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In this paper we consider the following Timoshenko system
. All righ

smia), m
utt � ðux þ wÞx ¼ 0; ð0;1Þ � ð0;þ1Þ

wtt � wxx þ
Z t

0
gðt � sÞwxxðsÞdsþux þ w ¼ 0; ð0;1Þ � ð0;þ1Þ
with Dirichlet boundary conditions where g is a positive nonincreasing function. We estab-
lish an exponential and polynomial decay results with weaker conditions on g than those
required in [F. Ammar-Khodja, A. Benabdallah, J.E. Muñoz Rivera, R. Racke, Energy decay for
Timoshenko systems of memory type, J. Differ. Equations, 194 (2003) 82–115].

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In [1], Timoshenko gave the following system of coupled hyperbolic equations:
qutt ¼ ðKðux �uÞÞx; in ð0; LÞ � ð0;þ1Þ
Iqutt ¼ ðEIuxÞx þ Kðux �uÞ; in ð0; LÞ � ð0;þ1Þ;

ð1:1Þ
as a simple model describing the transverse vibration of a beam. Where t denotes the time variable and x is the space var-
iable along the beam of length L, in its equilibrium configuration, u is the transverse displacement of the beam and u is the
rotation angle of the filament of the beam. The coefficients q; Iq; E; I and K are respectively the density (the mass per unit
length), the polar moment of inertia of a cross section, Young’s modulus of elasticity, the moment of inertia of a cross section,
and the shear modulus.

This system has been studied by many mathematicians and results concerning existence and asymptotic behavior have
been established. Kim and Renardy [2] considered (1.1) together with two linear boundary conditions of the form
KuðL; tÞ � K
ou
ox
ðL; tÞ ¼ a

ou
ot
ðL; tÞ 8t P 0

EI
ou
ox
ðL; tÞ ¼ �b

ou
ot
ðL; tÞ 8t P 0

ð1:2Þ
and established an exponential decay result. They also provided numerical estimates to the eigenvalues of the operator asso-
ciated with system (1.1). An analogous result was also established by Feng et al. [3], where the stabilization of vibrations in a
Timoshenko system was studied. Raposo et al. [4] studied (1.1) with homogeneous Dirichlet boundary conditions and two
linear frictional dampings and proved that the energy decays exponentially. This result is similar to the one by Taylor et al.
ts reserved.
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[5] but, as they mentioned, the originality in their work lies on the semigroup theory method, which was developed by Liu
and Zheng [6]. Soufyane and Wehbe [7] showed that it is possible to stabilize uniformly (1.1) by using a unique locally dis-
tributed feedback. They considered
qutt ¼ ðKðux �uÞÞx; in ð0; LÞ � ð0;þ1Þ

Iqutt ¼ ðEIuxÞx þ Kðux �uÞ � but; in ð0; LÞ � ð0;þ1Þ

uð0; tÞ ¼ uðL; tÞ ¼ uð0; tÞ ¼ uðL; tÞ ¼ 0 8t > 0;

ð1:3Þ
where b is a positive and continuous function, which satisfies
bðxÞP b0 > 0 8x 2 ½a0; a1� � ½0; L�:
In fact, they proved that the uniform stability of (1.3) holds if and only if the wave speeds are equal ðKq ¼ EI
Iq
Þ; otherwise only

the asymptotic stability has been proved. This result improves an earlier one by Soufyane [8] and Shi and Feng [9], where an
exponential decay of the solution energy of (1.1) together, with two locally distributed feedbacks, had been proved.

Ammar-Khodja et al. [10] considered a linear Timoshenko-type system with memory of the form
q1utt � Kðux þ wÞx ¼ 0

q2wtt � bwxx þ
Z t

0
gðt � sÞwxxðsÞdsþ Kðux þ wÞ ¼ 0

ð1:4Þ
in ð0; LÞ � ð0;þ1Þ, together with homogeneous boundary conditions. They used the multiplier techniques and proved that,
for a uniformly decaying relation function, the system is uniformly stable if and only if the wave speeds are equal; that is
K
q1
¼ b

q2
. Precisely, they proved an exponential decay if g satisfies a relation of the form
�k0g 6 g0 6 �k1g; jg00j 6 k2g
for k0; k1; k2 > 0 and a polynomial decay result if g satisfies a relation of the form
� b1gðpþ1Þ=p
6 g0 6 �b2gðpþ1Þ=p; p > 2

