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1 Introduction20

We study in this paper the asymptotic behavior at infinity of the solutions of two coupled systems related to21

the Bresse model with two different types of dissipation given by heat conduction and working only on the22

longitudinal displacement. The first system is the Bresse system with thermoelasticity of type I23

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0 in (0, 1) × (0,∞) ,

ρ3θt − βθxx + δwxt = 0 in (0, 1) × (0,∞)

(1)24

along with the initial data25

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) in (0, 1) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) in (0, 1) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0, 1) ,

θ (x, 0) = θ0 (x) in (0, 1)

(2)26

and the mixed homogeneous Dirichlet–Neumann boundary conditions27

{

ϕ (0, t) = ψx (0, t) = wx (0, t) = θ (0, t) = 0 in (0, ∞) ,

ϕx (1, t) = ψ (1, t) = w (1, t) = θx (1, t) = 0 in (0, ∞) .
(3)28

The second system is the Bresse system with thermoelasticity of type III29

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθxt = 0 in (0, 1) × (0,∞) ,

ρ3θt t − βθxx − γ θxxt + δwxt = 0 in (0, 1) × (0,∞)

(4)30

along with (2) and (3), and31

θt (x, 0) = θ1 (x) in (0, 1) , (5)32

where ρ1, ρ2, ρ3, b, k, k0, δ, β, γ and l are positive constants, w, ϕ and ψ represent, respectively, the33

longitudinal, vertical and shear angle displacements, and θ denotes the temperature.34

Several well-posedness and stability results for Bresse systems [2] have been obtained during the last few35

years, where the stability depends on the nature and position of the controls and some relations between the36

coefficients. Let us mention here some known results concerning the thermoelastic Bresse systems. For more37

details in what concerns mathematical modeling of the thermoelastic problems, we refer the readers to the38

works [3,6,7,10,11].39

The authors of [13] considered the following system:40

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + lδθ = 0,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δqx = 0,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0,

ρ3θt − θxx + β (wx − lϕ)t = 0,

ρ3qt − qxx + βψxt = 0

(6)41
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and proved the exponential stability if42

k − k0 = ρ1b − ρ2k = 0, (7)43

and the polynomial stability in general. In [5], the authors proved that44

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δθx = 0,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0,

ρ3θt − θxx + (βψt )x = 0

(8)45

is exponentially stable if and only if (7) holds, and it is polynomially stable in general. The results of [5] were46

generalized in [15] to the case where δ and β are functions of x and vanish on some part of the domain. The47

authors of [9] proved that the following thermoelastic Bresse system48

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δθx = 0,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0,

ρ3θt + qx + δψxt = 0,

τqt + βq + θx = 0

(9)49

is exponentially stable if50

k − k0 =
(ρ1

k
−

ρ2

b

)

(

1 −
τkρ3

ρ1

)

−
τδ2

b
= 0 and l is small,51

it is not exponentially stable if52

k �= k0 or
(ρ1

k
−

ρ2

b

)

(

1 −
τkρ3

ρ1

)

�=
τδ2

b
,53

and it is polynomially stable in general. The author of [4] studied the stability of54

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0 in (0, 1) × (0,∞) ,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) + δθx = 0 in (0, 1) × (0,∞) ,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1) × (0,∞) ,

ρ3θt − β
∫∞

0 g(s)θxx (t − s) ds + δψxt = 0 in (0, 1) × (0,∞) ,

55

where g : R+ → R+ is a given function satisfying some hypotheses. He provided a necessary and sufficient56

condition for exponential stability in terms of the structural parameters of the problem. For particular choices57

of g, the results of [4] cover the cases of Fourier, Cattaneo and Coleman–Gurtin heat conduction.58

For all the above stability results, at least the shear angle displacement ψ was damped via the heat conduc-59

tion. The authors of [1] considered the Cattaneo heat conduction working only on the longitudinal displacement60

61
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ1ϕt t − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,

ρ2ψt t − bψxx + k (ϕx + ψ + l w) = 0,

ρ1wt t − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0,

ρ3θt + qx + δwxt = 0,

τqt + βq + θx = 0

(10)62
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and proved that the exponential stability is equivalent to63

kρ2 − bρ1 = (k − k0)

(

ρ3 −
ρ1

τk

)

− δ2 = 0 (11)64

and65

l2 �=
k0ρ2 + bρ1

k0ρ2

(π

2
+ mπ

)2
+

kρ1

ρ2 (k + k0)
, ∀m ∈ Z. (12)66

Moreover, the polynomial stability of (10) in general was also proved in [1]. Similar stability results were67

proved in [1] when δθx is replaced by δwt , the last two equations in (10) are neglected and (11) is replaced by68

(7).69

Our objective in this paper is to complete the results of [1] by considering the heat conduction of types I70

and III. We prove that, when l does not belong to two sequences of real numbers (conditions (15) and (24)71

below), the exponential stability of the two systems is equivalent to (7). Moreover, we show that the polynomial72

stability holds in general with two decay rates corresponding to the two cases,73

ρ1b − ρ2k = 0 and ρ1b − ρ2k �= 0.74

The proof of the well-posedness is based on the semigroup theory. However, the stability results are proved75

using the energy method combined with the frequency domain approach.76

The paper is organized as follows. In Sect. 2, we give an idea on the proof of the well-posedness of (1)–(3)77

and (2)–(5). In Sects. 3 and 4, we prove, respectively, our exponential and polynomial stability results.78

2 The semigroup setting79

In this section, we give a brief idea on the proof of the well-posedness of (1)–( 3) and (2)–(5). We consider the80

energy space81

H =
∼
H ×

{

L2 (0, 1) in case (1),

H1
∗ (0, 1) × L2 (0, 1) in case (4),

82

where83

∼
H = H1

∗ (0, 1) × L2 (0, 1) ×
∼

H1
∗ (0, 1) × L2 (0, 1) ×

∼
H1

∗ (0, 1) × L2 (0, 1) ,84

85

H1
∗ (0, 1) =

{

f ∈ H1 (0, 1) : f (0) = 0
}

and
∼

H1
∗ (0, 1) =

{

f ∈ H1 (0, 1) : f (1) = 0
}

.86

The space H is equipped with the inner product87

〈�1, �2〉H = k 〈(ϕ1x + ψ1 + l w1) , (ϕ2x + ψ2 + l w2)〉L2(0,1) + b 〈ψ1x , ψ2x 〉L2(0,1)88

