelastic Bresse system with
second sound consisting of three hyperbolic equations and two parabolic equations
coupled in a certain manner under mixed homogeneous Dirichlet–Neumann boundary
conditions, where the heat conduction is given by Cattaneo’s law. Only the longitu-
dinal displacement is damped via the dissipation from the two parabolic equations,
and the vertical displacement and shear angle displacement are free. We prove the
well-posedness of the system and some exponential, non exponential and polynomial
stability results depending on the coefficients of the equations and the smoothness of
initial data. Our method of proof is based on the semigroup theory and a combination
of the energy method and the frequency domain approach.
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1 Introduction

In this paper, we consider the following linear Bresse system with second sound:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0 in (0, 1) × (0,∞) ,

ρ3θt + qx + δwxt = 0 in (0, 1) × (0,∞) ,

τqt + βq + θx = 0 in (0, 1) × (0,∞)

(1.1)

with the initial data
⎧
⎪⎪⎨

⎪⎪⎩

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) in (0, 1) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) in (0, 1) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0, 1) ,

θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) in (0, 1)

(1.2)

and mixed homogeneous Dirichlet–Neumann boundary conditions

{
ϕ (0, t) = ψx (0, t) = wx (0, t) = θ (0, t) = 0 in (0,∞) ,

ϕx (1, t) = ψ (1, t) = w (1, t) = q (1, t) = 0 in (0,∞) ,
(1.3)

where ρ1, ρ2, ρ3, b, k, k0, τ, β, δ and l are positive constants, the initial data ϕ0,
ϕ1, ψ0, ψ1, w0, w1, θ0 and q0 belong to a suitable Hilbert space, and the unknowns of
(1.1)–(1.3) are the following variables:

(ϕ, ψ,w, θ, q) : (0, 1) × (0,∞) → R
5.

The Bresse system [3] is consisting of three coupled hyperbolic equations

⎧
⎨

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = F1 in (0, L) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) = F2 in (0, L) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = F3 in (0, L) × (0,∞) ,

(1.4)

where L > 0,

Fi : (0, L) × (0,∞) → R

are the external forces (controllers) and w, ϕ and ψ represent, respectively, the longi-
tudinal, vertical and shear angle displacements. For more details, we refer to [15] and
[16].

For the last few years, many researchers studied thewell-posedness and the stability
of Bresse systems (1.4). Under different types of controls Fi , various stability results
have been obtained depending on the nature and the number of controls, the regularity
of initial data and the following parameters:
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s1 = k

ρ1
, s2 = b

ρ2
and s3 = k0

ρ1
; (1.5)

for this purpose, we refer the reader to [1,2,4,7,9,21,24–26] and [27] in case of (local
or global, linear or nonlinear) frictional damping, and [5,11,12] and [10] in case of
memories. In some papers, it was proved that, when each equation of (1.4) is directly
damped; that is

F1F2F3 �= 0,

the stability of (1.4) holds regardless to s1, s2 and s3. However, when at least one Eq.
in (1.4) is free; that is

F1F2F3 = 0 and (F1, F2, F3) �= (0, 0, 0),

system (1.4) is still stable depending on the relation between the coefficients s1, s2
and s3 like:

si = s j , i, j ∈ {1, 2, 3}.

When

(F1, F2, F3) = (0, 0, 0),

system (1.4) is conservative, which means that the energy is conserved and equal to
the energy of initial data along the trajectory of solutions.

When the Bresse system is indirectly damped via the coupling (in a certain manner)
with other equations, we mention here the work [18], where the authors studied the
stability of a thermoelastic Bresse system consisting of the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + lδθ = 0 in (0, L) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δqx = 0 in (0, L) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0 in (0, L) × (0,∞) ,

ρ3θt − θxx + β (wx − lϕ)t = 0 in (0, L) × (0,∞) ,

ρ3qt − qxx + βψxt = 0 in (0, L) × (0,∞)

(1.6)

with homogeneous Dirichlet–Neumann–Neumann boundary conditions

ϕ(x, t) = ψx (x, t) = wx (x, t) = θ(x, t) = q(x, t) = 0, x = 0, L, t ∈ (0,∞)

(1.7)
or homogeneous Dirichlet–Dirichlet–Dirichlet boundary conditions

ϕ(x, t) = ψ(x, t) = w(x, t) = θ(x, t) = q(x, t) = 0, x = 0, L, t ∈ (0,∞) .

(1.8)
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They proved that the norm of solutions in the energy space decays exponentially to
zero at infinity if

s1 = s2 = s3. (1.9)

Otherwise, the norm of solutions decays polynomially to zero with rates depending

on the regularity of the initial data. For the classical solutions, these rates were t− 1
4+ε

in case (1.7), and t− 1
8+ε in case (1.8), where ε is an arbitrary positive constant.

In [8], the authors considered the following coupled Bresse system with only one
heat equation:

⎧
⎪⎪⎨

⎪⎪⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, L) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δθx = 0 in (0, L) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, L) × (0,∞) ,

ρ3θt − θxx + (βψt )x = 0 in (0, L) × (0,∞)

(1.10)

with (1.7) or (1.8). They proved that the exponential stability of (1.10) is equivalent
to (1.9). On the other hand, when (1.9) is not satisfied, the obtained decay rate in [8]

for classical solutions is t− 1
6+ε in general, and t− 1

3+ε when s1 �= s2 and s1 = s3. The
results of [8] were extended in [20] to the case where the thermal dissipation is locally
distributed; that is δ and β are non negative functions on x such that theirs minimums
on some open interval I ⊂ (0, L) are positive. Moreover, when (1.9) is not satisfied,
the authors of [20] improved the polynomial stability estimates of [8] by getting the

decay rates t− 1
4 and t− 1

2 instead of t− 1
6+ε and t− 1

3+ε , respectively.
In [14], the authors considered the following coupled system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δθx = 0 in (0, 1) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1) × (0,∞) ,

ρ3θt + qx + δψxt = 0 in (0, 1) × (0,∞) ,

τqt + βq + θx = 0 in (0, 1) × (0,∞) .

(1.11)

They proved that (1.11) is exponentially stable if

s1 = s3,
(ρ1

k
− ρ2

b

)(

1 − τkρ3
ρ1

)

= τδ2

b
and l small,

and (1.11) is not exponentially stable if

s1 �= s3 or
(ρ1

k
− ρ2

b

)(

1 − τkρ3
ρ1

)

�= τδ2

b
.
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Moreover, when

s1 = s3,
(ρ1

k
− ρ2

b

)(

1 − τkρ3
ρ1

)

�= τδ2

b
and l small,

the polynomial stability for (1.11) was proved in [14] with the decay rate t− 1
2 .

In (1.6) and (1.10), the heat equations are governed by Fourier’s law of heat con-
duction. However, the heat conduction in (1.1) and (1.11) is given by Cattaneo’s law
(for more details, see [14]).

In [6], the author considered the following coupled system:

⎧
⎪⎪⎨

⎪⎪⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,
ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δθx = 0,
ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0,
ρ3θt − k1

∫ ∞
0 g(s)θxx (t − s)ds + γψxt = 0,

(1.12)

with homogeneous Dirichlet–Neumann boundary conditions

ϕ(x, t) = ψx (x, t) = wx (x, t) = θ(x, t) = 0, x = 0, L, t ∈ (0,∞) (1.13)

He proved that (1.12) is exponentially stable if and if

k = k0,

(
ρ1

ρ3k
− 1

g(0)k1

)(ρ1

k
− ρ2

b

)
. − 1

g(0)k1

ρ1γ
2

ρ3kb
= 0. (1.14)

On the other hand if (1.14) is not satisfied no decay rates was derived in [6]. We need
to mention here, that the coupling (through the second equation) and the boundary
conditions considered in [6] are not the same as the one considered in this paper.
Notice that, when the three hyperbolic equations in Bresse system are (all or some of
them) directly damped; that is

(F1, F2, F3) �= (0, 0, 0),

system (1.4) is dissipative. However, systems (1.1), (1.6), (1.10) and (1.11) are con-
sisting of coupled conservative three hyperbolic equations with one or two parabolic
equations, so the stability of the overall system is preserved thanks to the dissipation
generated by the parabolic equations. On the other hand, we remark that in (1.6), the
second and third hyperbolic equations are indirectly damped by the coupling with
the heat equations, and the first hyperbolic one is only weakly damped through the
coupling with the second and the third hyperbolic equations. On the other hand, in
(1.10) and (1.11), only the second hyperbolic equation is effectively damped by the
dissipation coming from the parabolic equations.

In our case (1.1), only the third hyperbolic equation is indirectly damped through
the coupling with the heat equations. Our objective, first is to consider (1.1)–(1.3), we
prove the well-posedness and we establish some decay rates for the solutions (like:
exponential stability, non exponential stability and polynomial stability) depending
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on the relationship between the coefficients of (1.1) and the smoothness of the initial
data.

Without loss of generality, we consider the domain (0, 1) instead of (0, L). The
proof of the well-posedness is based on the semigroup theory. However, the stability
results are proved using the energy method combining with the frequency domain
approach.

The paper is organized as follows. In Sect. 2, we prove the well-posedness of (1.1)–
(1.3). In Sects. 3 and 4, we show, respectively, our non exponential and exponential
stability results for (1.1)–(1.3). The proof of our polynomial decay for (1.1)–(1.3) is
proved in Sect. 5.