� b3jg0jðpþ2Þ=ðpþ1Þ
6 g00 6 �b4jg0jðpþ2Þ=ðpþ1Þ

; p > 2
for b1; b2; b3; b4 > 0. The feedback of memory type has also been used by Santos [11]. He considered a Timoshenko system
and showed that the presence of two feedback of memory type at a portion of the boundary stabilizes the system uniformly.
He also obtained the rate of decay of the energy, which is exactly the rate of decay of the relaxation functions. Shi and Feng
[12] investigated a nonuniform Timoshenko beam and showed that, under some locally distributed controls, the vibration of
the beam decays exponentially. To achieve their goal, the authors used the frequency multiplier method.

In the present work we are concerned with
utt � ðux þ wÞx ¼ 0; ð0;1Þ � Rþ

wtt � wxx þux þ wþ
R t

0 gðt � sÞwxxðsÞds ¼ 0; ð0;1Þ � Rþ

uð0; tÞ ¼ uð1; tÞ ¼ wð0; tÞ ¼ wð1; tÞ ¼ 0; t P 0

uðx;0Þ ¼ u0ðxÞ;utðx;0Þ ¼ u1ðxÞ; x 2 ð0;1Þ
wðx; 0Þ ¼ w0ðxÞ;wtðx;0Þ ¼ w1ðxÞ; x 2 ð0;1Þ:

8>>>>>>><
>>>>>>>:

ð1:5Þ
Our aim in this work is to establish the same stabilization result of [10] with weaker conditions on g (see Remark 3.1 by the
end). Though we use the same method and adopt almost all the multipliers used in [10], the use of a functional similar to the
one in [13,14] made the difference and played an essential role in weakening the requirements on g. We should note here
that we do not loose generality by taking q1;q2;K; b; appeared in (1.4), to be equal to one and our argument also works for
K=q1 ¼ b=q2. The paper is organized as follows. In Section 2, We present some notations and material needed for our work
and state our main result. The proof will be given in Section 3.

2. Preliminaries

In order to state our main result we make the following hypotheses:

H 1. g : Rþ ! Rþ is a differentiable function such that
gð0Þ > 0; 1�
Z 1

0
gðsÞds ¼ l > 0:
H 2. There exist constants n > 0 and 1 6 p < 3=2 such that
g0ðsÞ 6 �ngpðsÞ; s P 0:
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Remark 2.1. Hypothesis (H2) implies that
Z þ1

0
g2�pðsÞds < þ1:
For completeness we state, without proof, an existence and regularity result.

Proposition 2.1. Let ðu0;u1Þ; ðw0;w1Þ 2 H1
0ð0;1Þ � L2ð0;1Þ be given. Assume that (H1) is satisfied, then problem (1.5) has a

unique global (weak) solution
u;w 2 CðRþ; H1
0ð0;1ÞÞ \ C1ðRþ; L2ð0;1ÞÞ: ð2:1Þ
Moreover, if
ðu0;u1Þ; ðw0;w1Þ 2 ðH2ð0;1Þ \ H1
0ð0;1ÞÞ � H1

0ð0;1Þ
then the solution satisfies
u;w 2 CðRþ; H2ð0;1Þ \ H1
0ð0;1ÞÞ \ C1ðRþ; H1

0ð0;1ÞÞ \ C2ðRþ; L2ð0;1ÞÞ:
Remark 2.2. This result can be proved using the Galerkin method.

Now, we introduce the energy functional
EðtÞ :¼ 1
2

Z 1

0
u2

t þ w2
t þ 1�

Z t

0
gðsÞds

� �
w2

x þ ðux þ wÞ2
� �

dxþ 1
2
ðg � wxÞ; ð2:2Þ
where for all v 2 L2ð0;1Þ and for all 1 6 p < 3=2,
ðgp � vÞðtÞ ¼
Z 1

0

Z t

0
gpðt � sÞðvðtÞ � vðsÞÞ2dsdx: ð2:3Þ
We are now ready to state our main stability result.