+k0 〈(w1x − lϕ1) , (w2x − lϕ2)〉L2(0,1) + ρ1 〈ϕ̃1, ϕ̃2〉L2(0,1) + ρ2〈ψ̃1, ψ̃2〉L2(0,1)89

+ρ1 〈w̃1, w̃2〉L2(0,1) +

⎧

⎨

⎩

ρ3 〈θ1, θ2〉L2(0,1) in case (1),

β 〈θ1x , θ2x 〉L2(0,1) + ρ3

〈

θ̃1, θ̃2

〉

L2(0,1)
in case (4),

90

where (for j = 1, 2)91

� j =
{

(ϕ j , ϕ̃ j , ψ j , ψ̃ j , w j , w̃ j , θ j )
T in case (1),

(ϕ j , ϕ̃ j , ψ j , ψ̃ j , w j , w̃ j , θ j , θ̃ j )
T in case (4).

92

We consider also93

� =

⎧

⎪

⎨

⎪

⎩

(

ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ

)T

in case (1),

(

ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, θ̃

)T

in case (4)

(13)94
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and95

�0 =
{

(ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0)
T in case (1),

(ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, θ1)
T in case (4),

96

where97

ϕ̃ = ϕt , ψ̃ = ψt , w̃ = wt and θ̃ = θt .98

Systems (1)–(3) and (2)–(5) can be written as a first-order system given by99

{

�t = A� in (0,∞) ,

� (t = 0) = �0,
(14)100

where A is a linear operator defined by101

A� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϕ̃

k

ρ1
(ϕx + ψ + l w)x +

lk0

ρ1
(wx − lϕ)

ψ̃

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)

w̃

k0

ρ1
(wx − lϕ)x −

lk

ρ1
(ϕx + ψ + l w) −

δ

ρ1
θx

β

ρ3
θxx −

δ

ρ3
w̃x

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

102

in case (1), and103

A� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ϕ̃

k

ρ1
(ϕx + ψ + l w)x +

lk0

ρ1
(wx − lϕ)

ψ̃

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)

w̃

k0

ρ1
(wx − lϕ)x −

lk

ρ1
(ϕx + ψ + l w) −

δ

ρ1
θ̃x

θ̃

1

ρ3

(

βθ + γ θ̃

)

xx
−

δ

ρ3
w̃x

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

104

in case (4). The domain of A is defined by105

D (A) =

⎧

⎨

⎩

� ∈ H | ϕ, θ ∈ H2
∗ (0, 1) ; ψ, w ∈

∼
H2

∗ (0, 1) ; ϕ̃ ∈ H1
∗ (0, 1) ;

ψ̃, w̃ ∈
∼

H1
∗ (0, 1) ; ϕx (1) = ψx (0) = wx (0) = θx (1) = 0

⎫

⎬

⎭

106

in case (1), and107

D (A) =

⎧

⎨

⎩

� ∈ H | ϕ, βθ + γ θ̃ ∈ H2
∗ (0, 1) ; ψ, w ∈

∼
H2

∗ (0, 1) ; ϕ̃, θ̃ ∈ H1
∗ (0, 1) ;

ψ̃, w̃ ∈
∼

H1
∗ (0, 1) ; ϕx (1) = ψx (0) = wx (0) = θx (1) = 0

⎫

⎬

⎭

108
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in case (4), where109

H2
∗ (0, 1) = H2 (0, 1) ∩ H1

∗ (0, 1) and
∼

H2
∗ (0, 1) = H2 (0, 1) ∩

∼
H1

∗ (0, 1) .110

The following well-posedness results for (14) hold:111

Theorem 2.1 Assume that112

l /∈
π

2
+ πN. (15)113

Then, for any m ∈ N and �0 ∈ D(Am), system (14) admits a unique solution114

� ∈ ∩m
j=0Cm− j

(

R+; D
(

A
j
))

. (16)115

Proof First, from the definition of H1
∗ (0, 1) and

∼
H1

∗ (0, 1), we see that, if116

(ϕ, ψ,w) ∈ H1
∗ (0, 1) ×

∼
H1

∗ (0, 1) ×
∼

H1
∗ (0, 1)117

satisfies118

k ‖(ϕx + ψ + l w)‖2
L2(0,1)

+ b ‖ψx‖2
L2(0,1)

+ k0 ‖(wx − lϕ)‖2
L2(0,1)

= 0,119

then120

ψ = 0, ϕ = −c sin (lx) and w = c cos (lx),121

where c is a constant such that122

c = 0 or l ∈
π

2
+ πN.123

Then condition (15) implies that ϕ = ψ = w = 0, and thus, H is a Hilbert space.124

Second, we prove that A is dissipative. Indeed, using the definition of A and 〈·, ·〉H, and integrating by125

parts, we get126

〈A�,�〉H =

⎧

⎪

⎨

⎪

⎩

−β ‖θx‖2
L2(0,1)

in case (1),

−γ

∥

∥

∥
θ̃x

∥

∥

∥

2

L2(0,1)
in case (4).

