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1 Introduction

We study in this paper the asymptotic behavior at infinity of the solutions of two coupled systems related to
the Bresse model with two different types of dissipation given by heat conduction and working only on the
longitudinal displacement. The first system is the Bresse system with thermoelasticity of type I

P19 —k(ox + ¥ +1w), —lko (wy —1lp) =0 in (0, 1) x (0, 00),
P2Vt — bex + k(o + ¥ +1w) =0 in (0, 1) x (0, 00), W
P1Wwy — ko (wy — L) + 1k (o + ¥ +1w)+ 86, =0 in (0, 1) x (0, 00),
030 — BOxx +dwy; =0 in (0, 1) x (0, 00)
along with the initial data
@ (x,0) =9 (x), ¢ (x,0) =¢1 (x) in (0, 1),
¥ (x,0) =90 (x), ¥ (x,0) =¢1 (x) in (0, 1), )
w(x,0) =wo (x), w; (x,0) =w; (x) in (0, 1),
0 (x,0) =6 (x) in (0, 1)
and the mixed homogeneous Dirichlet—-Neumann boundary conditions
0 (0,1) = ¥y (0,1) = wy, (0,1) =6 (0,7) =0 in (0, 00),
ox(IL,y=v (1, 5)=w,t)=0,(1,t) =0 in (0,00). @
The second system is the Bresse system with thermoelasticity of type III
P10 —k (@0 + ¥ +1w), — ko (wy —lp) =0 in (0, 1) x (0,00),
P2V — by + k(e + ¥ +1w) =0 in (0,1) x (0, 00), @
p1wy — ko (wx — @), + 1k (px + ¥ +1w) 4+ 60, =0 in (0, 1) x (0, 00),
03011 — BOxx — YOxxt + Swy; =0 in (0, 1) x (0, c0)
along with (2) and (3), and
0; (x,0) =61 (x) in (0, 1), (5)

where p1, 02, p3, b, k, ko, 8, B, v and [ are positive constants, w, ¢ and i represent, respectively, the
longitudinal, vertical and shear angle displacements, and 6 denotes the temperature.

Several well-posedness and stability results for Bresse systems [2] have been obtained during the last few
years, where the stability depends on the nature and position of the controls and some relations between the
coefficients. Let us mention here some known results concerning the thermoelastic Bresse systems. For more
details in what concerns mathematical modeling of the thermoelastic problems, we refer the readers to the
works [3,6,7,10,11].

The authors of [13] considered the following system:

010 —k (o + ¥ +1w), — lko (wy — lp) +180 =0,

P2Vt — by +k(px + ¥ +1w) + g =0,

p1wy — ko (wy — @), + 1k (ox + ¥ +1w) + 60, =0, (6)
030; — Oxx + B (wy — lp); =0,

£3qr — qxx + B =0
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and proved the exponential stability if
k —ko = p1b — p2k =0, (7

and the polynomial stability in general. In [5], the authors proved that

p1@ —k (px + ¥ +1w), —lko (wx —lp) =0,
P2 — brex +k (o + ¥ +1w) + 860, =0,
p1wsy — ko (wx — 1), + 1k (pr + ¥ +1w) =0,
030; — Oxx + (BY)x =0

is exponentially stable if and only if (7) holds, and it is polynomially stable in general. The results of [5] were
generalized in [15] to the case where § and g are functions of x and vanish on some part of the domain. The
authors of [9] proved that the following thermoelastic Bresse system

®)

p1@ —k (ox + ¥ +1w), — lko (wx —lp) =0,

P2Vt — bex +k (ox + ¥ +1w) + 80, =0,

p1wsy — ko (wx — 1), +1k (pr + ¥ +1w) =0, ©)
P30 + qx + 8¢ =0,

Tqr +Bqg +0,=0

is exponentially stable if

k 82
k—ko= (%—%) (1—%> —%:0 and [ is small,
it is not exponentially stable if
P P2 tkp3 782
k # ki — =)l =-— —_,
# ko or (k b)< ,01)#b
and it is polynomially stable in general. The author of [4] studied the stability of
P11 —k (px + ¥ +1w), —lko (wx —Ilp) =0 in (0,1) x (0, 00),
P2V —bYex +k(ox + ¥ +1lw) +86, =0  in (0, 1) x (0, 00),
p1wy — ko (wy —lp), +1lk (px + ¥ +1w) =0 1in (0, 1) x (0, 00),
P30 — B Jo° 8()0xx(t — $)ds + 8x =0 in (0, 1) x (0, 00),

where g : Ry — R is a given function satisfying some hypotheses. He provided a necessary and sufficient
condition for exponential stability in terms of the structural parameters of the problem. For particular choices
of g, the results of [4] cover the cases of Fourier, Cattaneo and Coleman—Gurtin heat conduction.

For all the above stability results, at least the shear angle displacement ¥ was damped via the heat conduc-
tion. The authors of [ 1] considered the Cattaneo heat conduction working only on the longitudinal displacement

P19 — k (ox + ¥ +1w), —lko (wx — ) =0,

P2V — by + k(o + ¥ +1w) =0,

prwy — ko (wy — 1), + lk (px + ¥ +1w) 486, =0, (10)
030: + gy + dwy; =0,

Tqr+Bq+6:=0
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and proved that the exponential stability is equivalent to

kpz—bm=<k—ko)(p3—%)—62=0 (11)
and L ) 5 '
p2+bpr [ Pl
12 0P PP —4+mn) +———, VmeZ. (12)
a kop2 (2 ) p2 (k + ko)

Moreover, the polynomial stability of (10) in general was also proved in [1]. Similar stability results were
proved in [1] when 86, is replaced by dwy, the last two equations in (10) are neglected and (11) is replaced by
).

Our objective in this paper is to complete the results of [1] by considering the heat conduction of types I
and III. We prove that, when / does not belong to two sequences of real numbers (conditions (15) and (24)
below), the exponential stability of the two systems is equivalent to (7). Moreover, we show that the polynomial
stability holds in general with two decay rates corresponding to the two cases,

p1b — prk =0 and p1b — prk #0.

The proof of the well-posedness is based on the semigroup theory. However, the stability results are proved
using the energy method combined with the frequency domain approach.

The paper is organized as follows. In Sect. 2, we give an idea on the proof of the well-posedness of (1)-(3)
and (2)—(5). In Sects. 3 and 4, we prove, respectively, our exponential and polynomial stability results.

2 The semigroup setting

In this section, we give a brief idea on the proof of the well-posedness of (1)—( 3) and (2)—(5). We consider the
energy space

= {Lz 0, 1) in case (1),
X
H}! (0,1) x L?(0,1) in case (4),
where

H = H!(0,1) x L?(0,1) x H!} (0, 1) x L? (0, 1) x H} (0, 1) x L?(0, 1),
H O, )={feH 0, 1): f(0)=0} and H! O, 1)={feH (0, 1):f(1)=0]}.
The space H is equipped with the inner product

(@1, P2)yy =k {(@1x + Y1 +1wi), (gox + Y2 +1w2)) 20,1y + b (Yix, Y2x) 12001
+ho ((wix —191) , (Wax — 192)) 12001y + 1 (@1 P2) 1201y + P21, ¥2) 120,19

p3 (01, 02) 12001 in case (1),
+p1 (W1, Wa2)2¢0.1) + I
L>(0,1) B (O1x. O2x)r2¢0,1) + P3 <91, 92>L2(0,1) in case (4),
where (for j =1, 2)
® {(fpj, Gis Wi, Uy, wy, Wy, 07 in case (1),
J= - ~ - ~ .
(@j, ¢j, ¥j, ¥j, wj, wy, 0, Qj)T in case (4).

