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1. Introduction

In the present work we are concerned with the asymptotic behavior of the solution of the following Timoshenko system:

P10y — ki (@ +1), =0 in 10, L[xR.,

PV — Kot + ki (@, + ) + [y 8(t — Sy (s)ds =0 in 10, L[xR,,

@(0,£) = y(0,t) = @(L,t) = Y(L,t) = 0 in R, (P)
P(x,0) = Po(x), @,(x,0) = @ (x) on 10.L[,

Y(x,0) = Yo%), ¥(x,0) = ¥ (x) on 0,L[,

where t denotes the time variable, x is the space variable along the beam of length L, in its equilibrium configuration, ¢ is the
transverse displacement of the beam, v is the rotation angle of the filament of the beam, g : R, — R, is a non-increasing
function, and the coefficients p,, p,,k; and k, are positive constants denoting, respectively, the density (the mass per unit
length), the polar moment of inertia of a cross section, the shear modulus and Young’s modulus of elasticity times the mo-
ment of inertia of a cross section and satisfying

bk
1 P2

Our aim is to establish a general decay result, depending on g, for the energy of the system (P).
The Timoshenko system which describes the transverse vibration of a beam was first introduced in [24] and has the form

{pmott:kl(fpx—w)x in ]0,L[xR.,
0oV = koW + ki (@, — ) in ]0,L[xR,.

(1.1)

(1.2)
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Since then many people have been interested in the question of stability of (1.2) with different kind of controls: internal,
boundary feedback, memory or past history. Let us mention some of these results.

If both the rotation angle and the transverse displacement are controlled, then it is well known that (1.2) is stable for any
weak solution and without any restriction on the constants p,, p,,k; and k,. Many decay estimates were obtained in this
case; see for example [3,7-10,12,16,21,22,25-27].

If only the rotation angle is controlled, then there are two different cases. The case of different wave speed of propagation
(1.1) and the opposite case. For the case ’/j—‘] = ;‘)—22 it is well known that, similarly to the case of two controls, (1.2) is stable and
similar decay results were obtained. We quote in this regard [2,4,5,11,13-15,17-20,23]. If (1.1) holds (which is more inter-
esting from the physics point of view), then it is well known that (1.2) is not exponentially stable even for exponentially
decaying relaxation functions. Moreover, some polynomial decay estimates for the strong solution of (1.2) were established
only for the case of internal feedback in [1] and the case of past history in [15,20]. In these papers, the idea of the proof of the
polynomial decay results exploits the non-increasingness property of the second energy (the energy of the system resulting
from differentiating the original system with respect to time) to estimate some higher-order terms.

In the case of memory control (P), the second energy is not necessarily non-increasing. To overcome this difficulty, we
give an explicit estimate for the second energy in terms of the relaxation function and the initial data. In addition, we con-
sider here a wider class of relaxation functions g than those considered in the case of past history control [15,20].

The paper is organized as follows. In Section 2, we state some hypotheses and present our stability result. In Section 3, we
give the proof of our stability result.

2. Preliminaries

We consider the following hypothesis:(H) g : R, — R, is a differentiable function satisfying
+oo
g0)>0, k- / g(s)ds = 1> 0 @1
0

and there exists a non-increasing differentiable function ¢: R, —]0, +oo[ and a constant p > 1 such that
g(t) < =¢(t)gh(t), vt=0. (2.2)

Remark 2.1. Condition (2.2) describes better the growth of g at infinity and allows us to obtain precise estimate of the
energy and more general than the “stronger” one (¢ = constant and p € [1,3[) used in the case of past history control [15,20].
We consider here the form (2.2) because our decay estimate can be expressed in a better way in the case ¢ = constant, than
in the one p = 1.