(17)127

Hence, A is dissipative in H.128

Third, we show that, for any F ∈ H, there exists Z ∈ D (A) satisfying129

AZ = F, (18)130

that is 0 ∈ ρ(A). Let F = ( f1, . . . , f j )
T and Z = (z1, . . . , z j )

T , where j = 7 in case (1), and j = 8 in case131

(4). The first, third and fifth equations in (18) are equivalent to132

z2 = f1, z4 = f3 and z6 = f5, (19)133

and the seventh equation in case (4) becomes134

z8 = f7. (20)135

So, because F ∈ H, z2, z4, z6 and z8 have the required regularity in D (A). Then, the last equation in (18) is136

reduced to137

z7xx =
δ

β
f5x +

ρ3

β
f7 (21)138

in case (1), and139

(βz7 + γ f7)xx = δ f5x + ρ3 f8 (22)140

in case (4). By a direct integration, we see that each equation in (21) and (22) has a unique solution z7141

satisfying the needed regularity and Neumann boundary condition in D (A). Therefore, the second, fourth and142

sixth equations in (18) become143

⎧

⎪

⎪

⎨

⎪

⎪

⎩

k (z1x + z3 + l z5)x + lk0 (z5x − lz1) = ρ1 f2,

bz3xx − k (z1x + z3 + l z5) = ρ2 f4,

k0 (z5x − lz1)x − lk (z1x + z3 + l z5) = f̃ ,

(23)144
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where145

f̃ =
{

δz7x + ρ1 f6 in case (1),

δ f7x + ρ1 f6 in case (4).
146

To prove that (23) admits a solution (z1, z3, z5) satisfying the required regularity and Neumann boundary147

condition in D (A), we consider the variational formulation of (23) and use the Lax–Milgram theorem and148

classical elliptic regularity arguments. So, this proves that (18) has a unique solution Z ∈ D (A). By the149

resolvent identity, we have λI − A is surjective, for any λ > 0 (see [14]). Consequently, the Lumer–Phillips150

theorem implies that A is the infinitesimal generator of a linear C0 semigroup of contractions on H. Finally,151

Theorem 2.1 holds (see [16]) ⊓⊔152

3 Exponential stability153

Our objective in this section is to show the following exponential stability result:154

Theorem 3.1 We assume that (15) holds. Then the semigroup associated with (14) is exponentially stable if155

and only if156

l2 �=
ρ2k0 + ρ1b

ρ2k0

(π

2
+ mπ

)2
+

ρ1k

ρ2 (k + k0)
, ∀m ∈ Z (24)157

and158

k − k0 = ρ1b − ρ2k = 0. (25)159

The proof is based on the following theorem:160

Theorem 3.2 [8,17] A C0 semigroup of contractions on a Hilbert space H generated by an operator A is161

exponentially stable if and only if162

i R ⊂ ρ (A) (26)163

and164

sup
λ∈R

∥

∥(iλI − A)−1
∥

∥

L(H)
< ∞. (27)165

Proof We prove that (24) is equivalent to (26), and (25) is equivalent to (27). So Theorem 3.2 implies Theorem166

3.1. ⊓⊔167

3.1 Conditions (24) and (26) are equivalent168

Note that, according to the fact that 0 ∈ ρ (A) (see Sect. 2), A−1 is bounded and it is a bijection between H169

and D(A). Since D(A) has a compact embedding into H, so it follows that A−1 is a compact operator, which170

implies that the spectrum of A is discrete. Then iλ ∈ ρ (A) if and only if λ is not an eigenvalue of A.171

Let λ ∈ R
∗. We prove that iλ is not an eigenvalue of A by proving that the unique solution � ∈ D (A) of172

the equation173

A � = i λ � (28)174

is � = 0. Let � be given by (13). The Eq. (28) means that175

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̃ = iλϕ, ψ̃ = iλψ, w̃ = iλw,

k

ρ1
(ϕx + ψ + l w)x +

lk0

ρ1
(wx − lϕ) = iλϕ̃,

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w) = iλψ̃,

k0

ρ1
(wx − lϕ)x −

lk

ρ1
(ϕx + ψ + l w) −

δ

ρ1
θx = iλw̃,

β

ρ3
θxx −

δ

ρ3
w̃x = iλθ

(29)176
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in case (1), and177
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̃ = iλϕ, ψ̃ = iλψ, w̃ = iλw, θ̃ = iλθ,

k

ρ1
(ϕx + ψ + l w)x +

lk0

ρ1
(wx − lϕ) = iλϕ̃,

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w) = iλψ̃,

k0

ρ1
(wx − lϕ)x −

lk

ρ1
(ϕx + ψ + l w) −

δ

ρ1
θ̃x = iλw̃,

1

ρ3

(

βθ + γ θ̃

)

xx
−

δ

ρ3
w̃x = iλθ̃

(30)178

in case (4). Using (17) and (28), we find179

0 = Re iλ ‖�‖2
H

= Re 〈iλ�,�〉H = Re 〈A�,�〉H =

⎧

⎪

⎨

⎪

⎩

−β ‖θx‖2
L2(0,1)

in case (1),

−γ

∥

∥

∥
θ̃x

∥

∥

∥

2

L2(0,1)
in case (4).

180

Then181
{

θx = 0 in case (1),

θ̃x = 0 in case (4).
(31)182

But θ, θ̃ ∈ H1
∗ (0, 1) (since � ∈ D (A)), then, using the Poincaré’s inequality, (31) and the fourth equation in183

(30), we deduce that184

{

θ = 0 in case (1),

θ = θ̃ = 0 in case (4).
(32)185

Therefore, from (32) and the third and last equations in (29) and (30), we find186

wx = w̃x = 0. (33)187

As w, w̃ ∈
∼

H1
∗ (0, 1) and according to Poincaré’s inequality, we have188

w = w̃ = 0. (34)189

Using (32) and (34), we see that (29) and (30) are reduced to190

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̃ = iλϕ, ψ̃ = iλψ,
(

l2k0 − ρ1λ
2
)

ϕ − k (ϕx + ψ)x = 0,

−ρ2λ
2ψ − bψxx + k (ϕx + ψ) = 0,

ϕx + ψ = −
k0

k
ϕx .