‘We consider also
- T
(‘P’ o, ¥, w, w, 9) in case (1),
¢ = . (13)
(‘P’ o, v ¥, w, w, 0, 5) in case (4)
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and

where

-

(90, @1, Yo, Y1, wo, wi, B) in case (1),
(90, 1, Yo, Y1, wo, w1, By, O1)T  in case (4),

G=¢;, Y=v;, w=w, and 6 =6,.

Systems (1)—(3) and (2)—(5) can be written as a first-order system given by

o, = AD in (0, 0c0),
@ (1 =0) = Do,

where A is a linear operator defined by

in case (1), and

AP =

Ad =

@
k lko
—(px + ¥ +lw), + — (wx — o)
o1 p1

v
b k
—Yx — — (o + ¥ +1w)
P2 P2
w
ko lk )
— (wy —lp)y — — (px + ¥ +1w) — —04
P1 Pl P1

p s

—Oxx — —Wy
P3 L3

4

k lko
—(px + ¥ +lw), + — (wy — o)
o1 P1

N

in case (4). The domain of A is defined by

D(A) =

in case (1), and

DA =

®eH|g 0 H Oy, we HIO,1);¢eH (0.1);
Vowe HEO.D: gr (1) =9 (0) =we (0) =6 (1) =0

DeH| g pO+yde HXO,1); ¥, we H2(0,1); ¢, 6 € H! (0, 1);

U, e HNO0,1); ¢ (1) =9y (0) =wy (0) =6, (1) =0

“40065_2018_210_ArticleOA” — 2018/6/7 — 15:56 — page 5 — #5
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in case (4), where

H2(0,1)=H*0,)NH!(0,1) and H?(0,1)=H>©,1)N H!©0,1).
The following well-posedness results for (14) hold:
Theorem 2.1 Assume that .
l ¢ > + N. (15)

Then, for any m € N and ®g € D(A™), system (14) admits a unique solution

® €M yC" (R+; D (Af)) . (16)
Proof First, from the definition of H, (0, 1) and H! (0, 1), we see that, if

(o, ¥, w) € H' (0, 1) x H! (0, 1) x H! (0, 1)

satisfies
Kl @x + ¥ + 1w 1) + 0 1¥all72.1) + ko s = 19)1175 1) = 0,
then
Y =0, ¢=—csin(lx) and w = ccos(/x),
where c is a constant such that .
c=0 or leE—FnN.

Then condition (15) implies that ¢ = ¥ = w = 0, and thus, H is a Hilbert space.
Second, we prove that A is dissipative. Indeed, using the definition of A and (-, -)5y, and integrating by
parts, we get
—B U6l incase (D),

2 a7
in case (4).

(AD, D)y = i
Ox

R4 ) L2(0,1)

Hence, A is dissipative in H.
Third, we show that, for any F € H, there exists Z € D (A) satisfying

AZ =F, (18)
thatis 0 € p(A). Let F = (f1, ..., fj)T and Z = (z1, .. .,zj)T, where j = 7 in case (1), and j = 8 in case
(4). The first, third and fifth equations in (18) are equivalent to

2= f1, z4=/f3 and z¢= fs, (19)
and the seventh equation in case (4) becomes

78 = f7. (20)

So, because F € H, z2, z4, z¢ and zg have the required regularity in D (A). Then, the last equation in (18) is
reduced to

8
e = 5 fox + %ﬁ 1)
in case (1), and
(Bz1 + v xx = 8f5x + p3f3 (22)

in case (4). By a direct integration, we see that each equation in (21) and (22) has a unique solution z7
satisfying the needed regularity and Neumann boundary condition in D (A). Therefore, the second, fourth and
sixth equations in (18) become

k(zix + 23 +1z25), +lko (250 — [21) = p1 f2,
bzsxx — k (z1x + 23 +125) = 2 fa, (23)

ko (z5sx —lz1)y —lk (z1x + 23 +125) = f,
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where
- 8z7x + p1fe  incase (1),

8fix +p1fe  incase(4).

To prove that (23) admits a solution (z1, z3, z5) satisfying the required regularity and Neumann boundary
condition in D (A), we consider the variational formulation of (23) and use the Lax—Milgram theorem and
classical elliptic regularity arguments. So, this proves that (18) has a unique solution Z € D (A). By the
resolvent identity, we have LI — A is surjective, for any A > 0 (see [14]). Consequently, the Lumer—Phillips
theorem implies that A is the infinitesimal generator of a linear Cy semigroup of contractions on . Finally,
Theorem 2.1 holds (see [16]) O

3 Exponential stability

Our objective in this section is to show the following exponential stability result:

Theorem 3.1 We assume that (15) holds. Then the semigroup associated with (14) is exponentially stable if
and only if

p2ko + p1b /1 2 o1k
P2 (2 o +—\ Vmelk 24)
and
k—ko = p1b — prk =0. (25)

The proof is based on the following theorem:

Theorem 3.2 [8,17] A Cy semigroup of contractions on a Hilbert space H generated by an operator A is
exponentially stable if and only if
iRCp(A (26)

and
sup [[ (AT — A~ £y, < 00 27)
AeR

Proof We prove that (24) is equivalent to (26), and (25) is equivalent to (27). So Theorem 3.2 implies Theorem
3.1. O

3.1 Conditions (24) and (26) are equivalent

Note that, according to the fact that 0 € p (A) (see Sect. 2), A~! is bounded and it is a bijection between H
and D(A). Since D(.A) has a compact embedding into H, so it follows that A lisa compact operator, which
implies that the spectrum of A is discrete. Then iA € p (A) if and only if A is not an eigenvalue of A.
Let . € R*. We prove that i is not an eigenvalue of .A by proving that the unique solution ® € D (A) of
the equation
AP =ird (28)

is ® = 0. Let @ be given by (13). The Eq. (28) means that

@ =i\, Y =ily, W=ilw,
k

Ik 3
S (@r Y LW, + —2 (wy — 1) = ir,
P1 P1

b k o~

EWxx_E(QOx‘f‘l//‘Flw):l}\Wv (29)
ko lk ) L

— (wy —lp)y — — (px + ¥ +1w) — —0 =ilw,

p1 P1 p1

ﬁé‘” — Wy = iA0

Pr3
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in case (1), and ~ ~
O =ik, Y =i\, w=ilw, 6 =i\,
k

lko o~
—(px + ¥ +lw), + — (wx —lp) =irg,
p1 01

b k -

Ellfxx—z((ﬂx‘i‘l/f‘f‘lw):lkwv (30)
ko lk S ~ e~

— (wy —lp), — — (ox + ¥ +1w) — —b0, = irw,

L1 P1 P1

1
p3
in case (4). Using (17) and (28), we find

XX

; s .
(ﬂ@ + ye) — i =i

—B 110x ||iz(0’1) in case (1),

0= Reir|®l3, = Re (ir®, D)3y = Re (AD, D)y = )

Ox

— in case (4).
Y 2o 4)

Then

{Qx =0 incase(l), a1

6, =0 incase (4).