Theorem 2.2. Let ðu0;u1Þ; ðw0;w1Þ 2 H1
0ð0;1Þ � L2ð0;1Þ be given. Assume that (H1) and (H2) are satisfied, then there exist two

positive constants c and x, for which the solution of problem (1.5) satisfies
EðtÞ 6 ce�xt 8t P 0 if p ¼ 1; ð2:4Þ
and
EðtÞ 6 cð1þ tÞ�
1

p�1 8t P 0 if p–1: ð2:5Þ
3. Proof of the main result

In this section we prove our main result. For this purpose we will establish several lemmas.

Lemma 3.1. Let ðu;wÞ be the solution of (1.5). Then the energy functional satisfies
E0ðtÞ ¼ �1
2

gðtÞ
Z 1

0
w2

x dxþ 1
2
ðg0 � wxÞ 6 0: ð3:1Þ
Proof. By multiplying equations in (1.5) by ut and wt respectively and integrating over ð0;1Þ, using integration by parts,
hypotheses (H1) and (H2) and some manipulations as in [14], we obtain (3.1) for any regular solution. This equality remains
valid for weak solutions by simple density argument.

The key point to show the exponential and the polynomial decay is to construct a Lyapunov functional L equivalent to E
and satisfying, for positive constants k1 and k2,
L0ðtÞ 6 �k2L
k1 ðtÞ 8t P 0:
For this, we define several functionals which allow us to obtain the needed estimates. To simplify the computations we
set
g � v ¼
Z 1

0

Z t

0
gðt � sÞðvðtÞ � vðsÞÞdsdx
for all v 2 L2ð0;1Þ and use c, throughout this paper, to denote a generic positive constant. h



592 A. Guesmia, S.A. Messaoudi / Applied Mathematics and Computation 206 (2008) 589–597
Lemma 3.2. There exists a positive constant c such that
ðg � vÞ2 6 cgp � vx
for all v 2 H1
0ð0;1Þ.

Proof. By using Hölder’s inequality and Poincaré’s inequality, we get
ðg � vÞ2 ¼
Z

X

Z t

0
g1�p

2ðt � sÞg
p
2ðt � sÞðvðtÞ � vðsÞÞdsdx

� �2

6 c
Z t

0
g2�pðsÞds

� � Z
X

Z t

0
gpðt � sÞðvðtÞ � vðsÞÞ2dsdx

� �
6 cgp � vx: �
Lemma 3.3. Under the assumptions (H1) and (H2), the functional I defined by
IðtÞ :¼ �
Z 1

0
wt

Z t

0
gðt � sÞðwðtÞ � wðsÞÞdsdx
satisfies, along the solution, the estimate
I0ðtÞ 6 �
Z t

0
gðsÞds� d

� �Z 1

0
w2

t dxþ d
Z 1

0
ðux þ wÞ2 dxþ cd

Z 1

0
w2

x dx� c
d

g0 � wx þ c dþ 1
d

� �
gp � wx; ð3:2Þ
for all d > 0.

Proof. By using equations in (1.5), we get
I0ðtÞ ¼ �
Z 1

0
wt

Z t

0
g0ðt � sÞðwðtÞ � wðsÞÞdsdx�

Z t

0
gðsÞds

� �Z 1

0
w2

t dx

�
Z 1

0
wxx �

Z t

0
gðt � sÞwxxðsÞds�ux � w

� � Z t

0
gðt � sÞðwðtÞ � wðsÞÞdsdx

¼ �
Z 1

0
wt

Z t

0
g0ðt � sÞðwðtÞ � wðsÞÞdsdx�

Z t

0
gðsÞds

� �Z 1

0
w2

t dx

þ
Z 1

0
wx

Z t

0
gðt � sÞðwxðtÞ � wxðsÞÞdsdxþ

Z 1

0
ðux þ wÞ

Z t

0
gðt � sÞðwðtÞ � wðsÞÞdsdx

�
Z 1

0

Z t

0
gðt � sÞwxðsÞds

� � Z t

0
gðt � sÞðwxðtÞ � wxðsÞÞds

� �
dx:
We now estimate the terms in the right side of the above equality as follows.
By using Young’s inequality and Lemma 3.2 (for g0 and p ¼ 1) we obtain, for all d > 0,
�
Z 1