Remark 2.2. By using a standard Galerkin method, we can show that (P) has, for any initial data
(90, @1) (o, ) € (H(0.LD N H5(0,L)) ) x Hy(10, L)),
a unique (strong) solution

¢,y € C(RH(0,L) N H;(10,LD)) (2.3)

nC*(R*5Hy(0,LD ) N € (R*512(0,LD),
and for any initial data

(@0, 1), (Wo,¥1) € Ho(10, L)) x L*(]0, L)),

problem (P) has a unique (weak) solution

P e C(R*;Hé(}O,L[)) nc' (R*;Lz(]o,L[)). (2.4)
Now we introduce the energy functional associated with (P) by
1 1t 2 2 ‘ 2 2
E(t) :=580Vx+5 /0 P1@; + Pavi + (K2 — /0 g(s)ds | + k(o + )" | dx, (2:5)

where, for all v : R, — L*(]0,L]),

L t
_ _ _ 2
gov= /O /0 gt —s)(v(t) — v(s)) dsdx. (2.6)

Our main stability result reads:



9426 A. Guesmia, S.A. Messaoudi/Applied Mathematics and Computation 219 (2013) 9424-9437
Theorem 2.1. Assume that (H) holds and let

(o, @1). (W, 1) € (HA(10.LD N Hy(0.LD) ) x Hy (10, LD
Then the (strong) solution (2.3) satisfies
1+ (fég%(s)ds)wfl) + g2 r(syds) T
Jy €(s)ds ’

E(t)<C

vt > 0, (2.7)

where C is a constant depending continuously on

2 2
(o, (P1)HHZ(]0‘L[)ng(]0.L[) + | (o, Y1 )“HZ(]O_L[)XH})(]O,L[)'

Remark 2.3. 1. If ’?g’ is differentiable and non-increasing, then (2.2) is satisfied with ¢ = ’?g’ and p = 1. Consequently, we have
at least the estimate

g0
C/In==, Vvt>O0. 2.8
/ g(t) (2.8)
2. If ¢ = constant and 1 < p < 3 (hence [ gi(s)ds < o0 and Jo = g% P(s)ds < +o0), then (2.7) becomes
E(t) < CtwT, Vit > 0.

3. The best decay rate given by (2.7) is E(t) < ¢ which holds when ¢ = constant and p = 1 (that is; g decays exponentially to
zero).

Examples. Let us give here some examples to illustrate our general estimate (2.7) and the difference between the cases ¢ =
constant and p = 1.

1. Let g(t) = for g > 1, and let a > 0 be small enough so that (2.1) is satisfied. Condition (2.2) is satisfied with

(2+t)(ln(2+t T

&= —g and p = 1 (but it is not satisfied with ¢ = constant and p €]1, 2[) and then (2.8) gives

C
E®) < In(t + 2) + In(In(t + 2))’

2. Let g(t) =

vt > 0.

<1+r 4, for g > 1, and let a > 0 be small enough so that (2.1) is satisfied. Condition (2.2) is satisfied with ¢ = con-

stant and p = 1 + . Then (2.7) gives

—4q(@-1)

Ctor if qej1,2]
E(t) < crot if qej2,+ool,» VE>0.
C(ln(l +0)212 if g=2,

3. Let g(t) = ae~n(1+0) for g > 1, and let a > 0 be small enough so that (2.1) is satisfied. Condition (2.2) is satisfied with
¢ = constant and any p > 1. Then (2.7) gives, for any r < 1,

Eity<Ct™, vt>O0.
Here (2.2) is also satisfied with ¢ = ‘?g’ and p =1, and (2.8) gives the “weaker” estimate
E(t) < C(ln(t+ 1) vt>0.

4. Let g(t) = ae~("+9" for q > 0, and let a > 0 be small enough so that (2.1) is satisfied. Condition (2.2) is satisfied with ¢ =
constant and p = 1 if ¢ > 1, and it is satisfied with ¢ = constant and any p > 1 if q €]0, 1]. Then (2.7) gives

-1 .
En < a1, , Vt>0.
Ct™" if qe€)0,1](forany r < 1)

If g €]0, 1], then (2.2) is also satisfied with ¢ = ’?g’ and p = 1, and the estimate (2.8) gives the “weaker” estimate

E(t) <C(t+1)9, vt > 0.
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Remark 2.4. 1. The examples above show that the function g satisfying (2.2) with ¢ = constant leads to a better decay esti-

mate than the one obtained for those satisfying (2.2) with p = 1. But the presence of function ¢ in (2.2) allows a wider class of

relaxation functions g. In the case of past history control [15,20], condition (2.2) was considered with ¢ = constant and

p € [1,3[ only. The more general growth of g, for the case of infinite history, has been discussed lately by Guesmia [6] in

an abstract setting.