Butd, 6 € H*1 (0, 1) (since @ € D (A)), then, using the Poincaré’s inequality, (31) and the fourth equation in
(30), we deduce that

~ (32)
0 =0=0 incase(4).

Therefore, from (32) and the third and last equations in (29) and (30), we find

{9 =0 in case (1),

wy = by = 0. (33)

Asw, w € H] (0, ) and according to Poincaré’s inequality, we have
w=w=0. (34

Using (32) and (34), we see that (29) and (30) are reduced to

¢=ikp, ¥ =i\y,

(I%ko — p122) o — k (@x + ¥), =0,

—0222 Y — by +k (ox +9) =0,

ko
Ox + ¥ = ——¢x.

k
Now, we follow the proof given in [1]. By deriving the fifth equation in (35) and combining the third one, we
see that

(33)

Yxx +ap =0, (36)

20 .2
where o = lkok_opﬁ»

Casel A2 = %. Then

. We distinguish three cases.

p(x) =c1x +c2,

for ¢1, ¢p € C. Using the boundary conditions

9 (0) =9, (1) =0, (37)
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we find
¢ =0, (38)

which implies that, using the first two equations and the last one in (35),

p=0 (39)
and
Y=y =0 (40)
Consequently, we get
®=0 41)
Case2 A% > %. Then
p(x) = cleﬁx + cze_‘/qx.

Using again the boundary conditions (37), we find (38), and similarly to case 1, we arrive at (41).
Case3 1% < %. Then

@(x) = ¢y cos (vax) + casin (Vax).

Using the boundary conditions (37), we deduce that ¢; = 0, and
T 2
c =0 or EImeZ:a:(E—}—mn). 42)

If ¢ = 0, then (38) holds, and as before, we find (41).
If co # 0, then, by (42), we have

Pko — p1 A2 2
Ime7: O—pl=<z+mn) . (43)
ko 2

Therefore, the fifth equation in (35) is equivalent to

V(x) =—c2 (1 + %) Ve cos (Vax), (44)

and then the third and fourth equations in (35) are reduced to

2k [kko + bI* (k + ko) ]
(k4 ko) (kopz + bp1) |

(45)

We see that (43) and (45) lead to

_ ko +p1b o1k

ImeZ: I? <—+mn)2+—'
p2ko 2 p2 (k + ko) ’

that is (24) does not hold. So, if (24) holds, we get a contradiction, and hence, ¢, = 0 and, as before, we find
(41). If (24) does not hold, then, for A € R satisfying ( 45), the function

P(x) =2 (sin (Veax), ixsin (vVeax), — (1 + %) Ve cos (vax),

k T
—iA (1 + f) Ve cos (vax) , 0,0,0, o)

is a solution of (28), for any ¢, € C, and then A is an eigenvalue of .A. Finally, (26) holds if and only if (24)
holds.
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3.2 Condition (25) implies (27)

We assume that (25) holds and prove (27). Let us proceed by contradiction. So, we assume that (27) is false,
then there exist sequences (®,), C D (A) and (A,), C R satisfying

[®nlly =1, VneN, (46)
lim |A,| = oo 47
n— 00
and
lim [[(i A, I — A) ®,ll3¢ = 0. (48)
n— 00

3.2.1 Case of system (1)

The limit (48) implies the following ones:

iA@n — @, —> 0 in H1 (0, 1),

iMnP19y = K (Pux + Y+ 1wa), — Iko (wx — L) —> 0 in L2 (0, 1),

iV — I/an — 0in 1;*1 0, 1),

P2V — BV 4k @nx + W +1wy) —> 0 in L2(0, 1), (49)
iAgwn —wy, —> 0 in I-Z,} 0,1,

D201 Wn = ko (Wi = 19n) + Tk (@ + Y +1wy) + 80 —> 0 in L7(0, 1),

idn036n — BOpex + SWpy —> 0 in L2(0,1).

We will arrive to a contradiction with (46) by proving that

1im_ [ @yl = 0. (50)

Some of the calculations below are used in [1].
Estimate on 6,, Taking the inner product of (i 1, I — A) &, with &, in H and using (17), we get

Re ((idn 1 — A) @y Pup = B 10nxll72q 1) - (51)

Using (46) and (48), we deduce that
Our —> 0 in L% (0, 1). (52)

Because 6,(0) = 0, then we get from (52) that
6, — 0 in L*>(0,1). (53)
Estimates on ¢,, ¥, and w, Multiplying (49)1, (49)3 and (49)s by %n, and using (46) and (47), we find
on —> 0 in L% (0, 1),
Y —> 0 in L2 (0, 1), (54)
w, —> 0 in L2(0, 1).

Estimate on iwn” Applying the triangle inequality, we have

Wnxx
An

s = m )i)\npllj)n — ko (wpx — l%)x + 1k (@nx + VYrn +lwy) + 66,
L4(0,1) n

lko lk

.o~ 6
IP1Wy + —@Pnx + (@nx + Y +lwy) + 8§~

L2(0,1)

LZ(O,I)‘
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Then, by (46), (47), (49)¢ and (52), we deduce that

1
(}L—wn”) is bounded in L? (0, 1). (55)
n n

~ ~ iw
Estimates on w,,, iwnx and ﬁwn Taking the inner product of (49); with X_M in L2 (0, 1), integrating
by parts and using the boundary conditions, we get !

iw . ~ iw
03 {6, wnx)[}((),l) +B <9nx, nxx> -4 <<1)¥nwnx - wnx) s nx>
A [1200,1 A [1200,1

+8 ||wnx||i2(0’1) — 0.

Using (46), (47), (49)s, (52), (53) and (55), we deduce that

Wpy —> 0 in L2(0, 1), (56)
and from (49)s, we have
%J)M —>0 in L*(0,1). (57)
As J)n(l) = 0 and using (57), we obtain
%J)n — 0 inL2(0,1). (58)

n

iwy,

Estimates on 17),, and 1, w, Taking the inner product of (49)¢ with in L2 (0, 1), integrating by parts

n
and using the boundary conditions, we see that

~ 2 Wiy
L1 Hwn . +k0<(wnx —lg,), >
L2(0,1) An 20,1
H’I)n an .
kA (@nx + Yn +1lwy) , — +5{—,iw — 0.
[ 2 An L2o.n
Using (46), (47), (52), (57) and (58), we obtain
w, —> 0 in L% (0, 1), (59)
and with (49)5, we find
dnwy, —> 0 in L?(0,1). (60)

Estimates on ¢, ., (}n and A, ¢, First, taking the inner product of (¢,x + ¥, + [w,) with i}, 17),1 in
L? (0, 1), integrating by parts and using the boundary conditions, we have

— i, 1’Z)H>L2(0,1)
= (=) v+ (g = ( (0 =) i)
- <17j"’ J)n>L2(O,1) _l<<”‘”w” - J)") ’ 17)">L2<0,1) ! H wn i2(0~1>
= - <(Mn%x - 5“) : 17’">Lz(0,1> + <(;” ;”X)Ll(o.n B <<M"W N JI") ’ 17)”>L2(0,1)

