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Abstract—This paper proves uniform stabilization of the energy of a nonlinear damped hyperbolic
equation. The idea of the proof is the use of a specific integral inequality. © 1999 Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper, we are concerned with the energy decay of the solution to the initial boundary
value problem for the nonlinear damped hyperbolic equation

u” 4+ Ky A%u + kA% + A g(Au) =0, in @ xRT, (1.1)
u =0, on I x RY, (1.2)
ou +
5—0, onI'x RT, (1.3)
u(z,0) =up(z) and u'(z,0) =u;(z), ong, (1.4)

where €2 is a bounded domain in R™ with smooth boundary ', k; and k; are two positive
constants, and g is C?-class real valued function.

This problem describes the motion of the neo-Hookean elastomer rod; for more physical inter-
pretation of problems (1.1)-(1.4) we refer to [1].

This problem has attracted much attention in recent years; for the well-posedness we refer
the reader to [2-6]. Quite recently, Banks et al. [1] have been successful in proving the global
existence of weak solutions by using a variational approach and the semigroup formulation.

In [1], however, no result is given concerning the decay property of solutions and it is desirable
to establish the uniform stabilization of solutions to (1.1)-(1.4).

The function spaces we use are all standard and the definitions of them are omitted.
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The following lemma is useful in deriving decay rates of solutions.
LEMMA 1.1. (See [7, Theorem 8.1].) Let E : R* — R™ be a nonincreasing function and assume
that there exists a constant T > 0 such that
o
/ E(t) < TE(S), VS eRT,
s

then
E(t) < E(0)e!™¥T,  Vvt>o0.

Now the following existence theorem is proved in [1}.
THEOREM 1.2. Let (ug,u1) belong to HZ(Q) x L%(Q). Assume that

there exist positive constants c; for i = 1,2, 3, such that

-1 H1
—2—(k1+k2 —6) |a:12 - SG(:Z:) <cz |.’L‘12+C3, ( )
for € > 0, where we set G(z) = [; g(t) dt
There are positive constants ¢; for 1 = 1,2, such that (52)
lg(z)} < 61 lz| + &
g'(z) > —a, for a > 0. (H3)

Then (1.1)-(1.4) admits a unique solution
uwe C(RT; H3(Q))nC(RT; LY(Q)).

We define the energy of (1.1)—(1.4) at time ¢ by the following formula:

1
B@t) = _/ (WP + k1 |AuP) de +/ G(A ) dz.
2 Ja 0
A simple computation gives
T
E(S)-E(T) = kg/ / 1Au’|2 dz, forall 0 < S < T < oo,
s Ja
for any regular solution of (1.1)-(1.4). This identity remains valid for all mild solution by an easy

density argument. So the energy is nonincreasing, and our main result is as follows.

MAIN THEOREM. Let hypotheses (H1)-(H3) on g be valid and let u be a solution of problems
(1.1)—(1.4) in the class
C (R*; HZ(Q))nC* (RY; L¥(R)),

then under the assumptions
zg(z) > 0, for all z € R, (H4)
2G(z) < zg(=z), for all z € R, (H5)

we have
E(t) < E(0)e!™“t, VteRt,

where 1/w = ¢(2)/kz + max{1, (c(Q)/k1)} + k2/k1 and c(R) is the constant appearing in the
following inequality:

/ u?dr < c(Q)/ |Au)? dz,  for all u € H3(Q).
Q Q
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2. PROOF OF THE MAIN THEOREM

Applying a density argument, it is sufficient to consider the case where ug and u, are sufficiently
smooth to justify all the computations that follow.
Multiplying (1.1} with u, we have

/ST/Q (kl |Au)? - |u')? + 2G(Au)) dx dt

S [/Q ! dx]T ) % [/n " dx]: + /n (2G(Au) — Aug(Au)) dz dt,

S

with0 < S < T < 0.
Whence,

T T 9
2/ E(t)dt=2/ /lu'[ dz dt
S S JQ

_ [/ﬂuu/dx] _k [/ Ay[? dx:l +/ST/Q(2G(Au)—Aug(Au)) dz dt.
That is, by (H5)

2/:E(t)dt§2/:/n|u'|2 dz - [/ﬂuu'dx]:—]—;z [/Q|A'u,|2 d:z:]:. (2.1)

Using the nonincreasing property of E, the Cauchy-Schwarz inequality, and the definition of E,
we have
T T
2/ / ' da dt < 2c(Q)/ / \AY|? da dt
s Ja s Ja
2c(Q) [T,

2¢(9) _
o ES);
/uu dz| <
Q

;k/z(|u|+|'| — / ) Auf +u?) do
oo ) )

k / |Auf? dz ‘ < —E(t) <®ps).

Q ki
Using these estimates, we conclude from (2.1) that

/ E(t)dt < ,SQ) E(S) + 2 max {1, i(kﬂ—)} E(S) + 2’“2 T E(S),

1
and then
T
/ E(t)dt < (C(Q) + k— +m {1, 556@}) E(S), forall0<S<T < +oo.
s 1

Letting T' — 400, this yields the following estimate:

/: E(t)dt < (% + :—f +ma‘x{1’%)}) B, vs=z0

and we conclude from Lemma 1.1 that
E(t) < E(0)e!™t,  Vt>0,
with 1/w = ¢(Q)/k2 + ka/k1 + max{1, (c(2)/k2)}.
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