2. The case of equal wave speed of propagation ’,;—‘l = f,—i, condition (2.2) was considered with ¢ = constant and p € [1,3[ in
[4,6], and with p = 1 in [5,13]. The obtained results, in those papers, show that the energy of (P) obeys (for positive con-
stants cq,¢;)

cie et if p=1 and ¢ = constant 29
a1+t if pe1,3[ and ¢ = constant @9)

and, in general,
E(t) < cie h?9%, if p=1. (2.10)

Here (2.10) is better than (2.9) in general (see examples above) and it is useless to consider p > 1. As conclusion of these two
remarks, it seems that condition (2.2) is more appropriate for the case :‘)—: = ;‘,—i when p = 1, and to the case (1.1) when ¢ =
constant.

3. Proof of the main result

In this section we prove our main stability result. For this purpose we establish several lemmas. We will use c (sometimes
c; which depends on some parameter 7), throughout this paper, to denote a generic positive constant which does not depend
on the initial data.

Lemma 3.1. Let (¢, ) be the strong solution of (P). Then the energy functional satisfies, for any t > 0,
/ 1 t 2 1 /
E(t)= —Eg(t)/ Yrdx +58 0y, < 0. (3.1)
0

Proof. By multiplying the first two equations in (P) by ¢, and y, respectively, integrating over 0, L[ and using boundary con-
ditions, we obtain (3.1).

Let us set

s=( tg%<s)ds)2(p4), g0= [ g O

Lemma 3.2. Let (¢, ) be the strong solution of (P). Then

2(p-1)
gon” < (JEO) g0 0w, 32)
t 2 t
( [ ee-9w0- ws)ds) <80 [ &= 5)00) - 1 (5)7ds. (3.3)
0 JO
t 2 ot
( [ge-s00 —wx<s>>ds) < 8(0) [ glt-5)0y(0) ~ hy(5)ds (3.4)

Proof.

1. If p =1, then (3.2) is trivial.

If p> 1, let r = 22— and use Holder's inequality to obtain
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/: /0 "8t 5) (0 ()~ (5) Pl = / / H(E=8) (ha(6) = ()] [ (€ =) W)~ (5)) T | dlslx

g(/o /Og%(tfs)(th dsdx) x( /gzzt Tt —s) (W, (t) wx(s))zdsdx>%

2(p-1)

<<2/0tg’5(tfs)/0L( dxds) ” ( /g”t )y (6) ())zdsdx>2p]_l.

Using the definition and the non—increasingness of E, we get

gzt 5) (O+v2(s)dxds ) gt s)( g s)ds e 8E0) 2”7‘7(g1<t))zp+n
I

Therefore (3.2) follows.
2. Similarly, using Cauchy-Schwarz’ inequality, we get

(/gt,s (y(6) — U (9))d ) —(/t[g K= 91E° (€~ 50 (0) )
(/ gHt—sds)(/ (0~ ) Usl0) ~ (5"
< ([J g 7(s)as) ( /o (0 = 9)0l0)— y(5)7ds )
which gives (3.3).

3. To prove (3.4), we proceed as in case of (3.3):

(f gt ) - %(s))ds)z -(/ gl syis) | gt h(0) - Uy(s)ds

—g(0) /0 gt =)W (t) — Yy(5))%ds;

hence, (3.4) follows. O

Lemma 3.3. Let(¢, ) be the strong solution of (P). Then the functional

L= —pz/ x//t/ g(t—s)( W(s))dsdx

satisfies, for any 6 > 0,

t L L L
Ia<t)<—p2( / g(s)ds—a) [ s [o,+uranss [ ik e v - g o (35)

Proof. Direct computations, using (P), yield

b0 =, [ [ gt - wonds+ [ gas)u)ax
[ ([se-siwo >>ds)<kzwxx 1(0,+ )~ [ (e shals)ds )dx
:—Pz/ wf/g (£ 9) ))dsdx — p2</g ds)/ l//[dx-*-kz/ wx/gt—s V() = (5))dsdlx
+k1/0<sox+w>/og(t—s><w(t> $))dsdx - / (/gt—swx ds)(/gt—s NORG ())ds)dx.