2 Well-posedness of (1.1)–(1.3)

In this section, we prove the existence, uniqueness and smoothness of solutions for
(1.1)–(1.3) using the semigroup theory. In order to transform (1.1)–(1.3) into a first
order evolution system on a suitable Hilbert space, we introduce the vector functions

� =
(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, q

)T
and �0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, q0)

T ,

where ϕ̃ = ϕt , ψ̃ = ψt and w̃ = wt . System (1.1) with initial data (1.2) can be written
as

{
�t = A� in (0,∞) ,

� (0) = �0,
(2.1)

where A is a linear operator defined by

A� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕ̃
k

ρ1
(ϕx + ψ + l w)x + lk0

ρ1
(wx − lϕ)

ψ̃
b

ρ2
ψxx − k

ρ2
(ϕx + ψ + l w)

w̃
k0
ρ1

(wx − lϕ)x − lk

ρ1
(ϕx + ψ + l w) − δ

ρ1
θx

− 1

ρ3
qx − δ

ρ3
w̃x

−β

τ
q − 1

τ
θx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.2)
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Now, we introduce the following spaces:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H1∗ (0, 1) = {
f ∈ H1 (0, 1) : f (0) = 0

}
,

∼
H1∗ (0, 1) = {

f ∈ H1 (0, 1) : f (1) = 0
}
,

H2∗ (0, 1) = H2 (0, 1) ∩ H1∗ (0, 1) ,
∼
H2∗ (0, 1) = H2 (0, 1) ∩

∼
H1∗ (0, 1)

and the energy space is given by

H = H1∗ (0, 1) × L2 (0, 1) ×
∼
H1∗ (0, 1) × L2 (0, 1) ×

∼
H1∗ (0, 1) ×

(
L2 (0, 1)

)3

equipped with the inner product, for � j = (ϕ j , ϕ̃ j , ψ j , ψ̃ j , w j , w̃ j , θ j , q j )
T ∈

H, j = 1, 2,

〈�1,�2〉H = k 〈(ϕ1x + ψ1 + l w1) , (ϕ2x + ψ2 + l w2)〉L2(0,1) + b 〈ψ1x , ψ2x 〉L2(0,1)

+ k0 〈(w1x − lϕ1) , (w2x − lϕ2)〉L2(0,1) + ρ1 〈ϕ̃1, ϕ̃2〉L2(0,1)

+ ρ2〈ψ̃1, ψ̃2〉L2(0,1) + ρ1 〈w̃1, w̃2〉L2(0,1) + ρ3 〈θ1, θ2〉L2(0,1)

+ τ 〈q1, q2〉L2(0,1) ,

and the corresponding norm in the energy space will be given by

‖�‖2H = k ‖ϕx + ψ + l w‖2L2(0,1) + b ‖ψx‖2L2(0,1) + k0 ‖wx − lϕ‖2L2(0,1)

+ ρ1 ‖ϕ̃‖2L2(0,1) + ρ2‖ψ̃‖2L2(0,1) + ρ1 ‖w̃‖2L2(0,1) + ρ3 ‖θ‖2L2(0,1)

+ τ ‖q‖2L2(0,1) .

The domain of the operator A will be

D (A) = {� ∈ H | A� ∈ H, ϕx (1) = ψx (0) = wx (0) = 0} .

Based on the definition of A and H, one can see that

D (A) =
⎧
⎨

⎩

� ∈ H | ϕ ∈ H2∗ (0, 1) ; ψ, w ∈
∼
H2∗ (0, 1) ; ϕ̃, θ ∈ H1∗ (0, 1) ;

ψ̃, w̃, q ∈
∼
H1∗ (0, 1) ; ϕx (1) = ψx (0) = wx (0) = 0

⎫
⎬

⎭
.

Since the homogeneous Dirichlet–Neumann boundary conditions in (1.3) are included

in the definition of H1∗ (0, 1),
∼
H1∗ (0, 1) and D (A), it follows that, if � ∈ D (A) and

satisfies (2.1), then (1.1)–(1.3) holds.
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It is clear from the homogeneous Dirichlet boundary conditions in H1∗ (0, 1) and
∼
H1∗ (0, 1) that, if (ϕ, ψ,w) ∈ H1∗ (0, 1) ×

∼
H1∗ (0, 1) ×

∼
H1∗ (0, 1) satisfying

k ‖(ϕx + ψ + l w)‖2L2(0,1) + b ‖ψx‖2L2(0,1) + k0 ‖(wx − lϕ)‖2L2(0,1) = 0,

then

ψ = 0, ϕ = −c sin (lx) and w = c cos (lx),

where c is a constant such that c = 0 or l = π
2 + mπ , for some m ∈ N. Furthermore,

we get ϕ = ψ = w = 0 if

l �= π

2
+ mπ, ∀m ∈ N. (2.3)

Here and after we assume that (2.3) is satisfied. Thus,H is a Hilbert space and D (A)

is dense inH. If the domain (0, 1) is replaced by (0, L), then (2.3) becomes

l L �= π

2
+ mπ, ∀m ∈ N.

Now, we prove that the operator A generates a C0 semigroup of contractions on
H. For this purpose, it is sufficient to prove that A is maximal monotone. A direct
calculation gives

〈A�,�〉H = −β ‖q‖2L2(0,1) ≤ 0. (2.4)

Hence, A is dissipative in H. On the other hand, it is easy to show that 0 ∈ ρ (A);
that is, for any F = ( f1, . . . , f8)T ∈ H, there exists Z = (z1, . . . , z8)T ∈ D (A)

satisfying

AZ = F . (2.5)

Indeed, from the 1st, 3rd and 5th Eqs. in (2.5), we get

z2 = f1, z4 = f3 and z6 = f5, (2.6)

and then

z2 ∈ H1∗ (0, 1) and z4, z6 ∈
∼
H1∗ (0, 1) . (2.7)

Substituting z2 into the 7th Eq. in (2.5), we conclude from the last two equations in
(2.5) that

z7x = −βz8 − τ f8 and z8x = −δ f5x − ρ3 f7. (2.8)
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By a direct integration, we see that (2.8) has a unique solution satisfying

z7 ∈ H1∗ (0, 1) and z8 ∈
∼
H1∗ (0, 1) . (2.9)

Finally, the second, fourth and sixth equations in (2.5) become

⎧
⎨

⎩

k (z1x + z3 + l z5)x + lk0 (z5x − lz1) = ρ1 f2,
bz3xx − k (z1x + z3 + l z5) = ρ2 f4,
k0 (z5x − lz1)x − lk (z1x + z3 + l z5) = δz7x + ρ1 f6.

(2.10)

To prove that (2.10) admits a solution satisfying

z1 ∈ H2∗ (0, 1) , z3, z5 ∈
∼
H2∗ (0, 1) and z1x (1) = z3x (0) = z5x (0) = 0,

(2.11)
we define the following bilinear form:

G1 ((v1, v2, v3) , (w1, w2, w3)) = k 〈v1x + v2 + lv3, w1x + w2 + lw3〉L2(0,1)

+ b 〈v2x , w2x 〉L2(0,1)

+ k0 〈v3x − lv1, w3x − lw1〉L2(0,1) ,

∀ (v1, v2, v3)
T , (w1, w2, w3)

T ∈ H0 × H0,

and the following linear form:

G2 (v1, v2, v3) = 〈v1, ρ1 f2〉L2(0,1) + 〈v2, ρ2 f4〉L2(0,1)

+〈v3, δz7x + ρ1 f6〉L2(0,1) , ∀ (v1, v2, v3)
T ∈ H0,

where

H0 = H1∗ (0, 1) ×
∼
H1∗ (0, 1) ×

∼
H1∗ (0, 1)

Thus, the variational formulation of (2.10) is given by

G1 ((z1, z3, z5) , (w1, w2, w3)) = G2 (w1, w2, w3) , ∀ (w1, w2, w3)
T ∈ H0.

(2.12)
From Lax–Milgram theorem, it follows that (2.12) has a unique solution

(z1, z3, z5) ∈ H0.

Therefore, using classical elliptic regularity arguments, we conclude that (z1, z3, z5)
solves (2.10) and satisfies the regularity and boundary conditions (2.11). This proves
that (2.5) has a unique solution Z ∈ D (A). By the resolvent identity, we have λI −
A is surjective, for any λ > 0 (see [19]), where I denotes the identity operator.
Consequently, the Lumer-Phillips theorem implies thatA is the infinitesimal generator
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of a linear C0 semigroup of contractions on H. Thus, the well-posedness result for
(2.1) is stated in the following (see [22]):

Theorem 2.1 Assume that (2.3) holds. For any p ∈ N and �0 ∈ D(Ap), system (2.1)
admits a unique solution

� ∈ ∩p
j=0C

p− j
(
R+; D

(
A j

))
, (2.13)

where D
(A j

)
is endowed by the graph norm ‖·‖D(A j) = ∑ j

r=0 ‖Ar ·‖H.

In the next three sections, we will show some exponential, non exponential and
polynomial stability results for (2.1). The proof of these results is based on the fol-
lowing frequency domain theorems:

Theorem 2.2 ([13] and [23]) A C0 semigroup of contractions on a Hilbert space H
generated by an operator A is exponentially stable if and only if

iR ⊂ ρ (A) and sup
λ∈R

∥
∥
∥(iλI − A)−1

∥
∥
∥L(H)

< ∞. (2.14)

Theorem 2.3 ([17]) If a bounded C0 semigroup etA on a Hilbert space H generated
by an operator A satisfies, for some j ∈ N

∗,

iR ⊂ ρ (A) and sup
|λ|≥1

1

λ j

∥
∥
∥(iλI − A)−1

∥
∥
∥L(H)

< ∞. (2.15)

Then, for any p ∈ N
∗, there exists a positive constant cp such that

∥
∥
∥etAz0

∥
∥
∥H ≤ cp ‖z0‖D(Ap)

(
ln t

t

) p

j ln t, ∀z0 ∈ D
(Ap) , ∀t > 0. (2.16)

3 Lack of Exponential Stability of (1.1)-(1.3)

Our objective here is to show that the semigroup associatedwith ourBresse systemwith
second sound (2.1) is not exponentially stable depending on the following relations:

(k − k0)
(
ρ3 − ρ1

τk

)
− δ2 = bρ1 − kρ2 = 0 (3.1)

and

l2 �= ρ2k0 + ρ1b

ρ2k0

(π

2
+ mπ

)2 + ρ1k

ρ2 (k + k0)
, ∀m ∈ Z. (3.2)

Theorem 3.1 We assume that (2.3) holds, and (3.1) or (3.2) does not hold. Then the
semigroup associated with (2.1) is not exponentially stable.
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Proof We use Theorem 2.2 by proving that the first or second condition in (2.14) is
not satisfied. First, we prove that the first condition in (2.14) is equivalent to (3.2).
Note that, according to the fact that 0 ∈ ρ (A) (see Sect. 2), A−1 is bounded and it
is a bijection between H and D(A). Since D(A) has a compact embedding into H,
so it follows that A−1 is a compact operator, which implies that the spectrum of A is
discrete. Let λ ∈ R

∗. We will prove that the unique

� =
(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, q

)T ∈ D(A)

satisfying

A� = i λ � (3.3)

is � = 0 if and only if (3.2) holds; that is the fact that iλ is not an eigenvalue of A is
equivalent to (3.2). But Eq. (3.3) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃ = iλϕ, ψ̃ = iλψ, w̃ = iλw,
k

ρ1
(ϕx + ψ + l w)x + lk0

ρ1
(wx − lϕ) = iλϕ̃,

b

ρ2
ψxx − k

ρ2
(ϕx + ψ + l w) = iλψ̃,

k0
ρ1

(wx − lϕ)x − lk

ρ1
(ϕx + ψ + l w) − δ

ρ1
θx = iλw̃,

− 1

ρ3
qx − δ

ρ3
w̃x = iλθ, −β

τ
q − 1

τ
θx = iλq.