0
wt

Z t

0
g0ðt � sÞðwðtÞ � wðsÞÞdsdx 6 d

Z 1

0
w2

t dx� c
d

g0 � wx:
Similarly, we have
�
Z 1

0
wx

Z t

0
gðt � sÞðwxðtÞ � wxðsÞÞdsdx 6 d

Z 1

0
w2

x dxþ c
d

gp � wx;

�
Z 1

0
ðux þ wÞ

Z t

0
gðt � sÞðwðtÞ � wðsÞÞdsdx 6 d

Z 1

0
ðux þ wÞ2 dxþ c

d
gp � wx;
and
�
Z 1

0

Z t

0
gðt � sÞwxðsÞds

� � Z t

0
gðt � sÞðwxðtÞ � wxðsÞÞds

� �
dx

6 d0
Z 1

0

Z t

0
gðt � sÞðwxðsÞ � wxðtÞ þ wxðtÞÞds

� �2

dxþ c
d0

Z 1

0

Z t

0
gðt � sÞðwxðtÞ � wxðsÞÞds

� �2

dx

6 2d0
Z 1

0
w2

x

Z t

0
gðsÞds

� �2

dxþ ð2d0 þ c
d0
Þ
Z 1

0

Z t

0
gðt � sÞðwxðtÞ � wxðsÞÞds

� �2

dx

6 cd0
Z 1

0
w2

x dxþ c d0 þ 1
d0

� �
gp � wx 6 d

Z 1

0
w2

x dxþ c dþ 1
d

� �
gp � wx;
By combining all the above estimates, the assertion of Lemma 3.3 is proved. h
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Lemma 3.4. Under the assumptions (H1) and (H2), the functional J defined by
JðtÞ :¼ �
Z 1

0
ðwwt þuutÞdx
satisfies, along the solution, the estimate
J0ðtÞ 6 �
Z 1

0
ðw2

t þu2
t Þdxþ

Z 1

0
ðwþuxÞ

2 dxþ c
Z 1

0
w2

x dxþ cgp � wx: ð3:3Þ
Proof. By exploiting equations (1.5) and repeating the same procedure as in above, we have
J0ðtÞ ¼ �
Z 1

0
ðw2

t þu2
t Þdx�

Z 1

0
uðwx þuxxÞdx�

Z 1

0
w wxx �

Z t

0
gðt � sÞðwxðsÞÞxds�ux � w

� �
dx

¼ �
Z 1

0
ðw2

t þu2
t Þdxþ

Z 1

0
w2

x dx�
Z 1

0
wx

Z t

0
gðt � sÞwxðsÞds

� �
dxþ

Z 1

0
ðwþuxÞ

2 dx

6 �
Z 1

0
ðw2

t þu2
t Þdxþ

Z 1

0
ðwþuxÞ

2 þ c
Z 1

0
w2

x dxþ cgp � wx:
This completes the proof of Lemma 3.4. h

Lemma 3.5. Assume that (H1) and (H2) hold. Then, the functional K defined by
KðtÞ :¼
Z 1

0
wtðwþuxÞdxþ

Z 1

0
wxut dx�

Z 1

0
ut

Z t

0
gðt � sÞwxðsÞdsdx
satisfies, along the solution, the estimate
K 0ðtÞ 6 ðwx �
Z t

0
gðt � sÞwxðsÞdsÞux

� �x¼1

x¼0
� ð1� eÞ

Z 1

0
ðwþuxÞ

2 dxþ e
Z 1

0
u2

t dx� c
e

g0 � wx

þ c
e

Z 1

0
w2

x dxþ
Z 1

0
w2

t dx ð3:4Þ
for any 0 < e < 1.

Proof. By exploiting equations (1.5) and repeating the same procedure as in above, we have
K 0ðtÞ ¼
Z 1

0
ðux þ wÞ wxx �

Z t

0
gðt � sÞwxxðsÞds�ux � w

� �
dx

þ
Z 1

0
ðuxt þ wtÞwt dxþ

Z 1

0
wxtut dxþ

Z 1

0
wxðux þ wÞx dx�

Z 1

0
ðux þ wÞx

Z t

0
gðt � sÞwxðsÞdsdx

�
Z 1

0
utðgð0Þwx þ

Z t

0
g0ðt � sÞwxðsÞdsÞdx ¼ ðwx �

Z t

0
gðt � sÞwxðsÞdsÞux

� �x¼1

x¼0

�
Z 1

0
ðwþuxÞ

2 dxþ
Z 1

0
w2

t dxþ gðtÞ
Z 1

0
wxut dx�

Z 1

0
ut

Z t

0
g0ðt � sÞðwxðsÞ � wxðtÞÞdsdx:
By using Young’s inequality, (3.4) is established. h