(35)191

Now, we follow the proof given in [1]. By deriving the fifth equation in (35) and combining the third one, we192

see that193

ϕxx + αϕ = 0, (36)194

where α = l2k0−ρ1λ
2

k0
. We distinguish three cases.195

Case 1 λ2 = l2k0
ρ1

. Then196

ϕ(x) = c1x + c2,197

for c1, c2 ∈ C. Using the boundary conditions198

ϕ (0) = ϕx (1) = 0, (37)199
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we find200

ϕ = 0, (38)201

which implies that, using the first two equations and the last one in (35),202

∼
ϕ = 0 (39)203

and204

ψ =
∼
ψ = 0. (40)205

Consequently, we get206

� = 0. (41)207

Case 2 λ2 > l2k0
ρ1

. Then208

ϕ(x) = c1e
√

−αx + c2e−
√

−αx .209

Using again the boundary conditions (37), we find (38), and similarly to case 1, we arrive at (41).210

Case 3 λ2 < l2k0
ρ1

. Then211

ϕ(x) = c1 cos
(√

αx
)

+ c2 sin
(√

αx
)

.212

Using the boundary conditions (37), we deduce that c1 = 0, and213

c2 = 0 or ∃ m ∈ Z : α =
(π

2
+ mπ

)2
. (42)214

If c2 = 0, then (38) holds, and as before, we find (41).215

If c2 �= 0, then, by (42), we have216

∃ m ∈ Z :
l2k0 − ρ1λ

2

k0
=
(π

2
+ mπ

)2
. (43)217

Therefore, the fifth equation in (35) is equivalent to218

ψ(x) = −c2

(

1 +
k0

k

)√
α cos

(√
αx

)

, (44)219

and then the third and fourth equations in (35) are reduced to220

λ2 =
k0

[

kk0 + bl2 (k + k0)
]

(k + k0) (k0ρ2 + bρ1)
. (45)221

We see that (43) and (45) lead to222

∃ m ∈ Z : l2 =
ρ2k0 + ρ1b

ρ2k0

(π

2
+ mπ

)2
+

ρ1k

ρ2 (k + k0)
;223

that is (24) does not hold. So, if (24) holds, we get a contradiction, and hence, c2 = 0 and, as before, we find224

(41). If (24) does not hold, then, for λ ∈ R satisfying ( 45), the function225

�(x) = c2

(

sin
(√

αx
)

, iλ sin
(√

αx
)

, −
(

1 +
k0

k

)√
α cos

(√
αx

)

,226

−iλ

(

1 +
k0

k

)√
α cos

(√
αx

)

, 0, 0, 0, 0

)T

227

is a solution of (28), for any c2 ∈ C, and then λ is an eigenvalue of A. Finally, (26) holds if and only if (24)228

holds.229
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3.2 Condition (25) implies (27)230

We assume that (25) holds and prove (27). Let us proceed by contradiction. So, we assume that (27) is false,231

then there exist sequences (�n)n ⊂ D (A) and (λn)n ⊂ R satisfying232

‖�n‖H = 1, ∀ n ∈ N, (46)233

lim
n→∞

|λn| = ∞ (47)234

and235

lim
n→∞

‖(i λn I − A) �n‖H = 0. (48)236

3.2.1 Case of system (1)237

The limit (48) implies the following ones:238

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iλnϕn − ∼
ϕn −→ 0 in H1

∗ (0, 1) ,

iλnρ1
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) −→ 0 in L2 (0, 1) ,

iλnψn −
∼
ψn −→ 0 in

∼
H1

∗ (0, 1) ,

iλnρ2

∼
ψn − bψnxx + k (ϕnx + ψn + lwn) −→ 0 in L2 (0, 1) ,

iλnwn − ∼
wn −→ 0 in

∼
H1

∗ (0, 1) ,

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx −→ 0 in L2 (0, 1) ,

iλnρ3θn − βθnxx + δ
∼
wnx −→ 0 in L2 (0, 1) .

(49)239

We will arrive to a contradiction with (46) by proving that240

lim
n→∞

‖�n‖H = 0. (50)241

Some of the calculations below are used in [1].242

Estimate on θn Taking the inner product of (i λn I − A) �n with �n in H and using (17), we get243

Re 〈(i λn I − A) �n, �n〉H = β ‖θnx‖2
L2(0,1)

. (51)244

Using (46) and (48), we deduce that245

θnx −→ 0 in L2 (0, 1) . (52)246

Because θn(0) = 0, then we get from (52) that247

θn −→ 0 in L2 (0, 1) . (53)248

Estimates on ϕn , ψn and wn Multiplying (49)1, (49)3 and (49)5 by 1
λn

, and using (46) and (47), we find249

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕn −→ 0 in L2 (0, 1) ,

ψn −→ 0 in L2 (0, 1) ,

wn −→ 0 in L2 (0, 1) .

(54)250

Estimate on 1
λn

wnxx Applying the triangle inequality, we have251

∥

∥

∥

∥

wnxx

λn

∥

∥

∥

∥

L2(0,1)

≤
1

k0 |λn|

∥

∥

∥iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

∥

∥

∥

L2(0,1)
252

+
1

k0

∥

∥

∥

∥

iρ1
∼
wn +

lk0

λn

ϕnx +
lk

λn

(ϕnx + ψn + lwn) + δ
θnx

λn

∥

∥

∥

∥

L2(0,1)

.253
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Then, by (46), (47), (49)6 and (52), we deduce that254

(

1

λn

wnxx

)

n

is bounded in L2 (0, 1) . (55)255

Estimates on wnx , 1
λn

∼
wnx and 1

λn

∼
wn Taking the inner product of (49)7 with

iwnx

λn

in L2 (0, 1), integrating256

by parts and using the boundary conditions, we get257

ρ3 〈θn, wnx 〉L2(0,1) + β

〈

θnx ,
iwnxx

λn

〉

L2(0,1)

− δ

〈

(

iλnwnx − ∼
wnx

)

,
iwnx

λn

〉

L2(0,1)

258

+δ ‖wnx‖2
L2(0,1)

−→ 0.259

Using (46), (47), (49)5, (52), (53) and (55), we deduce that260

wnx −→ 0 in L2 (0, 1) , (56)261

and from (49)5, we have262

1

λn

∼
wnx −→ 0 in L2 (0, 1) . (57)263

As
∼
wn(1) = 0 and using (57), we obtain264

1

λn

∼
wn −→ 0 in L2 (0, 1) . (58)265

Estimates on
∼
wn and λnwn Taking the inner product of (49)6 with

i
∼
wn

λn

in L2 (0, 1), integrating by parts266

and using the boundary conditions, we see that267

ρ1

∥

∥

∥

∼
wn

∥

∥

∥

2

L2(0,1)
+ k0

〈

(wnx − lϕn) ,
i
∼
wnx

λn

〉

L2(0,1)