Now we estimate the terms in the right-hand side of the above equality as follows. By using (3.4) and Young’s and Poincaré’s
inequalities we obtain, for any J > 0,

—pz/ wt/g (t—s)( ())dsdx<6p2/ Y2dx — ;8,00 o Uy

Similarly, using (3.3), we have
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L t 5 L )
fo [ [ 8= 5)00) —v(sdsax < 5 [ plax+cigs 08 o v

L t L
K / (@, + ) / g(t— )Y (t) — Y(s))dsdx < & / (@, + V)X + Co8> ()87 o v
0 0 0

_ /OL </Otg(t - S)l//x(S)dS) (/Otg(t — ) (W (t) — l//X(S))ds> dx
< 4(%2(5)‘15)2 /O-L ( [ 8690~ vut0) + 004 ) dx -+ c, / ( ['stt-s00 l//x(S))dS>2dx
0

< m / LZ( / [g<s)ds)2widx v EGECE ws))ds) ax<d [ vidxtagm0g b,

A combination of all the above estimates yields (3.5). O

and

Lemma 3.4. Let (¢, ) be the strong solution of (P). Then the functional

L
b(t) = - / (o + pr 0@, )dx

satisfies the estimate

L L L
By < = [t + prodidxr e [ (o wrdxe [ vl a0 v (36)
Proof. By exploiting equations of (P) and repeating the same procedure as above, we have

L L L t
I’z(t):—/0 (pzw?w](p?)dX—kl/o qo(<px+¢)xd><—/0 w(kzwxx—lﬁ(fpxﬂlf)—/o g(t—s)wm(s)ds)dx

oL oL L L ot
_ 2 2 2 2dx —
[0 prgtiaesa [ (o irdrrka [ e [, [ g spisdsax

To obtain (3.6) we have just to note that, using (3.3) and Young’s inequality,
L t L t
~ [ [ g =sipsax = [ [t = )0005) — bult) + (0

<c/OLwidx+c/ (/gt—s () — W (£))ds )dx<c/Lw§dx+cgz(r)gpov/X. o

Lemma 3.5. Let (¢, ) be the strong solution of (P). Then the functional

'L kap, [* Py [t !
) = Pz/o Uiy + W)X+ /(,‘/’x‘f’fd"‘kﬁ/o <Pr/0 8(L — $)u(s)dsdx

satisfies, for any € > 0,

2

1) < - (koL t)f/t (t — ) (L, s)ds 2+i ko, (0 r)f/t (t — $)9,(0,5)ds
3 \26 2Wx\L, .Og x Ly 2¢ 2Wx\Y, .Og x\Y,
L L L L
_ 2 2 2 ¢ 2dy _ .o’ o
PALO+ 020.0) ki [ (ot p, [ videre [ il [ cgon,

5l
40 ) [ b (37)

.
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Proof. By exploiting equations (P) and repeating the same steps, we have

L L L t
5O = s [ (@u v+ 52 [ipaxs [ @t n) (kv [ 8- 90a(5)ds k(o + 1) )dx+ k

< [tocrinae [ @ [ ee-suniss)a-t [o (g0 [ ge-suiss)o

=i [ o wranrpy [t (520 p) [Coupacs [(len - [t smeas) o+ w)}:

kl / wxq)tdx+ / (Pf/ g'(t = S) (Wi (t) — Y (5))dsdx.

By using (3.4) and Young’s inequality, for the last three terms of this equality, (3.7) follows.
Now, as in [2], we estimate the boundary terms of (3.7).