~ o -~ -~ ~ 2
— ,w —l<<ikw —w),w> —le
<1//n 71>L2(0’1) nWn n n Lz((),l) n

<(§0nx + Y +lwy) , iA’nl’Z)n>L2(0,1) = - <i)‘n(pn)m 1;;1>

<mnxpn, 17),1>

L2(0,1) - L2(0,1)

L2(0,1)
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Then, using (46), (49)1, (49)3, (49)5 and (59), we deduce that

<(§0nx +Wn+lwn)’i)\n{;)n> _<;n5 {I)nx>

L2(0,1) L2(0,1)

Second, taking the inner product of g;n with J)nx in L2 (0, 1), we arrive at

2

Pn

<(p”’ w”x>L2(0,1) - <(p”’ (w”x B l¢">>L2(o,1) +i ‘
= - <‘an’ (“‘nwn}c - 17)nx)>

(G i (e — 1))

L2(0,1)

ouet (1100 = )
L2(0,1)+<¢n LAn®@n — @y L20.1)

2

! ] o ,
L2(0,1) | en L2(0,1)
then, by (46), (49); and (49)5, we have

~ |12
Lo,

B <(p"’ w"x>L2(o,1) + ‘

An <§;n7 i (Wpx — l(pn)>

L2(0,1) L2(0,1)

(61)

(62)

Third, taking the inner product of (49), with (w,, —lg,) in L? (0, 1), integrating by parts and using the

boundary conditions, we find

<i)"np15nv (wnx - l@n)) + k(((pnx + wn + lwn) ) (wnx - l(pn)x>L2(0’1)

L2(0,1)
—lko l|(wax = lp)l1 72,1, = 0,

which implies that

Anp1 <i;n’ (Wpx — l(ﬂn)>L2(0’l)

k - .\
_k_O <((an + Y +lwy), I:l)tnplwn — ko (wpx — l(Dn)X + 1k (Qnx + Y + lwy) + 89nx]>

2

kpy N Ik 2
+K <(‘an + Yn +1lwy) i nwn> + E [ (@nx + Y + w")||L2(O,l)

Sk
o (onx V1) Bnx)r20,1) = ko N lon)l72.1) — O-

L2(0,1)

Using (46), (49)¢, (52), (54) and (56) , we see that

~ kp1 Lo
—AnP1 ((,0,,, i (Wpx — I(Pn)> + E <(§0nx + Y+ lwy) , l)\nwn>

l 2
+E ”((pnx + wn + lwn)”%}(o’l) — 0.

L2(0,1) L2(0,1)

Then, multiplying (61) by %Op‘ and (62) by p1, and adding the obtained limits and (63), we obtain

2

~

Pn

k - K )
(— — 1) 01 <<pn, wnx>L2(0,l) + T 1(@nx + vm + Tw) 29y, + P11 ‘

ko L2(0,1)

So, because k = kg (according to (25)), we get from (54) and (64) that
@nx —> 0 in L% (0, 1)

and N
¢, — 0 in L?(0,1).

Moreover, (49); and (66) give
Angn —> 0 in L% (0, 1).
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Estimates on v/, and A, v, First, taking the inner product of (49)4 with (¢nx + ¥, + [wy) in L? 0, 1),

integrating by parts and using the boundary conditions, we get

<i)»m021ﬁn, ¢nx> +<i)»n,02¢n, wn> +l<i)»n,02¢n, wn>

L2(0,1) L2(0,1) L2(0,1)
+b (Ynxs @nx + Y+ 1wa)) 20 1y + K 11 @ax + Y+ w172 ) — 0,

then
~ ~ o ~ 112
—An 2 <1ﬁn, i‘pnx> — P2 <‘//n, (i)\nwn - 1/’n>> - ||V,
L2(0,1) L2%(0,1) L2(0,1)
_lp2 <Wn7 <i)\'nwn - {I)n)> - 1/02 <Ipns J}n>
L2(0,1) L2(0,1)
b . ~
_z <wnx’ I:l)\nplfpn —k (ppx + Y + lwn)x — lko (Wpx — lﬁon)]>L2(0’1)

b L Ikob
+% <¢fnxa l)tnpl(pn>L2(0’1) -

using (46), (49)2, (49)3, (49)s, (54), (56), (59) and (65), we get

i 4 bery <¢ i&) —0
roy kAT Mo '

Vi

—AnP2 <1ﬂn, i(an> — P2
L2(0,1)

Second, using the equality

o (Ve 16 =—<<im/f v )N> —<J ,N> ,
ATt e = Ve ) On L2(0,1) o L2(0,1)

integrating by parts and using the boundary conditions, we obtain

)\n <1ﬁnxs i(;n>L2(0 1 = - <<”‘n¢nx B wnx> 5 (;n> + <¢,nv ;nx>

L2(0,1) L2(0,1)

0 (Wnes (Wi =190)) 1200,1) + K e + ¥n + lwall320 1) — O,

(68)

= — <<iAanx_an> > 5n> _<Wn» (i)‘n(pnx_‘;nx)> +<1ﬁn’ i)‘n(pnx> .
L2(0,1) L2(0,1) L2(0,1)

Therefore, from (46), (49); and (49)3, we see that

An <wnx7 i(;n> An <1ﬁn, i¢nx> — 0,

L2(0,1) L2(0,1)

so, multiplying (69) by —p> and inserting the obtained limit into (68), we obtain

2

~

s ~
= (bp1 — ke) (Vv i) , = p2 0.

L2(0,1) "

L2(0,1)

Now, we use the fact that bp; — kpp, = 0 (condition (25)), we get from (70) that

W, — 0 in L2, 1),
and by (49)3 and (71), we deduce that

Antn —> 0 in L2 (0, 1).
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Estimate on v/, and conclusion Taking the inner product of (49); with 1, in L? (0, 1), integrating by
parts and using the boundary conditions, we get

—pP2 <wnv “ann> , +b ||1//nx||i2(0’1) + k ((@nx + Yn +1wy), wn>1‘2(0,1) — 0,
L200,1)

and using (46), (54) and (72), we obtain
Yur —> 0 in L% (0, 1). (73)

A combination of (53), (54), (56), (59), (65), (66), (71) and (73) leads to (50), which is a contradiction with
(46). Hence, in case (1), (25) implies (27).

3.2.2 Case of system (4)
In case (4), the limit (48) implies the following ones:
iAn@n — @, —> 0in H1 (0, 1),
iMnP19y = Kk (Pnx + Y + lwn), — Ik Wy — lgpy) —> 0 in L2 (0, 1),
iAgYp — I/N/n —> 0 in I-;*l 0, 1),
P2V — BV +k @nx + W+ L) —> 0 in L2(0, 1),
~ ~ (74)
igwy —w, —> 0 in H! (0, 1),
20P1 W0 — Ko (Wi — 1) + 1K (s + Y+ 1w,) + 86, —> 0 in L2(0, 1),

i‘nby — 0, —> 0 in H! (0, 1),

iAnp30n — (ﬁ@n + y9,,) +8wyy —> 0 in L2(0, 1).