268

+lk

〈

(ϕnx + ψn + lwn) ,
i
∼
wn

λn

〉

L2(0,1)

+ δ

〈

θnx

λn

, i
∼
wn

〉

L2(0,1)

−→ 0.269

Using (46), (47), (52), (57) and (58), we obtain270

∼
wn −→ 0 in L2 (0, 1) , (59)271

and with (49)5, we find272

λnwn −→ 0 in L2 (0, 1) . (60)273

Estimates on ϕnx ,
∼
ϕn and λnϕn First, taking the inner product of (ϕnx + ψn + lwn) with iλn

∼
wn in274

L2 (0, 1), integrating by parts and using the boundary conditions, we have275

〈

(ϕnx + ψn + lwn) , iλn
∼
wn

〉

L2(0,1)
= −

〈

iλnϕnx ,
∼
wn

〉

L2(0,1)
−
〈

iλnψn,
∼
wn

〉

L2(0,1)
− l

〈

iλnwn,
∼
wn

〉

L2(0,1)
276

=
〈(

iλnϕn − ∼
ϕn

)

,
∼
wnx

〉

L2(0,1)
+
〈∼
ϕn,

∼
wnx

〉

L2(0,1)
−
〈(

iλnψn −
∼
ψn

)

,
∼
wn

〉

L2(0,1)

277

−
〈

∼
ψn,

∼
wn

〉

L2(0,1)

− l
〈(

iλnwn − ∼
wn

)

,
∼
wn

〉

L2(0,1)
− l

∥

∥

∥

∼
wn

∥

∥

∥

2

L2(0,1)
278

= −
〈(

iλnϕnx − ∼
ϕnx

)

,
∼
wn

〉

L2(0,1)
+
〈∼
ϕn,

∼
wnx

〉

L2(0,1)
−
〈(

iλnψn −
∼
ψn

)

,
∼
wn

〉

L2(0,1)

279

−
〈

∼
ψn,

∼
wn

〉

L2(0,1)

− l
〈(

iλnwn − ∼
wn

)

,
∼
wn

〉

L2(0,1)
− l

∥

∥

∥

∼
wn

∥

∥

∥

2

L2(0,1)
.280
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Then, using (46), (49)1, (49)3, (49)5 and (59), we deduce that281

〈

(ϕnx + ψn + lwn) , iλn
∼
wn

〉

L2(0,1)
−
〈∼
ϕn,

∼
wnx

〉

L2(0,1)
−→ 0. (61)282

Second, taking the inner product of
∼
ϕn with

∼
wnx in L2 (0, 1), we arrive at283

〈∼
ϕn,

∼
wnx

〉

L2(0,1)
=
〈∼
ϕn,

(∼
wnx − l

∼
ϕn

)〉

L2(0,1)
+ l

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
284

= −
〈∼
ϕn,

(

iλnwnx − ∼
wnx

)〉

L2(0,1)
+
〈∼
ϕn, l

(

iλnϕn − ∼
ϕn

)〉

L2(0,1)
285

+
〈∼
ϕn, iλn (wnx − lϕn)

〉

L2(0,1)
+ l

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
,286

then, by (46), (49)1 and (49)5, we have287

λn

〈∼
ϕn, i (wnx − lϕn)

〉

L2(0,1)
−
〈∼
ϕn,

∼
wnx

〉

L2(0,1)
+ l

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
−→ 0. (62)288

Third, taking the inner product of (49)2 with (wnx − lϕn) in L2 (0, 1), integrating by parts and using the289

boundary conditions, we find290

〈

iλnρ1
∼
ϕn, (wnx − lϕn)

〉

L2(0,1)
+ k

〈

(ϕnx + ψn + lwn) , (wnx − lϕn)x

〉

L2(0,1)
291

−lk0 ‖(wnx − lϕn)‖2
L2(0,1)

−→ 0,292

which implies that293

λnρ1

〈

i
∼
ϕn, (wnx − lϕn)

〉

L2(0,1)
294

−
k

k0

〈

(ϕnx + ψn + lwn) ,
[

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]〉

L2(0,1)
295

+
kρ1

k0

〈

(ϕnx + ψn + lwn) , iλn
∼
wn

〉

L2(0,1)
+

lk2

k0

‖(ϕnx + ψn + lwn)‖2
L2(0,1)

296

+
δk

k0

〈(ϕnx + ψn + lwn) , θnx 〉L2(0,1) − lk0 ‖(wnx − lϕn)‖2
L2(0,1)

−→ 0.297

Using (46), (49)6, (52), (54) and (56) , we see that298

−λnρ1

〈∼
ϕn, i (wnx − lϕn)

〉

L2(0,1)
+

kρ1

k0

〈

(ϕnx + ψn + lwn) , iλn
∼
wn

〉

L2(0,1)
299

+
lk2

k0

‖(ϕnx + ψn + lwn)‖2
L2(0,1)

−→ 0. (63)300

Then, multiplying (61) by
−kρ1

k0
and (62) by ρ1, and adding the obtained limits and (63), we obtain301

(

k

k0
− 1

)

ρ1

〈∼
ϕn,

∼
wnx

〉

L2(0,1)
+

lk2

k0

‖(ϕnx + ψn + lwn)‖2
L2(0,1)

+ ρ1l

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
−→ 0. (64)302

So, because k = k0 (according to (25)), we get from (54) and (64) that303

ϕnx −→ 0 in L2 (0, 1) (65)304

and305 ∼
ϕn −→ 0 in L2 (0, 1) . (66)306

Moreover, (49)1 and (66) give307

λnϕn −→ 0 in L2 (0, 1) . (67)308
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Estimates on
∼
ψn and λnψn First, taking the inner product of (49)4 with (ϕnx + ψn + lwn) in L2 (0, 1),309

integrating by parts and using the boundary conditions, we get310

〈

iλnρ2

∼
ψn, ϕnx

〉

L2(0,1)