Lemma 3.6. Let m(x) =2 —%x and (¢, ) be the strong solution of (P). Then, for any € > 0, the functionals

0= p; | e, (kzwx -/ P sm(s)ds) dx

and L
£) = p /0 M(X) @, pydx
satisfy
t 2 t 2 L
1) < (ot~ [t 9wa(tsids) ~ (ka(0.0) ~ [ st -9 (0.5ds) + ek [+
0
+c<1+ ></ wde+g2()g"o¢x>+C/ Yrdx —cg oy, (3.8)
and
L
(0 <~k (3L + 930.0) + ¢ [ (0} + g2 + WE)ax. (39)
0

Proof. By noting that m’(x) = —4 and m(0) = —m(L) = 2 and exploiting equations (P), similar calculations as in above give

Lo - [ ") (ot | gl S (5)ds — Ky (@, + 0) < (e | gt $)0s(5)ds )+ p,
[ mw (Ko~ 0~ [ gte - usisris o
(k- [ e~ sma,s)ds)z - (k0.0 - [ ste- sm(o,s)ds)z +2

« L (o | tg(t—swx(s)ds)zﬁpTZ"z / Cpdx -y / Lm(x)(kzwx— / tg(t—s)sz(s)ds)(q)x+¢)dx+p2

<[ @, (f gt ) - Uy(5)ds )~ pg(©) [ "

By using (3.3) and Young's inequality, we get

L/ (fat - /gt—swx ds) dx—L/ ((kz—/g s ) + /gr—s (ylE) — Ui (s))d ) dx
<c [ axic[ (f g(t—s)(%(r)—wx(s))ds) dx

L
< c(/ Yadx + g,(t)g? o lﬂx).
0

Similarly, for any € > 0, we have
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2

ko [ m (ke — [ &t =sy0ut51ds )+ < ek [ rwian S [ (ke [ et =spa(o1s) v

< ek /OL(q)x + ) dx +§ </OL Yrdx +g,(t)g o wx)-

Also, using (3.4), it is clear that

o | v, ( / (- Wh0) - w,ms))ds) dx— p(0) [ O dx

2 L
2 2 /
<c /(lﬁt-‘rl//x dx+c/ (/gt—s (i, () sz(s))ds> dxgc/0 (Yi +yz)dx —cg oy,

Combining all the above, we obtain (3.8).
Similarly, we can prove (3.9). Indeed,

L oL
10 = / M0, + U+ oy [ mx)0 0,

_ I;] [ 2 L 2k] / qD)z‘dx+2pl / qD dX+k1/ m (pxlpxdx

Consequently, using Young's inequality for the last integral of this equality, we get (3.9). O

Lemma 3.7. Let(¢, ) be the strong solution of(P) Then, for any € € ]0, 1], the functional

Is(6) == I(0) + 5 La(0) 4o ls(0)

satisfies
4 ki t 2 t 2 c [t c [t /
10 < (5 —ce) (oot wriaxree [ gtaert [uiar s [ uidcecdeag ov - g ouy)
0 0 0

k
(M— pz> / Pdx. (3.10)

Proof. By using Poincaré’s inequality, we have

oL L L oL oL
/ <p,3dx<2/ ((px+t//)2dx+2/ lpzdxgz/ ((px+t//)2dx+c/ Y2dx.
0 0 JO JO JO

Then (3.7)-(3.9) imply (3.10). O

Lemma 3.8. Let (¢, ) be the strong solution of (P). Then for any € € 0, 1], the functional
1

I(t) = Io(0) + g (1),
satisfies
ho< -8 (<px+w> dxf—/w?dx+c/(wf+w>dx+c<gz<>gpow g o)

k
¥ (p,; 2 ps) [ ot (3.11)
1 0

Proof. Inequality (3.10), with € € |0, 1] small enough, and inequality (3.6) yield (3.11). O

As in [2,17], we use a function w, given by

—/Oxt//(y, t)dy+%</;mb(y, t)dy>x (3.12)

to get a crucial estimate.
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Lemma 3.9. The function w satisfies

L L
/wfdx<c/ Wldx (3.13)
0 0

L L
/wadx<c/0 Yrdx. (3.14)

and

Proof. We have just to calculate w, and use Holder’s inequality to get (3.13). Applying (3.13) to w; we get
L
/ W2 dx < / yrdx.
Jo
Then, using Poincaré’s inequality (note that w,(0,t) = w¢(L,t) = 0), we arrive at (3.14). O