(3.4)

Using (2.4), we find

−β ‖q‖2L2(0,1) = Re 〈A�,�〉H = Re 〈iλ�,�〉H = Re iλ ‖�‖2H = 0.

Then

q = 0. (3.5)

Taking into account that θ ∈ H1∗ (0, 1), using (3.5) and the eight equation in (3.4), we
deduce that

θ = 0. (3.6)

Inserting (3.5) and (3.6) into the seventh equation in (3.4), we find

w̃x = 0. (3.7)

Then, the third equation in (3.4), implies that

wx = 0. (3.8)
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As w ∈
∼
H1∗ (0, 1), we have

w = w̃ = 0. (3.9)

Using (3.5), (3.6) and (3.9), then the system (3.4) is reduced into:

⎧
⎪⎪⎨

⎪⎪⎩

ϕ̃ = iλϕ, ψ̃ = iλψ,

k (ϕx + ψ)x − l2k0ϕ = −ρ1λ
2ϕ,

bψxx − k (ϕx + ψ) = −ρ2λ
2ψ,

−k0ϕx − k (ϕx + ψ) = 0,

(3.10)

which is equivalent to ϕ̃ = iλϕ, ψ̃ = iλψ and

⎧
⎪⎨

⎪⎩

(
l2k0 − ρ1λ

2
)
ϕ − k (ϕx + ψ)x = 0,

−ρ2λ
2ψ − bψxx + k (ϕx + ψ) = 0,

ϕx + ψ = −k0
k

ϕx .

(3.11)

By deriving (3.11)3 and combining with (3.11)1, we see that ϕ satisfy the following
equation:

ϕxx + αϕ = 0, (3.12)

where α = l2k0−ρ1λ
2

k0
. At this stage, we distinguish three cases.

Case 1 λ2 = l2k0
ρ1

. Then

ϕ(x) = c1x + c2,

for c1, c2 ∈ C. Using the boundary conditions

ϕ (0) = ϕx (1) = 0, (3.13)

we find

ϕ = 0, (3.14)

which implies that, using the first two equations in (3.10) and the last one in (3.11),

∼
ϕ = 0 (3.15)

and

ψ = ∼
ψ = 0. (3.16)
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Consequently, we get

� = 0. (3.17)

Case 2 λ2 > l2k0
ρ1

. Then

ϕ(x) = c1e
√−αx + c2e

−√−αx .

Using again the boundary conditions (3.13), we find (3.14), and similarly as before,
we arrive at (3.17).

Case 3 λ2 < l2k0
ρ1

. Then

ϕ(x) = c1 cos
(√

αx
) + c2 sin

(√
αx

)
.

Using the boundary conditions (3.13), we deduce that c1 = 0, and

c2 = 0 or ∃m ∈ Z : α =
(π

2
+ mπ

)2
. (3.18)

If c2 = 0, then (3.14) holds, and as before, we find (3.17).
If c2 �= 0, then, by (3.18),

∃m ∈ Z : l2k0 − ρ1λ
2

k0
=

(π

2
+ mπ

)2
. (3.19)

Therefore, (3.11)3 is equivalent to

ψ(x) = −c2

(

1 + k0
k

)√
α cos

(√
αx

)
, (3.20)

and then the first two equations in (3.11) are reduced to

λ2 = k0
[
kk0 + bl2 (k + k0)

]

(k + k0) (k0ρ2 + bρ1)
. (3.21)

We see that (3.19) and (3.21) lead to

∃m ∈ Z : l2 = ρ2k0 + ρ1b

ρ2k0

(π

2
+ mπ

)2 + ρ1k

ρ2 (k + k0)
;

that is (3.2) does not hold. So, if (3.2) holds, we get a contradiction, and hence, c2 = 0
and, as before, we find (3.17).
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If (3.2) does not hold, then, for λ ∈ R satisfying (3.21), the function

�(x) = c2
(
sin

(√
αx

)
, iλ sin

(√
αx

)
,−

(

1 + k0
k

)√
α cos

(√
αx

)
,

−iλ

(

1 + k0
k

)√
α cos

(√
αx

)
, 0, 0, 0, 0

)T

is a solution of (3.3), for any c2 ∈ C, and then iλ /∈ ρ (A). Thus, we proved that
i R ⊂ ρ (A) is equivalent to (3.2).

Now, we show that the second condition in (2.14) does not hold if (3.1) is not
satisfied, i.e. we assume that (3.1) is not satisfied and we will prove that there exists a
sequence (λn)n ⊂ R such that

∥
∥
∥(λn I − A)−1

∥
∥
∥L(H)

−→ ∞,

which is equivalent to prove that there exists (Fn)n ⊂ H with ‖Fn‖H ≤ 1, for which
we have

||(λn I − A)−1 Fn︸ ︷︷ ︸
�n

||H −→ ∞, (3.22)

therefore, we have

λn�n − A�n = Fn . (3.23)

Our objective is to show that the solution �n is not bounded when Fn is bounded in
H. The equation (3.23) implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ∼
ϕn = f1n,

iλnρ1
∼
ϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) + δθnx = ρ1 f2n,

iλnψn − ∼
ψn = f3n,

iλnρ2
∼
ψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2 f4n,

iλnwn − ∼
wn = f5n,

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) = ρ1 f6n,

iλnτqn + βqn + θnx = τ f7n,

iλnρ3θn + qnx + δ
∼
wnx = ρ3 f8n .

(3.24)

We will show that, for all n ∈ N, given c4 ∈ C
∗ and

Fn(x) = (0, 0, 0, c4 cos (Nx), 0, 0, 0, 0)T ,
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where N = (2n+1)π
2 , there exists λn ∈ R and �n = (iλn − A)−1Fn ∈ D(A) such

that

lim
λn→∞ ‖�n‖H = ∞.

The system (3.24) will be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ∼
ϕn = 0, iλnψn − ∼

ψn = 0, iλnwn − ∼
wn = 0,

−λ2nρ1ϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) = 0,

−λ2nρ2ψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2c4 cos (Nx),

−λ2nρ1wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) + δθnx = 0,

iλnρ3θn + qnx + δ
∼
wnx = 0,

iλnτqn + βqn + θnx = 0.

(3.25)

Because of the boundary conditions, one can take the following solution:

{
ϕn(x) = α1 sin (Nx), ψn(x) = α2 cos (Nx), wn(x) = α3 cos (Nx),
θn(x) = α4 sin (Nx), qn(x) = α5 cos (Nx),

(3.26)

where the constants α1, α2, α3, α4 and α5 are the solution of the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−λ2nρ1 + N 2k + l2k0)α1 + kNα2 + (k + k0)l Nα3 = 0,
kNα1 + (−λ2nρ2 + bN 2 + k)α2 + kl α3 = ρ2c4,

(k0 + k)lNα1 + lkα2 + (−λ2nρ1 + k0N 2 + l2k + δ(iλnτ+β)δλn N2

(iλ2nρ3τ+λnρ3β−i N2)
)α3 = 0,

(iλ2nρ3τ + λnρ3β − i N 2)α5 + δλnα3N 2 = 0,

(iλnτ + β)α5 = −α4N .

(3.27)
We distinguish two cases.

Case 1
b

ρ2
= k0

ρ1
and [k − k0]

[
ρ3 − ρ1

τk

]
− δ2 �= 0. Let λ2n = k

ρ1
N 2 + A, where

A is a constant to be chosen later. Then form (3.27) we have

((
(k0 − k) ρ2

ρ1
N 2 + (k − Aρ2)

)
(
l2k0 − Aρ1

) − k2N 2
)

α1

= − ρ2k Nc4 −
(
l (k + k0) (k0 − k) ρ2

ρ1
N 3 + + (

kk0 − Aρ2 (k + k0) − k2
)
Nl

)

α3,
((

(k0 − k) ρ2

ρ1
N 2 + (k − Aρ2)

)
(
l2k0 − Aρ1

) − k2N 2
)

α2

= ρ2
[
l2k0 − Aρ1

]
c4 + (

l (k + k0) k N 2 − kl
(
l2k0 − Aρ1

))
α3

(3.28)
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and α3 must satisfy

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

([
l2k0 − Aρ1

]
(k0 − k) ρ2

ρ1
− k2 − l2 (k + k0)2 ρ2

ρ1

)

(k0 − k) N 4

+
⎛

⎝

(
l2k − Aρ1

) [
l2k0 − Aρ1

]
(k0 − k) ρ2

ρ1
− (

l2k − Aρ1
)
k2

+ (k − Aρ2)
[
l2k0 − Aρ1

]
(k0 − k) − (k − Aρ2) l2 (k + k0)2 + l2k2 (k + k0)

⎞

⎠ N 2

+lk2N + [
l2k0 − Aρ1

] (
l2k − Aρ1

)
(k − Aρ2) − l2k2

[
l2k0 − Aρ1

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

α3

([
(k0 − k) ρ2

ρ1
N 2 + (k − Aρ2)

]
[
l2k0 − Aρ1

] − k2N 2

)

+
δ2N 2

[

− τk

ρ1
N 2 − Aτ + iβN

√(
k

ρ1
+ A

N 2

)]

[(

1 − τρ3k

ρ1

)

N 2 − Aτρ3 + iρ3βN

√(
k

ρ1
+ A

N 2

)]α3

= −
[
l2k0 − Aρ1 − (k + k0) N 2

]
ρ2kl

([
(k0 − k) ρ2

ρ1
N 2 + (k − Aρ2)

]
[
l2k0 − Aρ1

] − k2N 2

) c4.