+
〈

iλnρ2

∼
ψn, ψn

〉

L2(0,1)

+ l

〈

iλnρ2

∼
ψn, wn

〉

L2(0,1)

311

+b
〈

ψnx , (ϕnx + ψn + lwn)x

〉

L2(0,1)
+ k ‖(ϕnx + ψn + lwn)‖2

L2(0,1)
−→ 0,312

then313

−λnρ2

〈

∼
ψn, iϕnx

〉

L2(0,1)

− ρ2

〈

∼
ψn,

(

iλnψn −
∼
ψn

)〉

L2(0,1)

− ρ2

∥

∥

∥

∥

∼
ψn

∥

∥

∥

∥

2

L2(0,1)

314

−lρ2

〈

∼
ψn,

(

iλnwn − ∼
wn

)

〉

L2(0,1)

− lρ2

〈

∼
ψn,

∼
wn

〉

L2(0,1)

315

−
b

k

〈

ψnx ,

[

iλnρ1
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]〉

L2(0,1)
316

+
b

k

〈

ψnx , iλnρ1
∼
ϕn

〉

L2(0,1)
−

lk0b

k
〈ψnx , (wnx − lϕn)〉L2(0,1) + k ‖ϕnx + ψn + lwn‖2

L2(0,1)
−→ 0,317

using (46), (49)2, (49)3, (49)5, (54), (56), (59) and (65), we get318

−λnρ2

〈

∼
ψn, iϕnx

〉

L2(0,1)

− ρ2

∥

∥

∥

∥

∼
ψn

∥

∥

∥

∥

2

L2(0,1)

+
bρ1

k
λn

〈

ψnx , i
∼
ϕn

〉

L2(0,1)
−→ 0. (68)319

Second, using the equality320

λn

〈

ψnx , i
∼
ϕn

〉

L2(0,1)
= −

〈(

iλnψnx −
∼
ψnx

)

,
∼
ϕn

〉

L2(0,1)

−
〈

∼
ψnx ,

∼
ϕn

〉

L2(0,1)

,321

integrating by parts and using the boundary conditions, we obtain322

λn

〈

ψnx , i
∼
ϕn

〉

L2(0,1)
= −

〈(

iλnψnx −
∼
ψnx

)

,
∼
ϕn

〉

L2(0,1)

+
〈

∼
ψn,

∼
ϕnx

〉

L2(0,1)

323

= −
〈(

iλnψnx −
∼
ψnx

)

,
∼
ϕn

〉

L2(0,1)

−
〈

∼
ψn,

(

iλnϕnx −∼
ϕnx

)

〉

L2(0,1)

+
〈

∼
ψn, iλnϕnx

〉

L2(0,1)

.324

Therefore, from (46), (49)1 and (49)3, we see that325

λn

〈

ψnx , i
∼
ϕn

〉

L2(0,1)
− λn

〈

∼
ψn, iϕnx

〉

L2(0,1)

−→ 0, (69)326

so, multiplying (69) by −ρ2 and inserting the obtained limit into (68), we obtain327

λn

k
(bρ1 − kρ2)

〈

ψnx , i
∼
ϕn

〉

L2(0,1)
− ρ2

∥

∥

∥

∥

∼
ψn

∥

∥

∥

∥

2

L2(0,1)

−→ 0. (70)328

Now, we use the fact that bρ1 − kρ2 = 0 (condition (25)), we get from (70) that329

∼
ψn −→ 0 in L2 (0, 1) , (71)330

and by (49)3 and (71), we deduce that331

λnψn −→ 0 in L2 (0, 1) . (72)332
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Estimate on ψnx and conclusion Taking the inner product of (49)4 with ψn in L2 (0, 1), integrating by333

parts and using the boundary conditions, we get334

−ρ2

〈

∼
ψn, iλnψn

〉

L2(0,1)

+ b ‖ψnx‖2
L2(0,1)

+ k 〈(ϕnx + ψn + lwn) , ψn〉L2(0,1) −→ 0,335

and using (46), (54) and (72), we obtain336

ψnx −→ 0 in L2 (0, 1) . (73)337

A combination of (53), (54), (56), (59), (65), (66), (71) and (73) leads to (50), which is a contradiction with338

(46). Hence, in case (1), (25) implies (27).339

3.2.2 Case of system (4)340

In case (4), the limit (48) implies the following ones:341

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iλnϕn − ∼
ϕn −→ 0 in H1

∗ (0, 1) ,

iλnρ1
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) −→ 0 in L2 (0, 1) ,

iλnψn −
∼
ψn −→ 0 in

∼
H1

∗ (0, 1) ,

iλnρ2

∼
ψn − bψnxx + k (ϕnx + ψn + lwn) −→ 0 in L2 (0, 1) ,

iλnwn − ∼
wn −→ 0 in

∼
H1

∗ (0, 1) ,

iλnρ1
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δ

∼
θ nx −→ 0 in L2 (0, 1) ,

iλnθn −
∼
θ n −→ 0 in H1

∗ (0, 1) ,

iλnρ3

∼
θ n −

(

βθn + γ
∼
θ n

)

xx

+ δ
∼
wnx −→ 0 in L2 (0, 1) .

(74)342

Estimates on λnθn , λnθnx ,
∼
θ n and

∼
θ nx Taking the inner product of (i λn I − A) �n with �n in H and343

using (17), we find344

Re 〈(i λn I − A)�n,�n〉H = γ

∥

∥

∥

∥

∼
θ nx

∥

∥

∥

∥

2

L2(0,1)

. (75)345

Using (46) and (48), we deduce that346

∼
θ nx −→ 0 in L2 (0, 1) . (76)347

Because
∼
θ n(0) = 0 and according to Poincaré’s inequality, then we get from (76) that348

∼
θ n −→ 0 in L2 (0, 1) . (77)349

The above two limits combined with (74)7 give350

λnθnx −→ 0 in L2 (0, 1) (78)351

and352

λnθn −→ 0 in L2 (0, 1) . (79)353

Estimates on ϕn , ψn and wn Multiplying (74)1, (74)3 and (74)5 by 1
λn

, and using (46) and (47), we find354

(54).355

Estimate on 1
λn

wnxx As in case (1) (Sect. 3.2.1), applying triangle inequality and using (74)6 and (76),356

we obtain (55).357
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Estimates on wnx , 1
λn