Lemma 3.6. Assume that (H1) and (H2) hold. Let m 2 C1ð½0;1�Þ be a function satisfying mð0Þ ¼ �mð1Þ ¼ 2. Then there exists
c > 0 such that for any e > 0 we have, along the solution,
d
dt

Z 1

0
mðxÞwtðwx �

Z t

0
gðt � sÞwxðsÞdsÞdx

6 � ðwxð1; tÞ �
Z t

0
gðt � sÞwxð1; sÞdsÞ2 þ ðwxð0; tÞ �

Z t

0
gðt � sÞwxð0; sÞdsÞ2

� �

þ e
Z 1

0
ðwþuxÞ

2 dxþ c
e

Z 1

0
w2

x dxþ gp � wx

� �
þ c

Z 1

0
w2

t dx� g0 � wx

� �
and
d
dt

Z 1

0
mðxÞutux dx 6 �ðu2

x ð1; tÞ þu2
x ð0; tÞÞ

þ c
Z 1

0
ðu2

t þu2
x þ w2

x Þdx:
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Proof. By exploiting equations (1.5) and repeating the same procedure as in above, we have
d
dt

Z 1

0
mðxÞwt wx �

Z t

0
gðt � sÞwxðsÞds

� �
dx

¼
Z 1

0
mðxÞ wx �

Z t

0
gðt � sÞwxðsÞds

� �
x

wx �
Z t

0
gðt � sÞwxðsÞds

� �
dx

�
Z 1

0
mðxÞ wx �

Z t

0
gðt � sÞwxðsÞds

� �
ðux þ wÞdx

þ
Z 1

0
mðxÞwt wxt � aðxÞgð0Þwx �

Z t

0
g0ðt � sÞwxðsÞds

� �
dx

¼ � wxð1; tÞ �
Z t

0
gðt � sÞwxð1; sÞds

� �2

þ wxð0; tÞ �
Z t

0
gðt � sÞwxð0; sÞds

� �2
 !

� 1
2

Z 1

0
m0ðxÞ wx �

Z t

0
gðt � sÞwxðsÞds

� �2

dx

�
Z 1

0
mðxÞ wx �

Z t

0
gðt � sÞwxðsÞds

� �
ðux þ wÞdx� 1

2

Z 1

0
m0ðxÞw2

t dx

þ
Z 1

0
mðxÞwt

Z t

0
g0ðt � sÞðwxðtÞ � wxðsÞÞds

� �
dxþ gðtÞ

Z 1

0
mðxÞwxwt dx:
By using Young’s inequality and Lemma 3.2, the first estimate of Lemma 3.6 is established. h

Similarly, we can prove the second estimate of Lemma 3.7.

Lemma 3.7. Assume that (H1) and (H2) hold. Then, the functional L defined by
LðtÞ :¼ KðtÞ þ 1
4e

Z 1

0
mðxÞwt wx �

Z t

0
gðt � sÞwxðsÞds

� �
dxþ e

Z 1

0
mðxÞutux dx
satisfies, along the solution, the estimate
L0ðtÞ 6 � 3
4
� ce

� �Z 1

0
ðux þ wÞ2 dxþ ce

Z 1

0
u2

t dxþ c
e

Z 1

0
w2

t dxþ c
e2

Z 1

0
w2

x dx� c
e

g0 � wx þ
c
e2 gp � wx ð3:5Þ
for any 0 < e < 1.