(3.29)

Now, we distinguish four subcases.

k0 − k = 0 and 1 − τρ3k

ρ1
�= 0, then, from (3.28) and (3.29), we have

⎧
⎪⎪⎨

⎪⎪⎩

(
(k − Aρ2)

[
l2k0 − Aρ1

] − k2N 2
)
α1

= −ρ2kNc4 − [
kk0 − k2 − Aρ2 (k + k0)

]
lN α3,(

(k − Aρ2)
[
l2k0 − Aρ1

] − k2N 2
)
α2

= ρ2
[
l2k0 − Aρ1

]
c4 + (

l (k + k0) kN 2 − kl
[
l2k0 − Aρ1

])
α3

(3.30)

and α3 satisfies

( [
l2k2 (k + k0) − (

l2k − Aρ1
)
k2 − (k − Aρ2) l2 (k + k0)2

]
N 2

+lk2N + [
l2k0 − Aρ1

] (
l2k − Aρ1

)
(k − Aρ2) − l2k2

[
l2k0 − Aρ1

]

)

α3

(
(k − Aρ2)

[
l2k0 − Aρ1

] − k2N 2
)

+
δ2N 2

[

−τk

ρ1
N 2 − Aτ + iβN

√(
k

ρ1
+ A

N 2

)]

[(

1 − τρ3k

ρ1

)

N 2 − Aτρ3 + iρ3βN

√(
k

ρ1
+ A

N 2

)]α3

= −
[
l2k0 − Aρ1 − (k + k0) N 2

]

(
[k − Aρ2]

[
l2k0 − Aρ1

] − k2N 2
)ρ2klc4.

(3.31)

We choose A so that

A =
[
kρ1 + ρ2l2k0

] + N

√

4ρ2ρ1k2 +
[
kρ1 + ρ2l2k0

]2

N 2

2ρ2ρ1
� Nk√

ρ2ρ1
, (3.32)
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then with (3.32), we have

(k − Aρ2)
[
l2k0 − Aρ1

]
− k2N 2 = l2kk0, (3.33)

since, our concern is the asymptotic behavior of the constants, so, for N large enough,
we obtain

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aρ1k2 + Aρ2l2 (k + k0)2 − A3

N 2 ρ2
1ρ2 + l2k2 (k + k0)

(
(k − Aρ2)

[
l2k0 − Aρ1

] − k2N 2
)

− τkδ2
(

1 − τρ3k

ρ1

)

ρ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

N 2α3

� −
[
l2k0 − Aρ1 − (k + k0) N 2

]

(
[k − Aρ2]

[
l2k0 − Aρ1

] − k2N 2
)ρ2klc4. (3.34)

By using (3.32), we have

α3 �
√

ρ2ρ1

l (k + k0) N
c4

and

α2 � ρ1k

l2k0 (k + k0)
c4,

so, we deduce with expression of α2 that

‖�n‖H −→ ∞.

k0 − k = 0 and 1 − τρ3k

ρ1
= 0, then we have from (3.28), (3.29) and (3.33)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
(k − Aρ2)

[
l2k0 − Aρ1

] − k2N 2
)
α1

= −ρ2kNc4 − l
[
kk0 − Aρ2 (k + k0) − k2

]
Nα3,(

(k − Aρ2)
[
l2k0 − Aρ1

] − k2N 2
)
α2

= ρ2
[
l2k0 − Aρ1

]
c4 +

(
l (k + k0) kN 2

−kl
[
l2k0 − Aρ1

]

)

α3

(3.35)
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and

((− (
l2k − Aρ1

)
k2 − (k − Aρ2) l2 (k + k0)2 + l2k2 (k + k0)

)
N 2

+lk2N + [
l2k0 − Aρ1

] (
l2k − Aρ1

)
(k − Aρ2) − l2k2

[
l2k0 − Aρ1

]

)

α3

l2kk0

+
δ2N 2

[

−τk

ρ1
N 2 − Aτ + iβN

√(
k

ρ1
+ A

N 2

)]

[

−Aτρ3 + iρ3βN

√(
k

ρ1
+ A

N 2

)]

α3 = −
[
l2k0 − Aρ1 − (k + k0) N 2

]

l2kk0
ρ2klc4. (3.36)

Using 1− τρ3k

ρ1
= 0, (3.32), (3.35) and (3.36) when N large enough, we deduce that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α3 �
2

[

−√
ρ2ρ1 + iρ2ρ3β

√
k

ρ1

]

l

[

−
(

4k + δ2

ρ3

)

+ 4i
β
√

ρ2k

τ

]

N

c4,

α2 �
δ2

ρ3

√
ρ2ρ1

l2k

[

−
(

4k + δ2

ρ3

)

+ 4i
β
√

ρ2k

τ

]Nc4,

so, we obtain

‖�n‖H −→ ∞.

k0 − k �= 0 and 1 − τρ3k

ρ1
= 0, then we have from (3.28) and (3.29)

⎛

⎝

⎡

⎣
(k0 − k) ρ2

ρ1
N 2

+ (k − Aρ2)

⎤

⎦
[
l2k0 − Aρ1

]
− k2N 2

⎞

⎠

α1 = −ρ2kNc4 −
⎡

⎣
l (k + k0) (k0 − k) ρ2

ρ1
N 3

+ [
kk0 − Aρ2 (k + k0) − k2

]
Nl

⎤

⎦α3

and
⎛

⎝

⎡

⎣
(k0 − k) ρ2

ρ1
N 2

+ (k − Aρ2)

⎤

⎦
[
l2k0 − Aρ1

]
− k2N 2

⎞

⎠
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α2 = ρ2

[
l2k0 − Aρ1

]
c4 +

(
l (k + k0) kN 2

−kl
[
l2k0 − Aρ1

]

)

α3.

Also, we have

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

([
l2k0 − Aρ1

]
(k0 − k) ρ2

ρ1
− k2 − l2 (k + k0)2 ρ2

ρ1

)

(k0 − k) N 4

+
⎛

⎝

(
l2k − Aρ1

) [
l2k0 − Aρ1

]
(k0 − k) ρ2

ρ1
− (

l2k − Aρ1
)
k2

+ (k − Aρ2)
[
l2k0 − Aρ1

]
(k0 − k) − (k − Aρ2) l2 (k + k0)2 + l2k2 (k + k0)

⎞

⎠ N 2

+lk2N + [
l2k0 − Aρ1

] (
l2k − Aρ1

)
(k − Aρ2) − l2k2

[
l2k0 − Aρ1

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

α3

([
(k0 − k) ρ2

ρ1
N 2 + (k − Aρ2)

]
[
l2k0 − Aρ1

] − k2N 2

)

+
δ2N 2

[

− τk

ρ1
N 2 − Aτ + iβN

√(
k

ρ1
+ A

N 2

)]

[

−Aτρ3 + iρ3βN

√(
k

ρ1
+ A

N 2

)] α3

= −
[
l2k0 − Aρ1 − (k + k0) N 2

]

([
(k0 − k) ρ2

ρ1
N 2 + (k − Aρ2)

]
[
l2k0 − Aρ1

] − k2N 2

)ρ2klc4,

(3.37)

Here we choose A as follow:

A =

⎛

⎜
⎝

[
(k0 − k) ρ2N 2 − kρ1 − ρ2l2k0

]

+
√
[
(k0 − k) ρ2N 2 − (

kρ1 + ρ2l2k0
)]2 − 4ρ2ρ1

[
l2k0 (k0 − k) ρ2

ρ1
− k2

]

N 2

⎞

⎟
⎠

2ρ2ρ1

� (k0 − k) N 2

ρ1
, (3.38)

then we have

[
(k0 − k) ρ2

ρ1
N 2 + k − Aρ2

] [
l2k0 − Aρ1

]
− k2N 2 = l2kk0, (3.39)

therefore, for N large enough and using (3.37), (3.38) and (3.39), we have

⎧
⎪⎨

⎪⎩

α3 � − 2lk0ρ2
(k0 − k)2 N 2

c4,

α2 � −ρ2 (k0 − k)

l2kk0
N 2c4,

⎫
⎪⎬

⎪⎭
(3.40)

so, we deduce that

‖�n‖H −→ ∞.
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k0 − k �= 0 and 1− τρ3k

ρ1
�= 0, then, using (3.28), (3.29) and (3.39), we obtain the

same result as before

⎧
⎪⎨

⎪⎩

α3 � − 2lk0ρ2
(k0 − k)2 N 2

c4,

α2 � −ρ2 (k0 − k)

l2kk0
N 2c4,

(3.41)

so, we get

‖�n‖H −→ ∞.

Case 2
b

ρ2
�= k0

ρ1
. Let λ2n = k

ρ1
N 2 + A, then from (3.25) we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−Aρ1 + l2k0
]
α1 + kNα2 + l (k + k0) Nα3 = 0,

kNα1 +
[(

b − ρ2k

ρ1

)

N 2 − Aρ2 + k

]

α2 + kl α3 = ρ2c4,
[
(k0 − k) N 2 − Aρ1 + l2k

]
α3 + l (k + k0) Nα1 + lkα2 + δNα4 = 0,

α4 =
δN

[

−τk

ρ1
N 2 − Aτ + iβN

√(
k

ρ1
+ A

N 2

)]

[(

1 − τρ3k

ρ1

)

N 2 − τρ3A + iρ3βN

√(
k

ρ1
+ A

N 2

)]α3,

α5 = − iδλnN 2
[
N 2 − τρ3λ2n + iρ3βλn

]α3,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.42)

then we obtain

⎛

⎜
⎜
⎝

⎡

⎣

(

b − ρ2k

ρ1

)

N 2

+ (k − Aρ2)

⎤

⎦
(
l2k0 − Aρ1

)

−k2N 2

⎞

⎟
⎟
⎠α2

= ρ2

(
l2k0 − Aρ1

)
c4 +

[
(k + k0) N 2

− (
l2k0 − Aρ1

)

]

klα3, (3.43)

⎛

⎝

⎡

⎣

(

b − ρ2k

ρ1

)

N 2

+ (k − Aρ2)

⎤

⎦
(
l2k0 − Aρ1

)
− k2N 2

⎞

⎠α1

= −ρ2kNc4 −
⎡

⎣ (k + k0)

[(

b − ρ2k

ρ1

)

N 2 + (k − Aρ2)

]

−k2

⎤

⎦ lN α3 (3.44)
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and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(k0 − k) N 2 − Aρ1 + l2k +

⎛

⎝−
[

(k + k0)

[(

b − ρ2k

ρ1

)

N 2 + k − Aρ2

]

− k2
]

l2 (k + k0) N 2

+ [
(k + k0) N 2 − (

l2k0 − Aρ1
)]
k2l2

⎞

⎠

[(

b − ρ2k

ρ1

)