∼
wnx and 1

λn

∼
wn Taking the inner product of (74)8 with

iwnx

λn

in L2 (0, 1), integrating358

by parts and using (46), (47) and the boundary conditions, we get359

ρ3

〈

∼
θ n, wnx

〉

L2(0,1)

+ β

〈

θnx ,
iwnxx

λn

〉

L2(0,1)

+ γ

〈

∼
θ nx ,

iwnxx

λn

〉

L2(0,1)

360

−δ

〈

(

iλnwnx − ∼
wnx

)

,
iwnx

λn

〉

L2(0,1)

+ δ ‖wnx‖2
L2(0,1)

−→ 0.361

Using (55), (74)5, (76), (77) and (78), we get (56). By multiplying (74)5 by 1
λn

, we get (57). Moreover, because362

∼
wn(1) = 0, we have (58).363

Estimates on
∼
wn and λnwn As in case (1) (Sect. 3.2.1), taking the inner product of (74)6 with

i
∼
wn

λn

in364

L2 (0, 1), integrating by parts and using the boundary conditions, we find (59) and (60).365

Estimate on
∼
ϕn and conclusion The same computations as in case (1) (Sect. 3.2.1) imply (64) and (70),366

so (25) leads to (65), (66), (71) and (73). Consequently, (50) holds, which is a contradiction with (46). Hence,367

also in case (4), (25) implies (27).368

3.3 Condition (27) implies (25)369

We prove this implication by contradiction. So, we assume that (25) does not hold and prove that (27) is not370

satisfied; that is we prove that there exists a sequence (λn)n ⊂ R such that371

lim
n→∞

∥

∥(iλn I − A)−1
∥

∥

L(H)
= ∞,372

which is equivalent to prove that there exists a sequence (Fn)n ⊂ H satisfying373

‖Fn‖H ≤ 1, ∀n ∈ N (80)374

and375

lim
n→∞

∥

∥(iλn I − A)−1 Fn

∥

∥

H
= ∞. (81)376

For this purpose, let377

�n = (iλn I − A)−1 Fn, ∀n ∈ N.378

Then we have to prove that (80) holds such that379

lim
n→∞

‖�n‖H = ∞ and iλn�n − A�n = Fn, ∀n ∈ N. (82)380

Taking381

�n =

⎧

⎪

⎨

⎪

⎩

(

ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, θn

)T

in case (1),

(

ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, θn, θ̃n

)T

in case (4)

382

and383

Fn =
{

( f1n, . . . , f7n)
T in case (1),

( f1n, . . . , f8n)
T in case (4).

384
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Then, from the second equality in (82), we have the following systems:385

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iλnϕn − ϕ̃n = f1n,

iρ1λnϕ̃n − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) = ρ1 f2n,

iλnψn − ψ̃n = f3n,

iρ2λnψ̃n − bψnxx + k (ϕnx + ψn + l wn) = ρ2 f4n,

iλnwn − w̃n = f5n,

iρ1λnw̃n − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) + δθnx = ρ1 f6n,

iρ3λnθn − βθnxx + δw̃nx = ρ3 f7n

(83)386

in case (1), and387

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iλnϕn − ϕ̃n = f1n,

iρ1λnϕ̃n − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) = ρ1 f2n,

iλnψn − ψ̃n = f3n,

iρ2λnψ̃n − bψnxx + k (ϕnx + ψn + l wn) = ρ2 f4n,

iλnwn − w̃n = f5n,

iρ1λnw̃n − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) + δθ̃nx = ρ1 f6n,

iλnθn − θ̃n = f7n,

iρ3λn θ̃n −
(

βθn + γ θ̃n

)

xx
+ δw̃nx = ρ3 f8n

(84)388

in case (4). Choosing389

f4n(x) = c cos(N x), f1n = f2n = f3n = f5n = f6n(x) = f7n = f8n = 0, (85)390

where N = (2n+1)π
2

and c is a constant satisfying 0 < |c| ≤ 1√
ρ2

, so391

‖Fn‖2
H

= ρ2 ‖ f4n‖2
L2(0,1)

= ρ2|c|2
∫ 1

0

cos2 (N x) dx ≤ 1.392

On the other hand, the systems (83) and (84) become, respectively,393

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̃n = iλnϕn, ψ̃n = iλnψn, w̃n = iλnwn,

−ρ1λ
2
nϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) = 0,

−ρ2λ
2
nψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2 f4n,

−ρ1λ
2
nwn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) + δθnx = 0,

iρ3λnθn − βθnxx + iδλnwnx = 0

(86)394

and395
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ϕ̃n = iλnϕn, ψ̃n = iλnψn, w̃n = iλnwn, θ̃n = iλnθn,

−ρ1λ
2
nϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) = 0,

−ρ2λ
2
nψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2 f4n,

−ρ1λ
2
nwn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) + iδλnθnx = 0,

−iρ3λ
2
nθn − (βθn + iγ λnθn)xx + iδλnwnx = 0.