Proof. By using Lemmas 3.5 and 3.6, Young’s and Poincaré’s inequalities, and the fact that
u2
x 6 2ðwþuxÞ

2 þ 2w2
and
ðwx �
Z t

0
gðt � sÞwxðsÞdsÞux 6 eu2

x þ
1
4e

wx �
Z t

0
gðt � sÞwxðsÞds

� �2

;

we obtain (3.5).
Let L1ðtÞ :¼ LðtÞ þ 2ceJðtÞ. By using Lemmas 3.4 and 3.7, and fixing e small enough, we obtain
L01ðtÞ 6 �
1
2

Z 1

0
ðwþuxÞ

2dx� s
Z 1

0
u2

t dxþ c
Z 1

0
w2

t dxþ c
Z 1

0
w2

x dxþ cgp � wx � cg0 � wx ð3:6Þ
where s ¼ ce.
As in [10], we use the multiplier w given by the solution of
�wxx ¼ wx; wð0Þ ¼ wð1Þ ¼ 0: � ð3:7Þ
Lemma 3.8. The solution of (3.7) satisfies
Z 1

0
w2

x dx 6
Z 1

0
w2 dx
and
 Z 1

0
w2

t dx 6
Z 1

0
w2

t dx:
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Proof. We multiply Eq. (3.7) by w, integrate by parts, and use the Cauchy-Schwarz inequality, to get
Z 1

0
w2

x dx 6
Z 1

0
w2 dx:
Next, we differentiate (3.7) with respect to t to obtain, by similar calculations,
Z 1

0
w2

xt dx 6
Z 1

0
w2

t dx:
Poincaré’s inequality, then yields
Z 1

0
w2

t dx 6
Z 1

0
w2

t dx:
This completes the proof of Lemma 3.6. h

Lemma 3.9. Under the assumptions (H1) and (H2), the functional J1 defined by
J1ðtÞ :¼
Z 1

0
ðwwt þwutÞdx
satisfies, along the solution, the estimate
J01ðtÞ 6 �
l
2

Z 1

0
w2

x dxþ c
e1

Z 1

0
w2

t dxþ e1

Z 1

0
u2

t dxþ cgp � wx ð3:8Þ
for any 0 < e1 < l (l is defined in (H1)).

Proof. By exploiting (1.5) and integrating by parts, we have
J01ðtÞ ¼
Z 1

0
ðw2

t � w2
x Þdxþ

Z 1

0
wx

Z t

0
gðt � sÞwxðsÞdsdx�

Z 1

0
wðwþuxÞdx�

Z 1

0
wxðwþuxÞdxþ

Z 1

0
wtut dx

6

Z 1

0
w2

t dx� l
2

Z 1

0
w2

x dxþ cgp � wx þ
Z 1

0
ðw2

x � w2Þdxþ c
e1

Z 1

0
u2

t dxþ e1

Z 1

0
w2

t :
Lemma 3.8 gives the desired result. h

For N1;N2;N3 > 1, let
LðtÞ :¼ N1EðtÞ þ N2IðtÞ þ N3J1 þ L1ðtÞ
and g0 ¼
R t0

0 gðsÞds > 0 for some fixed t0 > 0. By combining (3.1), (3.2), (3.6), (3.8), and taking d ¼ 1
4N2

, we arrive at
L0ðtÞ 6 � N2g0 �
1
4

� �Z 1

0
w2

t dxþ c
N3

e1

Z 1

0
w2

t dx� N3

2
� c � c

N2

� �Z 1

0
w2

x dx� ðc � N3e1Þ
Z 1

0
u2

t dx

� 1
4

Z 1

0
ðwþuxÞ

2 dxþ N1

2
� cN2

2

� �
g0 � wx þ cðN2

2 þ N3Þgp � wx ð3:9Þ
for all t P t0.
We distinguish two cases:

Case 1. p ¼ 1. In this case, we choose N3 large enough so that
N3

2
> c;
then e1 small enough so that
e1 <
c

N3
:

Next, we choose N2 large enough so that
N2g0 �
1
4
>

2cN3

e1
;

N3

2
� c � c

N2
> 0:
Finally, we choose N1 large enough so that
N1c1 � cðN2
2 þ N3Þ > N2g0 �

1
4
; n

N1

2
� cN2

2

� �
> cðN2

2 þ N3Þ:
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Therefore (3.9) takes the form
L0ðtÞ 6 � N2g0 �
1
4
� c

N3

e1

� �Z 1

0
w2

t dx� N3

2
� c � c

N2

� �Z 1

0
w2

x dx

� ðc � N3e1Þ
Z 1

0
u2

t dx� 1
4

Z 1

0
ðwþuxÞ

2 dx� cg � wx: 6 �cEðtÞ;
for all t P t0.
In the other hand, we can choose N1 even larger (if needed) so that
LðtÞ � EðtÞ: ð3:10Þ
Therefore, by combining the last two inequalities, we obtain, for a positive constant x,
L0ðtÞ 6 �xLðtÞ; t P t0:
A simple integration over ðt0; tÞ, leads to
LðtÞ 6 ce�xt ; t P t0:
Consequently, (2.4) is established by virtue of (3.10) and the continuity of E over ½0; t0�.