N 2 + k − Aρ2

]
(
l2k0 − Aρ1

) − k2N 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

α3

+
δ2N 2

[

− τk

ρ1
N 2 − Aτ + iβN

√
k

ρ1
+ A

N 2

]

(

1 − τρ3k

ρ1

)

N 2 − τρ3A + iρ3βN

√
k

ρ1
+ A

N 2

α3

= − lkρ2
(
l2k0 − Aρ1

)
c4 − ρ2kNl (k + k0) Nc4

[(

b − ρ2k

ρ1

)

N 2 + k − Aρ2

]
(
l2k0 − Aρ1

) − k2N 2

. (3.45)

Now, we choose A such that

A =

⎛

⎜
⎜
⎜
⎝

[

ρ1

(

b − ρ2k

ρ1

)

N 2 + ρ2l2k0 + kρ1

]

+
√
[

ρ1

(

b − ρ2k

ρ1

)

N 2 + ρ2l2k0 + kρ1

]2

− 4ρ1ρ2

([(

b − ρ2k

ρ1

)

l2k0 − k2
]

N 2 − B

)

⎞

⎟
⎟
⎟
⎠

2ρ1ρ2

�

(

b − ρ2k

ρ1

)

N 2

ρ2
, (3.46)

where B is another constant to be chosen later. So, by using (3.46), we have

[(

b − ρ2k

ρ1

)

N 2 + (k − Aρ2)

] (
l2k0 − Aρ1

)
− k2N 2 = l2kk0 + B. (3.47)

From (3.45) and by using (3.47), we have

⎡

⎢
⎢
⎢
⎢
⎣

[
(k0 − k) N 2 − Aρ1 + l2k

]

+

⎛

⎝−
[

(k + k0)

[(

b − ρ2k

ρ1

)

N 2 + (k − Aρ2)

]

− k2
]

l2 (k + k0) N 2

+ [
(k + k0) N 2 − (

l2k0 − Aρ1
)]
k2l2

⎞

⎠

(
l2kk0 + B

)

⎤

⎥
⎥
⎥
⎥
⎦

α3

+
δ2N 2

[

−τk

ρ1
N 2 − Aτ + iβN

√(
k

ρ1
+ A

N 2

)]

(

1 − τρ3k

ρ1

)

N 2 − τρ3A + iρ3βN

√(
k

ρ1
+ A

N 2

)α3

= − lkρ2
(
l2k0 − Aρ1

)
c4 − ρ2kNl (k + k0) Nc4

l2kk0 + B
. (3.48)
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From (3.48) and by using (3.46), we deduce, for N large enough, the following:

⎡

⎢
⎢
⎣

[

k0 − b

ρ2
ρ1

]

N 2 +

(

k0 + bρ1
ρ2

)

(
l2kk0 + B

) k2l2N 2

⎤

⎥
⎥
⎦α3

−
bτδ2

ρ2
[(

1 − τρ3b

ρ2

)

N 2 + iρ3βN

√
b

ρ2

]N 4α3

= −−Aρ1 − (k + k0) N 2
(
l2kk0 + B

) lkρ2c4. (3.49)

Here, we distinguish two subcases.

1 − τρ3b

ρ2
= 0, then we have

α3 = −i

⎡

⎢
⎢
⎣

lkρ2ρ3β

(
b

ρ2
ρ1 + k0

)√
ρ2

b

τδ2
(
l2kk0 + B

)
N

⎤

⎥
⎥
⎦ c4 (3.50)

and

α2 = −ρ1b − kρ2
l2kk0 + B

N 2c4.

By choosing B = 0, we deduce that

‖�n‖H −→ ∞.

1 − τρ3b

ρ2
�= 0, then, from (3.48), we have

⎡

⎢
⎢
⎣k0 − b

ρ2
ρ1 +

k0 + bρ1
ρ2

l2kk0 + B
k2l2 −

bτδ2

ρ2

1 − τρ3b

ρ2

⎤

⎥
⎥
⎦ N 2α3

=
k0 + ρ1b

ρ2

l2kk0 + B
lkρ2N 2c4,

(3.51)

here, we choose B such that

B = ρ2

bτδ2

(

k0 + bρ1
ρ2

)(

1 − τρ3b

ρ2

)

k2l2 − l2kk0, (3.52)
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so, by (3.52), we obtain

k0 + bρ1
ρ2

l2kk0 + B
k2l2 =

bτδ2

ρ2

1 − τρ3b

ρ2

,

then we deduce from (3.48) and (3.52) that

α3 = bτδ2ρ2

ρ2kl

(

1 − τρ3b

ρ2

)[

k0 − b

ρ2
ρ1

]c4

and

α1 = − bτδ2

ρ2

(

k0 + bρ1
ρ2

)(

1− τρ3b

ρ2

)

k2l2

⎡

⎢
⎢
⎣ρ2k+ k0bτδ2

(

1 − τρ3b

ρ2

)[

k0 − b

ρ2
ρ1

]

⎤

⎥
⎥
⎦ Nc4,

thus we have

wnx (x) − lϕn(x) = k0τ 2b2δ4

ρ2k2l

(

1 − τρ3b

ρ2

)2 [

k0 − b

ρ2
ρ1

](

k0 + bρ1
ρ2

)Nc4 sin (Nx),

hence

‖�n‖H −→ ∞.

The proof of our theorem is then completed. ��

4 Exponential Stability of (1.1)–(1.3)

In this section, we use again Theorem 2.2 to prove that the semigroup associated with
(2.1) is exponentially stable provided that (2.3), (3.1) and (3.2) hold.

Theorem 4.1 We assume that (2.3), (3.1) and (3.2) hold. Then the semigroup associ-
ated with (2.1) is exponentially stable.

Proof In Sect. 3, we have proved that the first condition in (2.14) is equivalent to (3.2).
Now, by contradiction, we will prove the second condition in (2.14). So, we assume
that the second condition in (2.14) is false, then there exist sequences (�n)n ⊂ D (A)

and (λn)n ⊂ R satisfying

‖�n‖H = 1, ∀ n ≥ 0, (4.1)
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lim
n→∞ |λn| = ∞ (4.2)

and

lim
n→∞ ‖(i λn I − A) �n‖H = 0, (4.3)

which implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnϕn − ∼
ϕn −→ 0 in H1∗ (0, 1) ,

iλnρ1
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) −→ 0 in L2 (0, 1) ,

iλnψn − ∼
ψn −→ 0 in

∼
H1∗ (0, 1) ,

iλnρ2
∼
ψn − bψnxx + k (ϕnx + ψn + lwn) −→ 0 in L2 (0, 1) ,

iλnwn − ∼
wn −→ 0 in

∼
H1∗ (0, 1) ,

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx −→ 0 in L2 (0, 1) ,

iλnρ3θn + qnx+δ
∼
wnx −→ 0 in L2 (0, 1) ,

iλnτqn + βqn + θnx −→ 0 in L2 (0, 1) ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)
where the notation −→ means the limit when n goes to infinity. In the following, we
will check the second condition in (2.14) by finding a contradiction with (4.1). Our
proof is divided into several steps.

Step 1 Taking the inner product of (i λn I − A) �n with �n inH and using (2.4),
we get

Re 〈(i λn I − A)�n,�n〉H = β ‖qn‖2L2(0,1) . (4.5)

Using (4.1) and (4.3), we deduce that

qn −→ 0 in L2 (0, 1) . (4.6)

Step 2 Applying triangle inequality, we have

∥
∥
∥
∥
θnx

λn

∥
∥
∥
∥
L2(0,1)

≤ 1

|λn| ‖iλnτqn + βqn + θnx‖L2(0,1) +
∥
∥
∥
∥i τ qn + β

λn
qn

∥
∥
∥
∥
L2(0,1)

.

By (4.2), (4.4)8 and (4.6), we get

θnx

λn
−→ 0 in L2 (0, 1) . (4.7)

Multiplying (4.4)1, (4.4)3 and (4.4)5 by 1
λn
, and using (4.1) and (4.2), we deduce that

⎧
⎨

⎩

ϕn −→ 0 in L2 (0, 1) ,

ψn −→ 0 in L2 (0, 1) ,

wn −→ 0 in L2 (0, 1) .

⎫
⎬

⎭
. (4.8)

123

Author's personal copy



Applied Mathematics & Optimization

Step 3 Taking the inner product of (4.4)7 with
iθn
λn

in L2 (0, 1), integrating by parts

and using the boundary conditions, we get

ρ2 ‖θn‖2L2(0,1) −
〈

qn,
iθnx
λn

〉

L2(0,1)
− δ

〈
∼
wn,

iθnx
λn

〉

L2(0,1)
−→ 0,

then, from (4.1) and (4.7), we get

θn −→ 0 in L2 (0, 1) . (4.9)

Applying triangle inequality, we have

∥
∥
∥
∥
wnxx

λn

∥
∥
∥
∥
L2(0,1)

≤ 1

k0 |λn|
∥
∥
∥iλnρ1

∼
wn − k0 (wnx − lϕn)x

+ lk (ϕnx + ψn + lwn) + δθnx‖L2(0,1)

+ 1

k0

∥
∥
∥
∥iρ1

∼
wn + lk0

λn
ϕnx + lk

λn
(ϕnx + ψn + lwn) + δ

θnx

λn

∥
∥
∥
∥
L2(0,1)

.

Then, by (4.1), (4.2), (4.4)6 and (4.7), we deduce that

(
1

λn
wnxx

)

n
is uniformly bounded in L2 (0, 1) . (4.10)

Step 4 Taking the inner product of (4.4)7 with
iwnx

λn
in L2 (0, 1), integrating by

parts and using the boundary conditions, we get

ρ3 〈θn, wnx 〉L2(0,1) −
〈

qn,
iwnxx

λn

〉

L2(0,1)
− δ

〈(
iλnwnx − ∼

wnx

)
,
iwnx

λn

〉

L2(0,1)

+ δ ‖wnx‖2L2(0,1) −→ 0.