XX

Estimates on 1,6, A,0,x, 6, and 6,, Taking the inner product of (i A, I — A) ®, with ®, in H and
using (17), we find

~ 2
Re{(ir, I — A) Dy, ch)’H =Y 0 nx . (75)
L2(0,1)
Using (46) and (48), we deduce that
O —> 0 in L% (0, 1). (76)
Because 6,,(0) = 0 and according to Poincaré’s inequality, then we get from (76) that
0, — 0 in L*(0,1). (77)
The above two limits combined with (74); give
Anbpx —> 0 in L% (0, 1) (78)
and
Anbp —> 0 in L2 (0, 1). (79)
Estimates on ¢,, ¥, and w, Multiplying (74)1, (74)3 and (74)s by %"7 and using (46) and (47), we find
(54).

Estimate on iwn xx Asin case (1) (Sect. 3.2.1), applying triangle inequality and using (74)¢ and (76),
we obtain (55).
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~ ~ . . L dw
Estimates on w,,,, Al Wy and Al w,, Taking the inner product of (74)g with e

n

by parts and using (46), (47) and the boundary conditions, we get

~ iw ~ iw
P3 <9n, wnx> +I3<9nX7 nxx> + V<9nx, ﬂ>
12(0,1) A 200 A [r20,1)

+ 8 lwnxlla,) — 0.

An >L2(0,1)

in L? (0, 1), integrating

Using (55), (74)s, (76), (77) and (78), we get (56). By multiplying (74)s by i, we get (57). Moreover, because

J)n(l) = 0, we have (58).

Estimates on 17),, and A,w, As in case (1) (Sect. 3.2.1), taking the inner product of (74)¢ with

L? (0, 1), integrating by parts and using the boundary conditions, we find (59) and (60).

iwy,

in
n

Estimate on gz,, and conclusion The same computations as in case (1) (Sect. 3.2.1) imply (64) and (70),
0 (25) leads to (65), (66), (71) and (73). Consequently, (50) holds, which is a contradiction with (46). Hence,

also in case (4), (25) implies (27).

3.3 Condition (27) implies (25)

We prove this implication by contradiction. So, we assume that (25) does not hold and prove that (27) is not

satisfied; that is we prove that there exists a sequence (1,), C R such that
. A -l _
Jim | Grnt — A) ”c(H) = 0,

which is equivalent to prove that there exists a sequence (F), C H satisfying
1Fullyg <1, ¥neN
and
. . -1
Jim [ Gxad = A7 Fuly = co.
For this purpose, let
®, = (it ] —A)'F,, VneN.

Then we have to prove that (80) holds such that

lim || @] =00 and iA,®, — A®, = F,, Vn € N.
n— oo

Taking

. y T _
((Dn,(ﬁn, Vs Yn» Wa, wn,0n> in case (1),
®, =

- . T '
((0”, ¢ns wnv wn’ Wy, Wy, Oy, 0n> 1n case (4)
and
F {(fln,-~-sf7n)T in case (1),
n =
(Fins -+ fan)T incase (4).

(80)

81

(82)
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Then, from the second equality in (82), we have the following systems:

in case (1), and

iAnn — On = fin,

P12 @n — k (Qnx + Yn +1Lwy), — lko (Wpx — Lgn) = p1 fon,

iaVn — Y = fans

ip20n W — BVnax + k G + Y + L wp) = 02 fan,

idnWy — Wy = f5p,

iP1hn Wy — ko (Wnx — 19n)y + 1k (@ux + Yu + 1L wy) + 86ux = p1 fon,
ip3An0n — BOnxx + SWnx = 03 f1n

iA@n — Gn = flins

iP1An@n — k (Pnx + Y + Lwy), — ko (Wnx — ln) = p1 fon,

D = ¥n = fan,

iP22nWn — DYnxx + k (@nx + Y + L wn) = 2 fan,

iAqWy — Wy = f55,

iD1An B — ko Wax — 19n)y + 1k (@ux + Yn + 1 wy) + 86,x = p1 fon,
iMnbn — O = fin,

l.p3)\n9~n - (ﬂen + Vén>xx + 8Wpy = 03 fan

in case (4). Choosing

Jan(x) = ccos(Nx), fin = fan = fan = fsn = fon(xX) = fin = fon =0,

_ @n+Dm : s < L
where N = = and c is a constant satisfying 0 < |¢] < NGE SO

1
151Gy = o2 inlBs0 = palel? [ cos® (Nmyax < 1.
’ 0

On the other hand, the systems (83) and (84) become, respectively,

and
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1200 — k (@ux + Y + Lwy)y — lko (Wax — lpn) =0,
—P2A2Y — bYxx +k (@nx + Yu + L wy) = 02 fan,

—p1A2wy — ko Wy — @)y + 1k (@ax + Y 4 L wy) 4 86y = 0,
P36 — BOnxx + i8Awyx =0
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Let us consider the choices
@n(x) = aysin (Nx), ¥,(x) =azcos (Nx), w,(x) =azcos (Nx),
0,(x) = agsin (Nx), @,(x) =ilyoqsin (Nx), &n(x) = il,apcos (Nx),
Wy (x) = iAgaz cos (Nx), O,(x) = irpossin (Nx),

where o1, ..., a4 are constants depending on N (will be fixed later). Then the last equation in (86) and the
last one in (87) are equivalent to o4 = u, N3, where

% in case (86),
o = o _ (88)
—iyx,,N2+ﬂ1y\l/2—ip315 in case (87).
Therefore, (86) and (87) are satisfied if and only if
[kN? +1%ko — p1A2] ay + kNo + 1 (k + ko) Noz = 0,
[DN? 4+ k — p2r2] o + kNay + lkas = pac, (89)

[(ko + 8npan) N? + 1%k — p122] oz + 1 (k + ko) Noy + lkaty = 0,

where
=8 in case (86),
Sy =

i6A,  incase (87).
Because (25) is assumed to be not satisfied, then
p1b — p2k #0 or [pib— p2k =0 and k — ko # 0],

so we distinguish these two cases.

b kk,
Case 1l p1b — pok # 0. Let choose A, = . [—N2 + — " then
P2 p2 (k + ko)

%)\n in case (86),
lim 8,p, =0 and N?8,p, ~{ " (90)
n—ee %An in case (87).

