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A b s t r a c t - - T h i s  paper proves uniform stabilization of the energy of a nonlinear damped hyperbolic 
equation. The idea of the proof is the use of a specific integral inequality. (~) 1999 Elsevier Science 
Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  A N D  S T A T E M E N T  O F  T H E  M A I N  R E S U L T  

In this paper,  we are concerned with the energy decay of the solution to the initial boundary 
value problem for the nonlinear damped hyperbolic equation 

u" % klA2U + k2A2u ' + A g ( A u )  -- 0, in ~ x R +, (1.1) 

u = 0, on r x ]~+, (1.2) 

Ou 
Ou O, on F )< R +, (1.3) 

u(x,O) = uo(x) and u'(x,O) = ul(x) ,  on 12, (1.4) 

where Q is a bounded domain in R n with smooth boundary F, kl and k2 are two positive 
constants, and g is C2-class real valued function. 

This problem describes the motion of the neo-Hookean elastomer rod; for more physical inter- 
pretat ion of problems (1.1)-(1.4) we refer to [1]. 

This problem has a t t rac ted  much attention in recent years; for the well-posedness we refer 
the reader to [2-6]. Quite recently, Banks et al. [1] have been successful in proving the global 
existence of weak solutions by using a variational approach and the semigroup formulation. 

In [1], however, no result is given concerning the decay property of solutions and it is desirable 
to establish the uniform stabilization of solutions to (1.1)-(1.4). 

The function spaces we use are all s tandard and the definitions of them are omitted. 
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The following lemma is useful in deriving decay rates of solutions. 

LEMMA 1.1. (See [7, Theorem 8.1].) Let E : R + --* R + be a nonincreasing [unction and assume 
that there exists a constant T > 0 such that 

is l E ( t )  < TE(S ) ,  e V S  R + , 

then 
E(t)  <_ E(O) e 1-tiT, 

Now the following existence theorem is proved in [1]. 

THEOREM 1.2. 

V t > 0 .  

Let (uo, Ul) belong to Hg(fl) x L2(~). Assume that 

there ex/st positive constants ci [or i = 1, 2, 3, such that  

- ~ ( k l  + k2 - ~) - e l  < G(z) < c2 + c3, 
(H1) 

xg(x) > O, for all x E R, (H4) 

2G(x) < xg(x), for all x ~ R, (H5) 

E(t) < E(O) e 1-~t, V t e  R +, 

where 1iT = c(~)/k2 + max{l,  (c( f l ) /k l )}  + k2/kl  and c(n) is the constant appearing in the 
[ollowing inequality: 

f ~2 d~ <_ c(~) [ i~ l  ~ d~, [or a11 ~ ~ H~(~) 
Jn Jn 

we have 

then under the assumptions 

for e > O, where we set G(x) = fo  g(t) dt. 

There are positive constants c~ for i = 1, 2, such that 

[g(x)t < 61 Ix[ + 62. (H2) 

g'(x) > - a ,  [or a > 0. (H3) 

Then (1.1)-(1.4) admits a unique solution 

u 6 C (R+; H2(•)) N C  1 (R+; L2(n) ) .  

We define the energy of (1.1)-(1.4) at time t by the following formula: 

1 I~l  2) ex + £ a(~ u) ex. W(t) ---- ~ ([utl2-~-ki 

A simple computation gives 

/;/o E(S)  - E(T)  = k2 IAu'] 2 dx, for all 0 < S < T < c¢, 

for any regular solution of (1.1)-(1.4). This identity remains valid for all mild solution by an easy 
density argument. So the energy is nonincreasing, and our main result is as follows. 

MAIN THEOREM. Let hypotheses (H1)-(H3) on g be valid and let u be a solution of problems 
(1.1)-(1.4) in the class 

C ( R + ;  Ho2(n))NC1 (R+; L2(•)),  
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2. P R O O F  O F  T H E  M A I N  T H E O R E M  

Applying a density argument, it is sufficient to consider the case where u0 and Ul are sufficiently 
smooth to justify all the computations that follow. 

Multiplying (1.1) with u, we have 

~sT ~ (kl lAui2 -1u'12 + 2G(Au)) dxdt 

T k2 dx]T+ f (2G(Au) Aug(Au)) dxdt, 

with 0 _< S < T < c~. 
Whence, 

2 ~  E(t)dt =2 fu'[ 2 dxdt 

That is, by (H5) 

2 / ;  E(t)dt < 2 U fa lu'i2 dx - [fauu' dx]~ - ~ [fa iAui2 dx]~. (2.1) 

Using the nonincreasing property of E, the Cauchy-Schwarz inequality, and the definition of E, 
we have 

2 lu'] 2 dxdt < 2c(f~) IAu'l 2 dxdt 

2c(f~) ~ T 2Ck~ 
- k2 -E' ( t )  dt <_ E(S); 

1 lu'l 2) dx 1 lu'l 2) dx 

-< max {1, ~ 1 ) }  E(t)-< max {1, ~ 1 )  } E(S); 

k2 f iAul 2 d~ <_ ~E(t) < ~E(S). 
-2 Jn 

Using these estimates, we conclude from (2.1) that 

2 fsTE(t)dt <_ ~2 ) E(S) + 2max {1, ~I) } E(S) + ~E(S),  

and then 

U E(t) dt_< \ k2 + ~  +max 1, 

Letting T ~ +co, this yields the following estimate: 

E(t) dt<_ \ k2 +-~1 +max 1, kl J/ 

and we conclude from Lemma 1.1 that 

E(t) <_ E(O) e 1-~t, Vt >_ O, 

with llw = c(f~)/k2 + k2/kl + max(l, (c(•)/k2)}. 
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