Using (4.1), (4.2), (4.4)5, (4.6), (4.9) and (4.10), we deduce that

wnx −→ 0 in L2 (0, 1) , (4.11)

and from (4.4)5, we have

∼
wnx

λn
−→ 0 in L2 (0, 1) . (4.12)

As
∼
wn in

∼
H1∗ (0, 1) and by using (4.12), we obtain

∼
wn

λn
−→ 0 in L2 (0, 1) . (4.13)
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Step 5 Taking the inner product of (4.4)6 with
i
∼
wn

λn
in L2 (0, 1), integrating by parts

and using the boundary conditions, we get

ρ1

∥
∥
∥

∼
wn

∥
∥
∥
2

L2(0,1)
+ k0

〈

(wnx − lϕn) ,
i
∼
wnx

λn

〉

L2(0,1)

+ lk

〈

(ϕnx + ψn + lwn) ,
i
∼
wn

λn

〉

L2(0,1)

+ δ

〈
θnx

λn
, i

∼
wn

〉

L2(0,1)
−→ 0.

Using (4.1), (4.7), (4.12) and (4.13), we obtain

∼
wn −→ 0 in L2 (0, 1) , (4.14)

and with (4.4)5, we find

λnwn −→ 0 in L2 (0, 1) . (4.15)

Step 6 Taking the inner product of k (ϕnx + ψn + lwn) with θnx in L2 (0, 1), inte-
grating by parts and using the boundary conditions, we get

k 〈(ϕnx + ψn + lwn) , θnx 〉 = −k
〈
(ϕnx + ψn + lwn)x , θn

〉

L2(0,1)

=
〈(
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) , θn

)〉

L2(0,1)

− λnρ1

〈
i

∼
ϕn, θn

〉

L2(0,1)
+ lk0 〈(wnx − lϕn) , θn〉L2(0,1) ,

then, by using (4.1), (4.4)2 and (4.9),

k 〈(ϕnx + ψn + lwn) , θnx 〉L2(0,1) + λnρ1

〈
i

∼
ϕn, θn

〉

L2(0,1)
−→ 0. (4.16)

Taking the inner product of (ϕnx + ψn + lwn) with iλn
∼
wn in L2 (0, 1), integrating

by parts and using the boundary conditions, we get

〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉

L2(0,1)

= −
〈
iλnϕnx ,

∼
wn

〉

L2(0,1)
−

〈
iλnψn,

∼
wn

〉

L2(0,1)
− l

〈
iλnwn,

∼
wn

〉

L2(0,1)

−
〈∼
ψn,

∼
wn

〉

L2(0,1)
− l

〈(
iλnwn − ∼

wn

)
,

∼
wn

〉

L2(0,1)
− l

∥
∥
∥

∼
wn

∥
∥
∥
2

L2(0,1)

= −
〈(
iλnϕnx − ∼

ϕnx

)
,

∼
wn

〉

L2(0,1)
+

〈 ∼
ϕn,

∼
wnx

〉

L2(0,1)
−

〈(

iλnψn − ∼
ψn

)

,
∼
wn

〉

L2(0,1)

−
〈∼
ψn,

∼
wn

〉

L2(0,1)
− l

〈(
iλnwn − ∼

wn

)
,

∼
wn

〉

L2(0,1)
− l

∥
∥
∥

∼
wn

∥
∥
∥
2

L2(0,1)
.
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Then, by using (4.1), (4.4)1, (4.4)3, (4.4)5 and (4.14), we deduce that

〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉

L2(0,1)
−

〈 ∼
ϕn,

∼
wnx

〉

L2(0,1)
−→ 0. (4.17)

Taking the inner product of
∼
ϕn with

∼
wnx in L2 (0, 1), we get

〈 ∼
ϕn,

∼
wnx

〉

L2(0,1)
=

〈 ∼
ϕn,

(∼
wnx − ∼

ϕn

)〉

L2(0,1)
+

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)

= −
〈 ∼
ϕn,

(
iλnwnx − ∼

wnx

)〉

L2(0,1)
+

〈 ∼
ϕn,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)

+
〈 ∼
ϕn, iλn (wnx − ϕn)

〉

L2(0,1)
+

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)
,

then, by (4.1), (4.4)1 and (4.4)5, we have

λn

〈 ∼
ϕn, i (wnx − ϕn)

〉

L2(0,1)
−

〈 ∼
ϕn,

∼
wnx

〉

L2(0,1)
+

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)
−→ 0. (4.18)

Taking the inner product of (4.4)2 with (wnx − lϕn) in L2 (0, 1), integrating by parts
and using the boundary conditions, we get

〈
iλnρ1

∼
ϕn, (wnx − lϕn)

〉

L2(0,1)
+ k

〈
(ϕnx + ψn + lwn) , (wnx − lϕn)x

〉

L2(0,1)

− lk0 ‖(wnx − lϕn)‖2L2(0,1) −→ 0,

which implies that

λnρ1

〈
i

∼
ϕn, (wnx − lϕn)

〉

L2(0,1)

− k

k0
〈(ϕnx + ψn + lwn) ,

×
[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]〉

L2(0,1)

+ kρ1
k0

〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉

L2(0,1)
+ lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1)

+ δk

k0
〈(ϕnx + ψn + lwn) , θnx 〉L2(0,1) − lk0 ‖(wnx − lϕn)‖2L2(0,1) −→ 0.

Using (4.1), (4.4)6, (4.8) and (4.11) , we get

− λnρ1

〈 ∼
ϕn, i (wnx − lϕn)

〉

L2(0,1)
+ kρ1

k0

〈
(ϕnx + ψn + lwn) , iλn

∼
wn

〉

L2(0,1)

+ lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) + δk

k0
〈(ϕnx
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+ ψn + lwn) , θnx 〉L2(0,1) −→ 0, (4.19)

then, by (4.16), (4.17), (4.18) and (4.19), we obtain

(
k

k0
− 1

)

ρ1

〈 ∼
ϕn,

∼
wnx

〉

L2(0,1)
− δ

k0
λnρ1

〈
i

∼
ϕn, θn

〉

L2(0,1)

+ lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) + ρ1

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)
−→ 0. (4.20)

Step 7 Taking the inner product of (4.4)8 with (ϕnx + ψn + lwn) in L2 (0, 1), we
get

〈iλnτqn , ϕnx 〉L2(0,1) − τ 〈qn, iλnψn〉L2(0,1) − lτ 〈qn, iλnwn〉L2(0,1)

+〈βqn, (ϕnx + ψn + lwn)〉L2(0,1) + 〈
θnx ,

(
ϕn,x + ψn + lwn

)〉

L2(0,1) −→ 0,

then

〈iλnτqn, ϕnx 〉L2(0,1) − τ

〈

qn,

(

iλnψn − ∼
ψn

)〉

L2(0,1)
− τ

〈

qn ,
∼
ψn

〉

L2(0,1)

− lτ
〈
qn ,

(
iλnwn − ∼

wn

)〉

L2(0,1)
− lτ

〈
qn,

∼
wn

〉

L2(0,1)

+ 〈βqn, (ϕnx + ψn + lwn)〉L2(0,1) + 〈θnx , (ϕnx + ψn + lwn)〉L2(0,1) −→ 0.

By using (4.1), (4.4)3, (4.4)5, (4.6) and (4.16), we have

〈iλnτqn, ϕnx 〉L2(0,1) − λnρ1

k

〈
θn, i

∼
ϕn

〉

L2(0,1)
−→ 0,

integrating by parts and using the boundary conditions, we obtain

− λnτ 〈iqnx , ϕn〉L2(0,1) − λnρ1

k

〈
θn, i

∼
ϕn

〉

L2(0,1)
−→ 0,

therefore

−λnτ
〈
i
(
iλnρ3θn + qnx + δ

∼
wnx

)
, ϕn

〉

L2(0,1)
− λnτ 〈λnρ3θn , ϕn〉L2(0,1)

+ λnτδ
〈
i
∼
wnx , ϕn

〉

L2(0,1)
− λnρ1

k

〈
θn, i

∼
ϕn

〉

L2(0,1)
−→ 0,

hence

τ
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
(
iλnϕn − ∼

ϕn

)〉

L2(0,1)

+ τ
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,

∼
ϕn

〉

L2(0,1)
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− λnτ
〈
iρ3θn,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)
− λnτ

〈
iρ3θn,

∼
ϕn

〉

L2(0,1)

+ τδ
〈∼
wn,

(
iλnϕn − ∼

ϕn

)

x

〉

L2(0,1)
− τδ

〈∼
wnx ,

∼
ϕn

〉

L2(0,1)
− λnρ1

k

〈
θn, i

∼
ϕn

〉

L2(0,1)
−→ 0,

so, using (4.1), (4.4)1, (4.4)7, we get

(
τρ3 − ρ1

k

)
λn

〈
θn, i

∼
ϕn

〉

L2(0,1)
− τδ

〈∼
wnx ,

∼
ϕn

〉

L2(0,1)

−λnτ
〈
iρ3θn,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)
−→ 0. (4.21)

On the other hand, integrating by parts and using the boundary conditions, we find
that

λn

〈
iρ3θn,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)

=
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
(
iλnϕn − ∼

ϕn

)〉

L2(0,1)

−
〈
qnx ,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)
− δ

〈∼
wnx ,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)

=
〈(
iλnρ3θn + qnx + δ

∼
wnx

)
,
(
iλnϕn − ∼

ϕn

)〉

L2(0,1)

+
〈
qn,

(
iλnϕnx − ∼

ϕnx

)〉

L2(0,1)
+ δ

〈∼
wn,

(
iλnϕnx − ∼

ϕnx

)〉

L2(0,1)
,

so, by using (4.4)1, (4.4)7, (4.6) and (4.14), we deduce that

λn

〈
iρ3θn,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)
−→ 0, (4.22)

therefore, (4.21) and (4.22) give

(
τρ3 − ρ1

k

)
λn

〈
i

∼
ϕn, θn

〉

L2(0,1)
− τδ

〈 ∼
ϕn,

∼
wnx

〉

L2(0,1)
−→ 0, (4.23)

and then, multiplying (4.23) by ρ1
τδ

(
k
k0

− 1
)
and adding (4.20), we obtain

ρ1λn

k0δ

[
(k − k0)

(
ρ3 − ρ1

τk

)
− δ2

] 〈
i

∼
ϕn, θn

〉

L2(0,1)

+ lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) + ρ1

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)
−→ 0.