On the other hand, (89) becomes

b Kk
[(k — ‘l> N2 + ko — &] a1 4+ kNay +1 (k + ko) Naz = 0,
02 p2 (k4 ko)

2

k+k0a2+kNa1+lka3:pzc, G2y

b kk
[(ko G anu,,,) N2 4 2k — &} @3 + 1 (k + ko) Nay + ks = 0.
02 p2 (k + ko)

From (91), we get
2

_lk _
p2c a3 k+k0a2

o] = N . (92)

By substituting (92) into (91)3 and into (91);, we obtain, respectively,

pale(k + ko)

p1b prkko
k| (55 — ko — 8, >N2+12k0+—]
[( 02 e 02 (k + ko)
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b
I:(,Ozc —lkas) <k — &> + lk(k + ko)ol{l N? + (p2c — lkas) |:lzk0 —
02

p1kko }
02 (k + ko)

Case2 p1b — ppk =0and k — ko # 0. Let choose A, = |—N2 +

From (97); we get, for N >

By substituting (98) into (97)3, we find, for N >

(94)

k? (Plb ) pikko
— (== 1 ko N2+12ko——]
k + ko [ 02 02 (k + ko)

According to (90), we see that (93) implies that

Iim o3 =0;
n—oo

. c(k + ko) (p1b — p2k)
lim oy =

n— b
= k? ('OL R ko)
P2

£0

since p1b — pak # 0. Then

lim |aa|N = oo. (95)
n—oo

Finally, using the norm of 5 in L?(0, 1), we obtain

1
1Dull; = bllncl}2, 1) = blaal*N? / sin® (Nx) dx
’ 0

b
5|a2| sz (1 — cos 2Nx)) dx = |a2| IN? — oo. (96)

k

N. Then (89) becomes
P1 A/ P1P2

,01k 2
——— N +1 k()) o1 +kNay + 1 (k+ ko) Naz =0,
( /P12

o2k
— N + k) ar +kNay + lkasz = pac, o7
( A/ P1P2

[(ko — k + 8pptn) N? —

p1k

——— _N+1Pk|az+1(k+ko) Ny + lkay = 0.
P12 ]

ko /p102

p1k

>

kN(xz + Ik + k())N(‘x3
,01k
\/pm

1%ko. /P12

p1k

(98)

— 12k

)

k
Ik [(k Yk N2+ 2 N 12k0:| N
A/ P12

- k
(— PIZ N+ lzko) [(ko —k + 8uptn) N? —

- .99
LEy v 12k] — 2(k + ko)2N?
P102

NEYS

1Pk /P1P2
By substituting (98) and (99) into (97)>, we obtain, for N > 0 ,01,02’

p1k

ai
o = —, (100)
az
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where
2
p1k 2 2 p1k 2
a; = —pac N—lk()) [(ko—k-i-é,u)N ——N+ 1k
(m ”” VP,
pik 2 2
+pacl?(k + ko)? (——N +1 k0> N
P1P2
and
k 2 K2 + I2kk
ar = 12k2 [(k TR N2+ P N lzko} 2k + ko)? (lzkko - uN) N2
NI Vo1p2
p1k? + kkopa ) ( pik ) ) pik 2
+ [ 1%kko — N N — ko ) | (ko — k + 8ppin) N> — ———N + 1%k |.
( JP1p2 VP1p2 e Ny
We see that (90) and (100) imply that
cp1p2(k—ko) ; 2
if pal°(k + 3ko) + p1(k — ko) # O,
lim || = ‘k[0212(k+3k0)+,01(k*k0)] (101)
e 00 if pal%(k + 3ko) + p1 (k — ko) = 0.

Because k — kg # 0, then (95) holds. Consequently, (96) remains valid.
Finally, the equivalence between (27) and (25) is established, and consequently, the proof of Theorem 3.1
is completed. O

4 Polynomial stability

In this section, we prove the following polynomial stability independently from (25):

Theorem 4.1 Assume that (15) and (24) hold. Then, for any m € N¥, there exists a constant ¢, > 0 such
that, for any ®g € D (A™) and t > 0,

cm |90l peam (1) 4 Int if pib — pak =0,

tA
q>ﬂ < 102
e ®o, = (102)

ERSE

cm 1 @oll pam) (lnTI) 10Int  if p1b — pok #0.
The key of the proof of Theorem 4.1 is the following known theorem:

Theorem 4.2 [12] If a bounded Cq semigroup ¢'A on a Hilbert space H generated by an operator A satisfies
(26) and, for some j € N*,

1 . 71
Sup 37 larr — 7 gy < o0 (103)
Then, for any m € N*, there exists a positive constant c,, such that
m
A In t 7 m
e ZOHH < om lzollpeamy <T> Int, Vzo e D(A™), Vi > 0. (104)

Proof In Sect. 3, we have proved that (24) implies (26). Then we only need to show (103), where j = 4 if
p1b — pok = 0, and j = 10 if p1b — pok # 0. Let us establish (103) by contradiction. Assume that (103) is
false, then there exist sequences (®,),, C D (A) and (1), C R satisfying (46), (47) and

im AL [[(iAn I — A) @ullzy = O. (105)
n—oo
To get a contradiction with (46), we use similar arguments to the ones used in Sect. 3.2. Let
_ N N T
(gon,(pn,wn,lpn,wn,wn,@n) in case (1)
b, = . N . 7
((p,,, Ons Vs Wy Wy Wy, O, 0n> in case (4).
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4.1 Case of system (1) with p1b — ppk =0

The limit (105) with j = 4 implies that

4
)\' n

[ i A0 — 7/)”] 0 in H' (0,1),

101000 =k (@ + Y+ wn) = ko (W = L) | = 0 in L2 0, 1),

[ — J] 0 inHO, 1),

_ipzanfn — bVYxx +k (@x + Y +zwn>] -0 inL*0,1), (106)
:ixnw,, — E)n] S0 i H (O, 1),

1m0 = Ko (e — L)+ 1K (@ + Y+ [02) + 86, | = 0 in L2(0, 1),

10300 — POy + aim] —~0 inL2(0,1).

Estimates on 6, and 6§, Taking the inner product of A% (i 4, I — A) ®, with ®, in H and using (17),

we get

Re (it G an 1 = A) &y, )y = Re (123 100122 g 1) + Bit 100130, 1)) = B 160220 -

So (46) and (105) imply that

220, —> 0 in L2 (0, 1). (107)

Because 6, in H*1 (0, 1) and thanks to Poincaré’s inequality, we deduce that

220, —> 0 in L?(0, 1). (108)

1
Estimates on ¢,,, ¥, and w, Multiplying (106);, (106)3 and (106)s by e and using (46) and (47), we

obtain (54).

An

1
Estimate on iwn +x Multiplying (106)¢ by 3 and using (46), (47) and (107), we conclude (55).
n

~ ~ 1
Estimates on 1, w;,x, A, Wy, W, and w, Taking the inner product of (106)7 with A_3w"x in L2 (0, 1) and

n

using (46) and (47), we get

P3 (A%Qns w“)LZ(O,l) — B (Anbnxx> iwnx)LZ(o,l)

-3 <)»n (,’)\nw,,x - J;,,x> ,iwnx> ) + 5)»% ||wnx||22(0’1) — 0,

L2(0,1

then, integrating by parts and using the boundary conditions, we deduce that

i
03 ()»,219,,, wnx)Lz(O 1 + B <)L%9nxy _wnxx>
: An L2(0,1)

s <,\n (i2nwne = war) iwnx>L2(o’l) + 822 was 22, — 0. (109)
Combining (46), (47), (55), (106)s, (107) and (108), we get
Anwpy —> 0 in L2 (0,1). (110)
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1

Moreover, again by multiplying (106)s by 77, we find

War — 0 in L%(0, 1), (111)

~ 1

and, as wy,, 17),1 € H, (0, 1) and thanks to Poincaré’s inequality, we have also (59) and (60).