Lemma 3.10. Let (¢, y) be the strong solution of (P). Then for any € € ]0, 1|, the functional

oL
Is(t) = /0 (ol + pywep,)dx

satisfies

ho <y [ via S [ vidcre [ gt g on 3.15)
Proof. By using equations (P), integrating by parts and taking into account inequalities (3.13) and (3.14), we arrive at

L L L t
Lo = [ (002 + prwep)acs e [ wig i [ (Kb~ kal ) - [ 8- spplsids )y
oL t oL oL L
:/ (pzwf—kzxpf)dwr(/ g(s)ds)/ (//,z(dxflﬁ/ (l//+Wx)((pX+l//)dX+,0]/ we,dx
0 JOo JOo 0 JO

L t
+ /0 Ve /0 &(t — 5)((5) — o(6))dsclx.

By recalling (3.3), (3.12) and (3.14) and the fact that

1 L
wo= v+ [ vonnay,

we get
2

K /OL(I//-i-WX)(ng-i-!P):—k—E(/OL\//dX) <[<p]ﬁj+/0Ll//dx> :—%(/JW) <0,
*(kz - tg(s)ds) / i< *<k2 - Wg(s)ds) / = -1 g,
pl/OLwt(p[dxg6/()anfdx+g/:wfdx<e/OqudeJrg/OLw?dx

L t
/ " / g(t — $)ds(y(5) — v (6))dsdx < / W2dx + cgy(t)g? o Uy
0 0

and

Consequently, (3.15) follows. O
Now, to estimate the term (""‘2 -
respect to time t.
Noting that y(x,0) = y,(x) and using the fact that

atUg S)uls dS} @t[/g wxxt—s)ds}

5) [é @Y, appeared in (3.11), we use the system obtained by differentiating (P) with
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/g Wi (£ — )dS + g(E)a(x,0) = /gtfsm )ds + 8(0)Wroee

we have
P1Pu — ki (@ + ) =0 in ]0,L[xR,,
PV — kzwtxx + ki (Qp + V)
+ fo S (5)dS + () = 0 in] O,L[xR,,

(pt(o’ t) l//t(07 t) = (pt(L7 t) = l//t(Lv t) =0 on R,.

Lemma 3.11. Let (¢, y) be the strong solution of (P). Then the energy of (P.), defined by

1 1 L t
E(6) =580y +5 /0 {Plﬁﬂfﬁpzlﬂfﬁ (sz /0 g(s>d5)¢§t+k1(<pr+wt)2dx

satisfies, for all t > 0

oL L
B = —38(0) [ Vidx+ 38 0 ~80) | ibond

E.(t) < C(E*(O) + /0 ' ngxdx)

and
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(3.16)

(3.17)

(3.18)

Proof. Multiplying the first two equations in (P.) by ¢,, and v, respectively, integrating over |0, L[ and using the boundary

conditions, we obtain (3.17). Then we have

B0 <580 [ (bt 3t )ix < 0.0+ 5100 [ vt

which implies

%(E*(t)e Jyses )<ﬁe Josisg / %xxdx< / ViudX.

Then, a simple integration yields

E(t)e Jo 59% ¢ e h# < E (0 (/g ds)/ Y2, dx <E.(0 (/ g(s ds)/ Y2 dx.

Hence (3.18) follows. O

Now, let tp > 0 and Ny, N3,N3 > 0. We put g, = [,° g(s)ds and
Ig(t) := Ny (E(t) + E.(t)) + N2I1 (t) + Nsls +I7(t )-
By combining (3.1), (3.5), (3.11), (3.15) and (3.17) and taking 6 = ;‘T'Z in (3.5), we obtain, for all t > t,

1 INs fa P 2
Lo < —(F—c) [ viax— (P eo) /wtdxf Nopag -~ ) [Cwrax - [C(o s

N k
+ Chns 82 (6)87 0 Wy + (7—ch—c)g oY+ g oY — N1g(t / VouudX + (p ) 2—/5) / Py dx.