Here we use the fact that (k − k0)
(
ρ3 − ρ1

τk

)
− δ2 = 0 (condition (3.1)), we deduce

that

lk2

k0
‖(ϕnx + ψn + lwn)‖2L2(0,1) + ρ1

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)
−→ 0,
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then, from (4.8), we have

ϕnx −→ 0 in L2 (0, 1) (4.24)

and

∼
ϕn −→ 0 in L2 (0, 1) , (4.25)

and using (4.2), (4.4)1 and (4.25), we have

λnϕn −→ 0 in L2 (0, 1) (4.26)

and

∼
ϕnx

λn
−→ 0 in L2 (0, 1) . (4.27)

Step 8 Taking the inner product of (4.4)4 with (ϕnx + ψn + lwn) in L2 (0, 1),
integrating by parts and using the boundary conditions, we get

〈

iλnρ2
∼
ψn, ϕnx

〉

L2(0,1)
+

〈

iλnρ2
∼
ψn, ψn

〉

L2(0,1)
+ l

〈

iλnρ2
∼
ψn, wn

〉

L2(0,1)

+b
〈
ψnx , (ϕnx + ψn + lwn)x

〉

L2(0,1) + k ‖(ϕnx + ψn + lwn)‖2L2(0,1) −→ 0,

then

− λnρ2

〈 ∼
ψn, iϕnx

〉

L2(0,1)
− ρ2

〈 ∼
ψn,

(

iλnψn − ∼
ψn

)〉

L2(0,1)
− ρ2

∥
∥
∥
∥

∼
ψn

∥
∥
∥
∥

2

L2(0,1)

− lρ2

〈 ∼
ψn,

(
iλnwn − ∼

wn

)〉

L2(0,1)
− lρ2

〈 ∼
ψn,

∼
wn

〉

L2(0,1)

− b

k

〈
ψnx ,

[
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]〉

L2(0,1)

+ b

k

〈
ψnx , iλnρ1

∼
ϕn

〉

L2(0,1)
− lk0b

k
〈ψnx , (wnx − lϕn)〉L2(0,1)

+ k ‖ϕnx + ψn + lwn‖2L2(0,1) −→ 0,

using (4.1), (4.4)2, (4.4)3, (4.4)5, (4.8), (4.11), (4.14) and (4.24), we get

− λnρ2

〈 ∼
ψn, iϕnx

〉

L2(0,1)
− ρ2

∥
∥
∥
∥

∼
ψn

∥
∥
∥
∥

2

L2(0,1)
+ bρ1

k
λn

〈
ψnx , i

∼
ϕn

〉

L2(0,1)
−→ 0.

(4.28)
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Now, we use that

λn

〈
ψnx , i

∼
ϕn

〉

L2(0,1)
= −

〈(

iλnψnx − ∼
ψnx

)

,
∼
ϕn

〉

L2(0,1)
−

〈 ∼
ψnx ,

∼
ϕn

〉

L2(0,1)
,

and by integrating by parts and using the boundary conditions, we have

λn

〈
ψnx , i

∼
ϕn

〉

L2(0,1)
= −

〈

iλnψnx − ∼
ψnx ,

∼
ϕn

〉

L2(0,1)
+

〈 ∼
ψn,

∼
ϕnx

〉

L2(0,1)

= −
〈(

iλnψnx − ∼
ψnx

)

,
∼
ϕn

〉

L2(0,1)
−

〈 ∼
ψn,

(
iλnϕnx − ∼

ϕnx

)〉

L2(0,1)

+
〈 ∼
ψn, iλnϕnx

〉

L2(0,1)
,

therefore, from (4.1), (4.4)1 and (4.4)3, we see that

λn

〈
ψnx , i

∼
ϕn

〉

L2(0,1)
− λn

〈 ∼
ψn, iϕnx

〉

L2(0,1)
−→ 0, (4.29)

so, inserting (4.29) into (4.28), we obtain

λn

k
(bρ1 − kρ2)

〈
ψnx , i

∼
ϕn

〉

L2(0,1)
− ρ2

∥
∥
∥
∥

∼
ψn

∥
∥
∥
∥

2

L2(0,1)
−→ 0. (4.30)

At this stage, we use the fact that bρ1 − kρ2 = 0 (condition (3.1)), then we have from
(4.30)

∼
ψn −→ 0 in L2 (0, 1) , (4.31)

and by (4.4)3, we deduce that

λnψn −→ 0 in L2 (0, 1) . (4.32)

Step 9 Taking the inner product of (4.4)4 with ψn in L2 (0, 1), integrating by parts
and using the boundary conditions, we get

−ρ2

〈 ∼
ψn, iλnψn

〉

L2(0,1)
+ b ‖ψnx‖2L2(0,1) + k 〈(ϕnx + ψn + lwn) , ψn〉L2(0,1) −→ 0,

and by using (4.8), (4.24), (4.31) and (4.32), we obtain

ψnx −→ 0 in L2 (0, 1) . (4.33)
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A combination of (4.6), (4.8), (4.9), (4.11), (4.14), (4.24), (4.25), (4.31) and (4.33)
leads to

‖�n‖H −→ 0,

which is a contradiction with (4.1). Hence, the proof of Theorem 4.1 is completed. ��

5 Polynomial Stability of (1.1)–(1.3)

In this section, we prove the polynomial decay of the solutions of (2.1) using Theo-
rem 2.3. Our main result is stated as follow:

Theorem 5.1 We assume that (2.3) and (3.2) hold. Then, for each p ∈ N
∗, there exists

a constant cp > 0 such that

∀�0 ∈ D
(Ap) , ∀t > 0,

∥
∥
∥etA�0

∥
∥
∥H ≤ cp ‖�0‖D(Ap)

(
ln t

t

) p

8 ln t . (5.1)

Proof In Sect. 3, we have proved that the first condition in (2.15) is satisfied if (3.2)
holds. Now, we need to show that

sup
|λ| ≥ 1

1

λ8

∥
∥
∥(iλI − A)−1

∥
∥
∥H < ∞. (5.2)

We establish (5.2) by contradiction. So, if (5.2) is false, then there exist sequences
(�n)n ⊂ D (A) and (λn)n ⊂ R satisfying

‖ �n‖H = 1, ∀ n ∈ N, (5.3)

lim
n→∞ |λn| = ∞ (5.4)

and

lim
n→∞ λ8n ‖(iλn I − A) �n‖H = 0, (5.5)

which implies that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ8n

(
iλnϕn − ∼

ϕn

)
→ 0 in H1∗ (0, 1) ,

λ8n

[
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]
→ 0 in L2 (0, 1) ,

λ8n

(

iλnψn − ∼
ψn

)

→ 0 in
∼
H1∗ (0, 1) ,

λ8n

[

iλnρ2
∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]

→ 0 in L2 (0, 1) ,

λ8n

(
iλnwn − ∼

wn

)
→ 0 in

∼
H1∗ (0, 1) ,

λ8n

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]
→ 0 in L2 (0, 1) ,

λ8n

(
iλnρ3θn + qnx + δ

∼
wnx

)
→ 0 in L2 (0, 1) ,

λ8n (iλnτqn + βqn + θnx ) → 0 in L2 (0, 1) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(5.6)
Our goal is to derive ‖ �n‖H → 0 as a contradiction with (5.3). This will be estab-
lished through several steps.

Step 1 Taking the inner product of λ8n (i λn I − A) �n with �n inH, we get (as
for (4.5))

Re

(〈
λ8n (i λn I − A) �n,�n

〉

L2(0,1)

)

= β

∥
∥
∥λ4nqn

∥
∥
∥
2

L2(0,1)
,

so we have

λ4nqn −→ 0 in L2 (0, 1) . (5.7)

Step 2 Applying triangle inequality, we obtain

∥
∥
∥λ3nθnx

∥
∥
∥
L2(0,1)

≤
∥
∥
∥λ3n (iλnτqn + βqn + θnx )

∥
∥
∥
L2(0,1)

+
∥
∥
∥iλ4nτqn + βλ3nqn

∥
∥
∥
L2(0,1)

,

then, using (5.4), (5.6)8 and (5.7), we have

λ3nθnx −→ 0 in L2 (0, 1) . (5.8)

Knowing that θn in H1∗ (0, 1), then we have

λ3nθn −→ 0 in L2 (0, 1) . (5.9)

Step 3 Using (5.3), (5.4), (5.6)1, (5.6)3 and (5.6)5, we obtain

{
ϕn, ψn wn −→ 0 in L2 (0, 1) ,

(λnϕn)n , (λnψn)n , (λnwn)n are uniformly bounded in L2 (0, 1) .

}

. (5.10)

Step 4 By triangle inequality, we have

∥
∥
∥
∥
wnxx

λn

∥
∥
∥
∥ ≤

∥
∥
∥
∥

1

k0λn

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]∥∥
∥
∥
L2(0,1)
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+ 1

k0

∥
∥
∥
∥iρ1

∼
wn + lk0

ϕnx

λn
+ lk

λn
(ϕnx + ψn + lwn) + δ

λn
θnx

∥
∥
∥
∥
L2(0,1)

,

then we deduce from (5.3), (5.4), (5.6)6 and (5.8) that

(
wnxx

λn

)

n
is uniformly bounded in L2 (0, 1) . (5.11)

integrating by parts and using the boundary conditions, we have

∥
∥
∥λ2nwnx

∥
∥
∥
2

L2(0,1)
= λ4n 〈wnx , wnx 〉L2(0,1)

= λ3n

〈
iwnx ,

(
iλnwnx − ∼

wnx

)〉

L2(0,1)
+ λ3n

〈
iwnx ,

∼
wnx

〉

L2(0,1)

=
〈
iwnx , λ

3
n

(
iλnwnx − ∼

wnx

)〉

L2(0,1)

+1

δ

〈
iwnx , λ

3
n

(
iλnρ3θn + qnx + δ

∼
wnx

)〉

L2(0,1)

+ ρ3

δ

〈
λnwn, λ

3
nθnx

〉

L2(0,1)
+ 1

δ

〈

i
wnxx

λn
, λ4nqn

〉

L2(0,1)
,

then, by using (5.3), (5.4), (5.6)5, (5.6)7, (5.7), (5.8), (5.10) and (5.11), we find

λ2nwnx → 0 in L2 (0, 1) . (5.12)

As wn in
∼
H1∗ (0, 1), we deduce from (5.12) that

λ2nwn → 0 in L2 (0, 1) , (5.13)

and using (5.4) and (5.6)5, we see that

λn
∼
wnx → 0 in L2 (0, 1) (5.14)

and

λn
∼
wn −→ 0 in L2 (0, 1) . (5.15)

Also, dividing (5.6)6 by λ8n and using (5.3), (5.4), (5.8) and (5.15), we deduce that

(wnxx )n is uniformly bounded in L2 (0, 1) . (5.16)

Step 5 Taking the inner product of (5.6)7 with
iwnx

λ4n
in L2 (0, 1), integrating by

parts and using the boundary conditions, we get

− ρ3

〈
iλ3nθnx , λ

2
nwn

〉

L2(0,1)
− δ

〈
λ4n

(
iλnwnx − ∼

wnx

)
, iwnx

〉

L2(0,1)
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−
〈
λ4nqn, iwnxx

〉

L2(0,1)
+ δλ5n ‖wnx‖2L2(0,1) → 0.