~ 1
Estimates on A% wy, and A, w, Multiplying (106); and (106)3 by YR and using (46) and (47), we have
n

(An@n), and (Ay1,), are bounded in L2 (0, 1). (112)

Taking the inner product of (106)¢ with ;—317),1 in L (0, 1), integrating by parts and using (46), (47) and the

n
boundary conditions, we get

~
nWn

L1 ‘ A L200.1) + ko <)\n (Wpx —Lgn) , lwnx>L2(0’1)

+lk<)\n (@nx + ¥n +lwn)ai1:)n> +8<)\n9nmi1:)n> — 0. (113)

L2(0,1) L2(0,1)

So, using (59), (60), (107), (110), (111) and (112), we deduce that
AnWn —> 0 in L% (0, 1), (114)

1
and by multiplying (106)s by 3 and using (47), we find

n

2w, — 0 in L*(0,1). (115)

1
Estimate on ¢,, Multiplying (106); and (106)4 by S and using (46) and (47), we get
n

1 1
<—¢nxx> and (—dfnxx> are bounded in L? 0, 1). (116)
An 5 An "

1

On the other hand, taking the inner product of (106)¢ with )\—4<pnx in L (0, 1), integrating by parts and using
n

(46), (47) and the boundary conditions, we get

ip1 <)¥n;n» ¢nx> + (lk (w‘n +lwy) 4 66, (an>L2(0,1)

L2(0,1)

1
Ik + ko) lgne 2., + ko <Anwnx, —gom> - 0. (117)
’ An L2(0,1)
Then, using (54), (107), (110), (114) and (116), we deduce that
@nx — 0in L2 (0, 1). (118)

~ 1
Estimates on 1, ¢, and ¢, Taking the inner product of (106), with )L—4<p,, in L% (0, 1), using (46) and

(47), integrating by parts and using the boundary conditions, we obtain

=1 {6 (1200 = 01))
P <(p” (l nn = Pn £2(0,1) L2(0,1)
+k ((@nx + Vn + Lwy) , (an)LZ(O,l) — lko ((wnx — lon) (Pn)lﬂ(o,]) — 0,
then, using (54), (106); and (118), we find

2

Pn

—,01‘

¢, — 0 in L>(0,1). (119)
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1
Moreover, multiplying (106); by I and using (47) and (119), we get

n

Anon — 0 in L?(0,1). (120)

~ 1
Estimates on v,,, and ¥, and conclusion First, taking the inner product of (106)4 with a Y, in L2 (0, 1),
n

using (46) and (47), integrating by parts and using the boundary conditions, we obtain

—pP2 <1//n7 <l)tnwn - 1//;1)> - P2
L2(0,1) L2(0,1)
+b ||1/’nx||iz(0’1) + k <((an + 1//}1 + lwn) ’ 1/ﬁl)Lz(O,l) g 0’

2

~

¥

then, using (54) and (106)3, we find

~ 112
b1l 320.1) = £2 | ¥ — 0. (121)

L2(0,1)

1
Second, taking the inner product of (106), with v Yy, integrating by parts and using the boundary conditions,
(46) and (47), we obtain "
—k || Ynx ”%Z(Q 1 +k <(pn)m wnxx>L2(o,1) +ip1hy <(pna 1pn)c>Lz(0’l)
—1(k + ko) (Wnx, Vax) 1201y — IK0 (@nxs ¥n) 120,y — O in L7 (0, 1)

Exploiting (110) and (118), we get

—k 1l 320 1) + Kk (@ns Ynex) 20,1y + i017n (5,,, wnx)Lz(o’l) — 0 in L*(0,1). (122)

k
Third, taking the inner product of W(pn » with (106)4, integrating by parts and using the boundary conditions,
(46) and (47), we obtain "

=k {@nx, Ynxx)1200,1) — ipz:)m <(;n %x> , ot —2 (@nxs (@nx + VUn +1lwn)) 2001
L2o,1) b
+ <<p i (ixnwm - Jnx>>L2(o’l) o I R B AT ORI
so, from (106)1, (106)3 and (118), we find
—k (P V) L20.1) — % (@0 wnx)Lz(O’l) —~0 inL2(0, 1). (123)

By adding (122) and (123) and using the equality p1b — ppk = 0, we see that

Yne — 0 in L% (0, 1). (124)
Therefore, from (121), we get

v, — 0 inL2(0,1). (125)

Finally, the limits (54), (59), (108), (110), (118), (119), (124) and (125) imply (50), which is a contradiction
with (46). Consequently, (103) with j = 4 holds.
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4.2 Case of system (1) with p1b — p2k # 0

The limit (105) with j = 10 implies (106) with A1° instead of A%; that is

n?

(3000 = @4 > 0 in H (0, 1),
0100y =k (ux + i + 1w), = ko (e — L) | = 0 in L2(0, 1),

iAWy — wn} — 0 in H! (0, 1),

ip22n Wy — bYnxx +k (@nx + ¥ + lwn):| — 0 in L*(0,1), (126)

ity — J;n] —0 in H'(0,1),

ipl)\nlj)n — ko (Wpx — l(pn)x + 1k (onx + wn +lwy) + (Senx] — 0 in L2 O, 1),

(i 03200 — BOner + SJ)M] -0 inL2(0,1).

Similarly to the case p1b — pak = 0 (Sect. 4.1), we see that (54), (55), (112), (116) and (118) hold (for (112)

and (118), we have just to use —~ instead of IeE and for (116), we use —— instead of k_5)'

210 Al

Moreover, the same computar{ions as in Sectl.q4.1 (case p1b — pok = O)r;give (instead OF (107), (108), (110),
(111), (59) and (60))

(for (110), we replace ;—3wnx by

5 3~ 3~ s .
Ao s 20, 1| 2 Waes [An | 2 W, [An |2 W, (A 2w, —> O in L2 (0, 1) (127)

] 1 1
l—w,,x and use (55), and for (111), we use ——= instead of —). Now, we
; /\2 [l ki

prove some other limits to get (50).
Estimate on w,,, Dividing (126)¢ by )»}10 and using (46), (47) and (127), we deduce that

Estimates on ¢, ¢, and (Zn Taking the inner product of (126)¢ with

(Wnxx), is uniformly bounded in L2 (0, 1). (128)

ingx in L2 (0, 1), integrating by
n

parts and using (46), (47) and the boundary conditions, we get

—pP1 <a)n, An (i)\n(ﬂnx - ;nx)> + p1 <)\n17)nx, ;n>

L2(0,1) L2(0,1)

‘anx>
n [L2(0,1)
Hk (A (Yn + Lwy) (ﬂnJC)L?(O’]) + 8 (Anbnx, @nx>L2(0,1) — 0,

+k() <)»,21w,,x, + l (k + kO) )\n ||(pnx ”%2(0’])

hence, using (126)1, (112), (116), (118) and (127), we obtain

hnlZ@ne —> 0 in L2(0,1). (129)

Therefore, according to Poincaré’s inequality, (129) leads to

Aal?gn —> 0 in L2 (0, 1). (130)

On the other hand, taking the inner product of (126), with % in L2 (0, 1), integrating by parts and using (46),

n

(47) and the boundary conditions, we get

~ 12
Pn

—A<N,(ix —N>> — 1A
P1An \@Py n®Pn — Yy L200.1) PlAn L20.1)