Case 2. p > 1. With the same choice of constants as in Case 1, we deduce, from (3.9),
L0ðtÞ 6 �c
Z 1

0
w2

t dxþ
Z 1

0
w2

x dxþ
Z 1

0
u2

t dxþ
Z 1

0
ðwþuxÞ

2 dxþ gp � wx

� �
: ð3:11Þ
But using (H1) and (H2), we easily see that
Z 1

0
g1�hðsÞds <1; h < 2� p;
so Lemma 3.3 [15] yields
g � wx 6 c
Z 1

0
g1�hðsÞds

� �
Eð0Þ

� �ðp�1Þ=ðp�1þhÞ

fgp � wxg
h=ðp�1þhÞ

:

Therefore we get, for c P 1,
EcðtÞ 6 cEc�1ð0Þ
Z 1

0
w2

t dxþ
Z 1

0
w2

x dxþ
Z 1

0
u2

t dxþ
Z 1

0
ðwþuxÞ

2 dx
� �

þ ðg � wxÞ
c

6 cEc�1ð0Þ
Z 1

0
w2

t dxþ
Z 1

0
w2

x dxþ
Z 1

0
u2

t dxþ
Z 1

0
ðwþuxÞ

2 dx
� �

þ c
Z 1

0
g1�hðsÞds

� �
Eð0Þ

� �cðp�1Þ=ðp�1þhÞ

fgp � wxg
hc=ðp�1þhÞ ð3:12Þ
By choosing h ¼ 1
2 and c ¼ 2p� 1 (hence ch=ðp� 1þ hÞ ¼ 1), estimate (3.12) gives
EcðtÞ 6 c
Z 1

0
w2

t dxþ
Z 1

0
w2

x dxþ
Z 1

0
u2

t dxþ
Z 1

0
ðwþuxÞ

2 dxþ gp � wx

� �
: ð3:13Þ
By combining (3.9), (3.10) and (3.12), we arrive at
L0ðtÞ 6 �cLcðtÞ; t P t0:
By integration, we get
LðtÞ 6 �cð1þ tÞ�
1

c�1ðtÞ; t P t0: ð3:14Þ
As a consequence of (3.14), we have
Z 1

0
LðtÞdt þ sup

tP0
tLðtÞ < þ1:
Therefore, by using again Lemma 3.3 of [15], we have
g � wx 6 c
Z t

0
kwðsÞkH1ð0;1Þdsþ tkwðtÞkH1ð0;1Þ

� �p�1
p

ðgp � wxÞ
1
p 6 c

Z t

0
LðsÞdt þ tLðtÞ

� �p�1
p

ðgp � wxÞ
1
p 6 cðgp � wxÞ

1
p;
which implies that
gp � wx P ðg � wxÞ
p
:
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So
L0ðtÞ 6 �c
Z 1

0
w2

t dxþ
Z 1

0
w2

x dxþ
Z 1

0
u2

t dxþ
Z 1

0
ðwþuxÞ

2 dxþ ðg � wxÞ
p

� �
and, for (3.12) with c ¼ p,
EpðtÞ 6 C
Z 1

0
w2

t dxþ
Z 1

0
w2

x dxþ
Z 1

0
u2

t dxþ
Z 1

0
ðwþuxÞ

2 dxþ ðg � wxÞ
p

� �
:

Combining the last two inequalities and (3.10), we obtain
L0ðtÞ 6 �cLpðtÞ; t P t0:
A simple integration over ðt0; tÞ and by virtue of boundedness of L, we arrive at
LðtÞ 6 cð1þ tÞ�
1

p�1; t P t0:
Consequently, (2.5) is established by virtue of (3.10) and the continuity of E over ½0; t0�.

Remark 3.1. We should note our result is established under weaker conditions on g than those in [10]. Precisely, we do not
require anything on g00 as in (1.6) and (1.7) of [10]. We only need g to be differentiable satisfying (H1) and (H2).
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