Using (5.3), (5.4), (5.6)5, (5.7), (5.8), (5.13) and (5.16), we obtain

|λn| 52 wnx → 0 in L2 (0, 1) , (5.17)

and from (5.6)5, we get

|λn| 32 ∼
wnx → 0 in L2 (0, 1) . (5.18)

Step 6 Applying again triangle inequality, we have

∥
∥
∥
∥
ϕnxx

λn

∥
∥
∥
∥
L2(0,1)

≤ 1

k

∥
∥
∥
∥
1

λn

[
iλnρ1

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]∥∥
∥
∥
L2(0,1)

+ 1

k

∥
∥
∥
∥iρ1

∼
ϕn − k

λn
(ψnx + lwnx ) − lk0

λn
(wnx − lϕn)

∥
∥
∥
∥
L2(0,1)

,

and using (5.3), (5.4) and (5.6)2, we deduce that

(
ϕnxx

λn

)

n
is uniformly bounded in L2 (0, 1) . (5.19)

Taking the inner product of (5.6)6 with
ϕnx

λ8n
in L2 (0, 1), integrating by parts and using

the boundary conditions, we obtain

ρ1

〈
iλn

∼
wn, ϕnx

〉

L2(0,1)
+ k0

〈

λnwnx ,
ϕnxx

λn

〉

L2(0,1)
+ l (k + k0) ‖ϕnx‖2L2(0,1)

+ lk 〈(ψn + lwn) , ϕnx 〉L2(0,1) + δ 〈θnx , ϕnx 〉L2(0,1) −→ 0,

then, from (5.3), (5.4), (5.8), (5.10), (5.12), (5.15) and (5.19), we have

ϕnx −→ 0 in L2 (0, 1) . (5.20)

Step 7 Taking the inner product of (5.6)6 with
ϕnx

λ7n
in L2 (0, 1), integrating by parts

and using the boundary conditions, we get

− ρ1

〈∼
wn, λn

(
iλnϕnx − ∼

ϕnx

)〉

L2(0,1)
+ ρ1

〈
λn

∼
wnx ,

∼
ϕn

〉

L2(0,1)

+ k0

〈

λ2nwnx ,
ϕnxx

λn

〉

L2(0,1)
+ l (k + k0) λn ‖ϕnx‖2L2(0,1)

+ lk 〈λn (ψn + lwn) , ϕnx 〉L2(0,1) + δ 〈λnθnx , ϕnx 〉L2(0,1) −→ 0,
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hence, using (5.3), (5.4), (5.6)1, (5.8), (5.10), (5.12), (5.19) and (5.20), we obtain

λn ‖ϕnx‖2L2(0,1) −→ 0. (5.21)

Taking the inner product of (5.6)2 with
ϕn

λ7n
in L2 (0, 1), integrating by parts and using

the boundary conditions, we get

− ρ1λn

〈∼
ϕn,

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)
− ρ1λn

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)

+ kλn 〈(ϕnx + ψn + lwn) , ϕnx 〉L2(0,1) − lk0λn 〈(wnx − lϕn) , ϕn〉L2(0,1) −→ 0,

which implies

− ρ1

〈∼
ϕn, λn

(
iλnϕn − ∼

ϕn

)〉

L2(0,1)
− ρ1λn

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)

+ kλn ‖ϕnx‖2L2(0,1) + k 〈(λnψn + lλnwn) , ϕnx 〉L2(0,1)

− lk0 〈(λnwnx − lλnϕn) , ϕn〉L2(0,1) −→ 0,

so, using (5.3), (5.4), (5.6)1, (5.10), (5.12) and (5.21), we deduce that

λn

∥
∥
∥

∼
ϕn

∥
∥
∥
2

L2(0,1)
−→ 0, (5.22)

and from (5.6)1, we obtain that

λ3n ‖ϕn‖2 −→ 0. (5.23)

Step 8 Multiplying (5.6)2 by
1

|λn| 12 λ8n

, we get

i
λn

|λn|ρ1 |λn| 12 ∼
ϕn − k

ϕnxx

|λn| 12
− k

ψnx

|λn| 12
− l (k + k0)

wnx

|λn| 12
+l2k0

ϕn

|λn| 12
−→ 0 in L2 (0, 1) ,

then, using (5.3), (5.4) and (5.22), we deduce that

ϕnxx

|λn| 12
−→ 0 in L2 (0, 1) . (5.24)

On the other hand, by integrating by parts and using the boundary conditions, we see
that

λn 〈wnxx , iλnϕnx 〉L2(0,1) = λ2n 〈iwnx , ϕnxx 〉L2(0,1)
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=
〈
λn

(
iλnwnx − ∼

wnx

)
, ϕnxx

〉

L2(0,1)
+ λn

〈∼
wnx , ϕnxx

〉

L2(0,1)

=
〈

λ2n

(
iλnwnx − ∼

wnx

)
,
ϕnxx

λn

〉

L2(0,1)
+

〈

λn |λn| 12 ∼
wnx ,

ϕnxx

|λn| 12

〉

L2(0,1)

,

then, using (5.4), (5.6)5, (5.18) and (5.24), we obtain

λn 〈wnxx , iλnϕnx 〉L2(0,1) −→ 0. (5.25)

Furthermore, integrating by parts and using the boundary conditions,

λn

〈
(ϕnx + ψn + lwn)x ,

∼
ϕn

〉

L2(0,1)
= −λn

〈
(ϕnx + ψn + lwn) ,

∼
ϕnx

〉

L2(0,1)

= − 1

lk

〈

λ2n

[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]
,

∼
ϕnx

λn

〉

L2(0,1)

− 1

lk

〈(
iλnρ1

∼
wn + δθnx

)
, λn

(
iλnϕnx − ∼

ϕnx

)〉

L2(0,1)

+ k0
lk

〈
(wnx − lϕn)x , λn

(
iλnϕnx − ∼

ϕnx

)〉

L2(0,1)
− λ3n

lk

〈
iρ1

∼
wnx , iϕn

〉

L2(0,1)

+ δ

lk

〈
λ2nθnx , iϕnx

〉

L2(0,1) − k0λn
lk

〈wnxx , iλnϕnx 〉L2(0,1) − k0λ2n
k

i ‖ϕnx‖2L2(0,1) ,

then, using (5.6)1, (5.6)6, (5.8), (5.15), (5.16), (5.18), (5.23) and (5.25), we find

λn

〈
(ϕnx + ψn + lwn)x ,

∼
ϕn

〉

L2(0,1)
+ k0

k
i ‖λnϕnx‖2L2(0,1) −→ 0. (5.26)

Taking the inner product of (5.6)2 with
∼
ϕn

λ7n
in L2 (0, 1), we get

ρ1i
∥
∥
∥λn

∼
ϕn

∥
∥
∥
2

L2(0,1)
− kλn

〈
(ϕnx + ψn + lwn)x ,

∼
ϕn

〉

L2(0,1)

− lk0
〈
(λnwnx − lλnϕn) ,

∼
ϕn

〉

L2(0,1)
−→ 0,

then, using (5.26), we obtain

ρ1i
∥
∥
∥λn

∼
ϕn

∥
∥
∥
2

L2(0,1)
+ ik0 ‖λnϕnx‖2L2(0,1) − lk0

〈
(λnwnx − lλnϕn) ,

∼
ϕn

〉

L2(0,1)
−→ 0,

and from (5.3), (5.4), (5.6)1, (5.12), (5.22) and (5.23), we deduce that

λn
∼
ϕn −→ 0 in L2 (0, 1) (5.27)
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and

λnϕnx −→ 0 in L2 (0, 1) . (5.28)

Step 9 Multiplying (5.6)4 by
1

λ9n
, we obtain

iρ2
∼
ψn − b

ψnxx

λn
+ k

λn
(ϕnx + ψn + lwn) → 0 in L2 (0, 1) .

By triangle inequality, we deduce from (5.3) and (5.4) that

(
ψnxx

λn

)

n
is uniformly bounded in L2 (0, 1) . (5.29)

Taking the inner product of (5.6)2 with
ψnx

λ8n
in L2 (0, 1), we get

ρ1

〈
iλn

∼
ϕn, ψnx

〉

L2(0,1)
− k 〈ϕnxx , ψnx 〉L2(0,1) − k ‖ψnx‖2L2(0,1)

−l(k + k0) 〈wnx , ψnx 〉L2(0,1) + l2k0 〈ϕn, ψnx 〉L2(0,1) → 0,

then, integrating by parts and using the boundary conditions, we obtain

ρ1

〈
iλn

∼
ϕn, ψnx

〉

L2(0,1)
+ k

〈

λnϕnx ,
ψnxx

λn

〉

L2(0,1)
− k ‖ψnx‖2L2(0,1)

− l(k + k0) 〈wnx , ψnx 〉L2(0,1) + l2k0 〈ϕn, ψnx 〉L2(0,1) → 0,

so, using (5.3), (5.4), (5.10), (5.12), (5.27), (5.28) and (5.29), we deduce that

ψnx −→ 0 in L2 (0, 1) . (5.30)

Taking the inner product of (5.6)4 with
ψn

λ8n
in L2 (0, 1), integrating by parts and using

the boundary conditions, we get

− ρ2

〈∼
ψn,

(

iλnψn − ∼
ψn

)〉

L2(0,1)
− ρ2

∥
∥
∥
∥

∼
ψn

∥
∥
∥
∥

2

L2(0,1)
+ b ‖ψnx‖2L2(0,1)

+〈k (ϕnx + ψn + lwn) , ψn〉L2(0,1) −→ 0,

hence, using (5.3), (5.4), (5.6)3, (5.10) and (5.30), we get

∼
ψn −→ 0 in L2 (0, 1) . (5.31)
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A combination of (5.4) and all the above convergence leads to

‖�n‖H −→ 0,

which is a contradiction with (5.3). Consequently, the proof of our Theorem 5.1 is
completed. ��
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