+kAn ((Qnx + Y +1wy) , (pnx)LZ(o’l) — lkody ((Wnx — l@y) , (Pn>L2(0,1) — 0,
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this implies

2

Pn

p1n | 9nx 20 1)

=01 (o (0 = 00)) 0 =
1 (‘Pn n \nbn =) 12001 L2(0.1
+k ((Anrn + LApwy) , (pnx>L2((),1) — ko ((Apwpx — [Anen) , (ﬂn)LZ(O,l) — 0,

s0, using (126)1, (112), (127) and (129), we deduce that

nl?@, — 0 in L2(0, 1), (131)
and from (126);, we obtain that
l2@n —> 0 in L2(0,1). (132)
~ 1
Estimates on A, ¢, and X, ¢, Multiplying (126); by —orl and using (47), we get
|An| T2
. An ~ Pnxx Ynx Wnx 2 ©n . 2
ip1 l(pn—k ]—k ]—l(k—i-k()) l—l-lk() 1—>0 in L=(0, 1),
|Anl2 [An]2 [An]2 |Anl2 |Anl2
then, using (46) and (131), we deduce that
Pnxx .2
- —> 0 in L7(0,1). (133)
[An]2

On the other hand, by integrating by parts and using the boundary conditions, we see that

An <wnx)m i)\n(pnx>L2(0,1) = )‘5 (iwnx, §0nxx>L2(0,1)

= (A'n <i)\n Wpx — J}nx) s (pnxx) + )\n (J}nxv (pnxx>

L2(0,1) L2(0,1)

, ~ % 1~ Dn.
= <)‘% <l)‘nwnx - wnx) s ;XX> +{ A [An]? wpy, nr)i s
n [L2(0,1) Anl2 12(0,1)

then, using (47), (126)s5, (127) and (133), we obtain

An (Whxx, iknﬁ”nx)LZ(o,l) — 0. (134)

Furthermore, integrating by parts and using the boundary conditions, we have

U WU W (R SR N B

1 ) ~
= _E <)\ﬁ I:l)\nplwn — ko (wpx — I(Pn)x

n

+ 1k (@nx + Vu + lwy) + 69’”] , (inx>
L2(0,1)

T . -
T <(l)hnplwn + 89;1,\') , An (l)hn%zx - ¢nx)>

lk L2(0,1)
ko . ~ Moo~
+E ((wnx - l(pn)x , An (l)hn(pnx - (pWC))LZ(O,l) - ﬁ <lplwn)m l§0n>L2(0’1)

8 0. kon . koky . 2
+E <)hn‘9nx, l¢nx>L2(0,1) - 7 (Whixs l)hn(pnx>L2((),1) - Tl ||<an||Lz(0,l) s

then, using (126)1, (126)g, (127), (128), (132) and (134), we find

~ ko .
M (@ur Vi 1001 9a) |+ T huslFag 1) — O (135)

L2(0,1)

@ Springer
“40065_2018_210_ArticleOA” — 2018/6/7 — 15:56 — page 24 — #24



Author Proof

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

Arab. J. Math.

~

Taking the inner product of (126), with f—; in L2 (0, 1) and using (46) and (47s), we get

n

~ |12
i|A —
P1 n%n L2(0,1)

kX <(<an + l/fn + lwn)x s 5n> — lko <()\nwnx - “\n(pn) s 5n>

L2(0,1) L2(0,1)
then, using (135), we obtain

2

A

p1i y + iko | An@nx ”%2(0’1) —lko <()\nwnx —nn) ('Non>

L2(0,1 L2(0.1)

and from (127), (131) and (132), we deduce that

Mg, —> 0 in L% (0, 1) (136)

and
An@nr —> 0 in L% (0, 1). (137)

Estimates on v, and ¢, and conclusion Taking the inner product of (126), with % in L2 (0, 1) and
n

using (46) and (47), we get

P1 <i)\n§0n» WHX> - k <§0nxx’ Ipr1x>L2(0,1) - k ”wnx”%](o’l)

L2(0,1)

—1(k + k0) (W, Wnx) 20,1y + 12k0 (@n Ynx) 1200.1) = O
then, integrating by parts and using the boundary conditions, we obtain
wﬂ)()f

n >L2(O,1)
—1(k + ko) (Wnx, Yux) 20,1y + 2k0 (@0, Ynx) 12001y — O,

o1 (i1 Vi) — k¥l 3201,

LZ(O 1) + k <)\n(pmﬁ

s0, using (54), (116), (127), (136) and (137), we deduce that

Ynx —> 0 in L2 (0, 1). (138)

Taking the inner product of (126)4 with % in L2(0, 1), integrating by parts and using (46), (47) and the
boundary conditions, we get "

—pP2 <1//na (l)\nwn - wn>> %) Wn
L2(0,1)
+ (k (@nx + Yn + Lwy) , I)0n>L2(0,1) — 0,

2
+b 1l 72,1,

L2(0,1)

hence, using (54), (126)3 and (138), we get

v, — 0 in L20,1). (139)

A combination of the limits (54), (118), (127), (136), (138) and (139) leads to (50), which is a contradiction
with (46). Consequently, (103) with j = 10 holds.
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4.3 Case of system (4) with p1b — ppk =0

The limit (105) with j = 4 implies that
2 [irngn — {.5,,] ~ 0 in H'(0,1),
M| ip1An @y — k (@nx + Y + 1wy, — ko (Wpx — lgon)] —0 inL*(0, 1),

2 i,\nw,,—xz"} S0 inH O,

)‘ﬁ i/)Z)\nI/fn — bYnxx + k (Qpx + ¥ + lwn):| — 0 in L? O, 1),
a4 in,w, — J)n] ~ 0 in H' (0, 1),

(140)

)Lﬁ ipl)\nlzn — ko (Wpx — Lgn)y + Lk (Qpx + ¥ +1wy) + ‘Senx:| — 0 in L? o, 1),

A ir,6, — 9,1} — 0 in H} (0, 1),

)‘2 ilo3)‘n9n - ,3 <9n + y9n>

+517),,x} — 0 in L2(0,1).

XX

Estimates on 6,,, 9,,, 6, and 6,, and conclusion Taking the inner product of Ai (ir, I — A O, with
®,, in H and using (17), we get

~

2
Re oy (i hn I = A) @, D)y = Re (2 1Bull]20 1) + ¥ |0
’ L2(0,1)
~ 2
= y)»i 0 nx .
L2(0,1)
So (46) and (105) imply that
220, — 0 in L?(0,1). (141)

Because 6, in H, (0, 1) and thanks to Poincaré’s inequality, we deduce that
220, — 0 in L?(0,1). (142)
1
Multiplying (140)7 by ¥l and using (46), (47), (141) and (142), we have
n

A0, —> 0 in L2 (0, 1) (143)
and
A0, —> 0 in L2(0, 1), (144)

so (107) and (108) hold. Consequently, the proof can be ended exactly as in case of system (1) with j = 4
(Sect. 4.1).
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4.4 Case of system (4) with p1b — pok # 0

The limit (105) with j = 10 implies (140) with A,110 instead of kﬁ. Similar calculations as in the case of system
(1) with p1b — pak # 0 (Sect. 4.2) give the desired result. We omit the details.
Hence, the proof of our Theorem 4.1 is completed. O
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