At this point, we choose N3 large enough so that ’”3 — ¢ > 0, then € €]0, 1] small enough so that £L — eN3 > 0. Next, we pick N,

cN3

so large that N, p,g, — <2 — ¢ > 0. Consequently, we have, for all t > to

) Yo o 2 Ny ) Ny ,
)< ¢ [ (V0 02 + (0 07)dk+ 08 0w+ (51— ) 0yt g1 v~ Mgt

k t
/ WOXXthdX+ (pllc 2 pz)/o (pt‘pxtdx-

(3.19)



9434 A. Guesmia, S.A. Messaoudi/Applied Mathematics and Computation 219 (2013) 9424-9437

Now we estimate the last term of (3.19). We proceed as in [20] (in the case of past history control) and we prove the fol-
lowing lemma.

Lemma 3.12. Let (¢, ) be the strong solution of(P) Then, for any ¢ > 0 and t > to, we have

k L
(2= p:) / Pt <5 | R+ (&0 o~ 8 0 ) + SEORO). (3:20)

Proof. We have, for all t > t,

plkz M—Pz plkz
- P2 /w//xf /(p[/g S) (Wxe (£) = (s ))dsdx+ /(pt/gt—s W (5)dsdx.

By noting that 1 — < L, for all t > t,, exploiting Young’s inequality and (3.3) (for V), we get, for all e >0 and t > to,

f (s)ds = &
pl_kz _ p t e L c
/ 00 [ 80 =5) ()~ pul)dsix <5 [ gax-+ Lga08" o

On the other hand, by integrating by parts and using (3.4) and the fact that E and g are non-increasing and v(x, 0) = y,(x), we
obtain

ﬂlkz ds/ (Pt/ 8t — S)P(s) ‘}1(1‘2 pz/ §0t< © )lpx_g(t)l//OX+/O[g/(t_s)¢x(s)ds)dx
0

_ ?;_k;(;)dz /OL 00800~ Vo) - [ g5 - Uyl )
0

e [t ¢ o 2 c.
gZ/ (p[dx—&-gg(t)/ (l//0x+l//x)dx_5g Olﬁx
0 0
e (. c c,
<5 | tdn+ Lg0E© - g oun

Inserting these last two inequalities into the first equality, we obtain (3.20). O

Lemma 3.13. Let (¢, ) be the strong solution of (P). Then, for any t > to, we have

oL L
o) < —c | (wiwfwf+<(px+w>2)dx+cgz<r><gpowx+gpowx[>+c[5(0>+a<0)+ / wémdx}gm. (3.21)

Proof. We have, using Young’s inequality and (3.18),

[ vnanatx < [ i< c(E@+ [ o) <c(B0)+ [ via). 3:22)

Then, inserting (3.22) and (3.20) into (3.19) and choosing ¢ small enough such that ¢ < ¢, and N, large enough such that
Ig > cE and 3 —c—£>0, we obtain (3.21). O

Now, using (3.2), we have
L 2p-1
EP7 () < c( / (w2 + 0F +97 + (o + W)dx) +egoyy)?
0

L
<) [ (4402 02 + (07 )de 11087 00 ).
Jo
hence
(1) < /O L (wi QPR+ (o, + w)z)dx) < —cE? (1) + 2PV (0)g, (£)gP 0 . (3.23)

Multiplying (3.21) by E*?~Y(0) and inserting (3.23), we get, for all t > to,
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EXP D (0)I(t) < —cE 1 (£) + cE*P 1 (0)[(81 (1) + 82(0)87 0 Wy + 82(6)8” 0 Y]
+ cE*P7Y(0) ( / %xxdx) (3.24)

We note that by condition (2.2) and the fact that ¢ is non-increasing, we have

f(gp o 7}) (fgp) SRS 7g ov, ve {lva th}-
Then we multiply (3.24) by ¢ to get, for all t > ¢,

EOE () < —cE*P N (0)E(0)]g(t) — cE*P 1 (0)((g1(6) + ()8 0 iy + &2(D)8 © W)

+ B () (E(O) +E(0) + /0 ' x//éxxdx> g (b).

By integrating over [to, t], using (3.1), (3.17), (3.18), (3.22) and the fact that E~' and ¢ are non-increasing, 0 < Iy < c(E +E,)
and f s)ds < +oo, we obtain, for all t > to,

Bt / / £(s)E (s / £(s)E? (s)ds + /t £(s)E? " (s)ds

<toé<0>52"*‘<0)+cEzU’*”<0>( (o)l (to) — £(E)Is () + é() (5)d )—CE“’”(O)

< [ [+ moEe +e0 (0 +20) [ wOXwafdx)} ds

+cE*PY(0) (E(O) +E.(0) + /0 L wéxxdx> /t [é(S)g(S)dS

< cE*PV(0)(E(0) + E(to) + E.(to))
+ CE*P7V(0)[(81(to) + &5 (£0)E(to) — (81(¢) + &2()E(E) + &2(to)E. (to) — &>(t)E.(£)] + cE**~V(0)

< 846) + 8)ES) + &8 6))ds + B0 (0)(E.(0) )+ [ Vit / &(s

+ BP0 <E(O) +E.(0) +/L Wéxxdx> /[g(s)ds
0 0
L t
< CEZ(IH)(O) (E(O) +E.(0) +/0 ngxxdx) (1 +/ (g/1 (S) + 85(5) +g2(5)g(5))ds)

<C52<p4>(0)<5(0)+5*(0)+ /Olwéxxdx)( +81(0) +&(t / &(s >

Since g'~? is non-decreasing then

/ 2>(5)g(s)ds = /tg(s) (l/osgz’p(r)dr>ds < /O.tg2 </ gt d‘c) </ g(s ds)g2 < cgy(b).

Consequently, we deduce, for all t > t,
t L
B2 (0 [ cts)ds < B (0)(EQ)+E0)+ [ vhad) (14210 + £:(0),
0 0
which gives (2.7) for all t > t, with
2p-1) L ) bre !
C=cE»1(0) (E(O) +E.(0)+ / %Xxdx) .
Jo

Thanks to the continuity and the boundedness of E, (2.7) holds, for all t > 0. This completes the proof of Theorem 2.1. O

Remark 3.1. Our stability result also holds for the following boundary conditions:
@(0,t) = o(L,t) =y,(0,8) =y, (L,t) =0 on R,. (3.25)

For this purpose, we introduce a new dependent variable. Namely,

Y(x,t) = p(x,t) *% </0L wo(x)dx) cos \/Ezt = % \/%</OL wl(x)dx) sin ﬁt.
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As a result, (¢, ) satisfies system (P), with (0, t) = yx(L,t) = 0, and more importantly,
L
/ I Odx=0, ¥V 30
0
which allows the application of Poinaré’s inequality. The proof, in this case, is simpler because we have
ot L
(et~ [ &te- 995 ), 40| =0,
0
and then (3.7) becomes
I3(t) < —ki / (o +¥) dX+pz/ t/ffdx%/ prdx + / Yrdx — cg' oy + ( 2P1 *p2> / PohedX.

Therefore, we take I; = Is = 0 in Lemma 3.6, I = I3 in Lemma 3.7, and we complete the proof exactly as before. Note that we
do not require that

L L
/ Yo(X)dx = / J1(0)dx = 0
0 0

Remark 3.2. Similarly, Our stability result also holds for the boundary conditions:

9.(0,6) = @, (L.t) = y(0,6) = Y(L,) =0 on R,. (3.26)

In this case, we introduce a new dependent variable. Namely,

Px,t) = Xt——t/ Q¢ (x x_—/(/’o

and proceed exactly like the case of the boundary conditions (3.25). Again, we do not require that

L L
/0 %(X)dX:/O @,(x)dx =0

Remark 3.3. Our result is still true if we consider (P), with Dirichlet homogeneous boundary conditions or (3.25) or (3.26)
and with p,, p,, ki, k, depending only on the space variable such that p,, p, € C([0,L]) and ki, k, € C([0, L)) satisfying

Infyqor (%) >0, Infygoy ki(x) >0, (i=1,2),

Infygor ka2 (x / g(tydt > 0.
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