(87)396
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Let us consider the choices397

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕn(x) = α1 sin (N x) , ψn(x) = α2 cos (N x) , wn(x) = α3 cos (N x) ,

θn(x) = α4 sin (N x) , ϕ̃n(x) = iλnα1 sin (N x) , ψ̃n(x) = iλnα2 cos (N x) ,

w̃n(x) = iλnα3 cos (N x) , θ̃n(x) = iλnα4 sin (N x) ,

398

where α1, . . . , α4 are constants depending on N (will be fixed later). Then the last equation in (86) and the399

last one in (87) are equivalent to α4 = µn Nα3, where400

µn =

⎧

⎨

⎩

iδλn

βN 2+iρ3λn
in case (86),

iδλn

iγ λn N 2+βN 2−iρ3λ
2
n

in case (87).
(88)401

Therefore, (86) and (87) are satisfied if and only if402

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

k N 2 + l2k0 − ρ1λ
2
n

]

α1 + k Nα2 + l (k + k0) Nα3 = 0,
[

bN 2 + k − ρ2λ
2
n

]

α2 + k Nα1 + lkα3 = ρ2c,
[

(k0 + δnµn) N 2 + l2k − ρ1λ
2
n

]

α3 + l (k + k0) Nα1 + lkα2 = 0,

(89)403

where404

δn =
{

δ in case (86),

iδλn in case (87).
405

Because (25) is assumed to be not satisfied, then406

ρ1b − ρ2k �= 0 or [ρ1b − ρ2k = 0 and k − k0 �= 0],407

so we distinguish these two cases.408

Case 1 ρ1b − ρ2k �= 0. Let choose λn =
√

b

ρ2
N 2 +

kk0

ρ2 (k + k0)
, then409

lim
n→∞

δnµn = 0 and N 2δnµn ∼

⎧

⎨

⎩

iδ2

β
λn in case (86),

iδ2

γ
λn in case (87).

(90)410

On the other hand, (89) becomes411

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[(

k −
ρ1b

ρ2

)

N 2 + l2k0 −
ρ1kk0

ρ2 (k + k0)

]

α1 + k Nα2 + l (k + k0) Nα3 = 0,

k2

k + k0
α2 + k Nα1 + lkα3 = ρ2c,

[(

k0 −
ρ1b

ρ2
+ δnµn

)

N 2 + l2k −
ρ1kk0

ρ2 (k + k0)

]

α3 + l (k + k0) Nα1 + lkα2 = 0.

(91)412

From (91)2 we get413

α1 =
ρ2c − lkα3 −

k2

k + k0
α2

k N
. (92)414

By substituting (92) into (91)3 and into (91)1, we obtain, respectively,415

α3 =
ρ2lc(k + k0)

k

[(

ρ1b

ρ2
− k0 − δnµn

)

N 2 + l2k0 +
ρ1kk0

ρ2 (k + k0)

] (93)416
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and417

α2 =

[

(ρ2c − lkα3)

(

k −
ρ1b

ρ2

)

+ lk(k + k0)α3

]

N 2 + (ρ2c − lkα3)

[

l2k0 −
ρ1kk0

ρ2 (k + k0)

]

k2

k + k0

[

−
(

ρ1b

ρ2
+ k0

)

N 2 + l2k0 −
ρ1kk0

ρ2 (k + k0)

]
. (94)418

According to (90), we see that (93) implies that419

lim
n→∞

α3 = 0;420

therefore,421

lim
n→∞

α2 =
c(k + k0)(ρ1b − ρ2k)

k2

(

ρ1b

ρ2
+ k0

) �= 0422

since ρ1b − ρ2k �= 0. Then423

lim
n→∞

|α2|N = ∞. (95)424

Finally, using the norm of ψnx in L2(0, 1), we obtain425

‖�n‖2
H

≥ b ‖ψnx‖2
L2(0,1)

= b|α2|2 N 2

∫ 1

0

sin2 (N x) dx426

≥
b

2
|α2|2 N 2

∫ 1

0

(1 − cos (2N x)) dx =
b

2
|α2|2 N 2 −→ ∞. (96)427

Case 2 ρ1b − ρ2k = 0 and k − k0 �= 0. Let choose λn =
√

k

ρ1
N 2 +

k
√

ρ1ρ2
N . Then (89) becomes428

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

−
ρ1k

√
ρ1ρ2

N + l2k0

)

α1 + k Nα2 + l (k + k0) Nα3 = 0,

(

−
ρ2k

√
ρ1ρ2

N + k

)

α2 + k Nα1 + lkα3 = ρ2c,

[

(k0 − k + δnµn) N 2 −
ρ1k

√
ρ1ρ2

N + l2k

]

α3 + l (k + k0) Nα1 + lkα2 = 0.

(97)429

From (97)1 we get, for N >
l2k0

√
ρ1ρ2

ρ1k
,430

α1 =
k Nα2 + l(k + k0)Nα3

ρ1k
√

ρ1ρ2
N − l2k0

. (98)431

By substituting (98) into (97)3, we find, for N >
l2k0

√
ρ1ρ2

ρ1k
,432

α3 =
lk

[

(k + k0) N 2 +
ρ1k

√
ρ1ρ2

N − l2k0

]

α2

(

−
ρ1k

√
ρ1ρ2

N + l2k0

)[

(k0 − k + δnµn) N 2 −
ρ1k

√
ρ1ρ2

N + l2k

]

− l2(k + k0)2 N 2

. (99)433

By substituting (98) and (99) into (97)2, we obtain, for N >
l2k0

√
ρ1ρ2

ρ1k
,434

α2 =
a1

a2
, (100)435
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where436

a1 = −ρ2c

(

ρ1k
√

ρ1ρ2
N − l2k0

)2 [

(k0 − k + δnµn) N 2 −
ρ1k

√
ρ1ρ2

N + l2k

]

437

+ρ2cl2(k + k0)
2

(

−
ρ1k

√
ρ1ρ2

N + l2k0

)

N 2
438

and439

a2 = l2k2

[

(k + k0) N 2 +
ρ1k

√
ρ1ρ2

N − l2k0

]2

+ l2(k + k0)
2

(

l2kk0 −
ρ1k2 + l2kk0ρ2√

ρ1ρ2
N

)

N 2
440

+
(

l2kk0 −
ρ1k2 + l2kk0ρ2√

ρ1ρ2
N

)(

ρ1k
√

ρ1ρ2
N − l2k0

)[

(k0 − k + δnµn) N 2 −
ρ1k

√
ρ1ρ2

N + l2k

]

.441

We see that (90) and (100) imply that442

lim
n→∞

|α2| =

⎧

⎨

⎩

∣

∣

∣

cρ1ρ2(k−k0)

k[ρ2l2(k+3k0)+ρ1(k−k0)]

∣

∣

∣ if ρ2l2(k + 3k0) + ρ1(k − k0) �= 0,

∞ if ρ2l2(k + 3k0) + ρ1(k − k0) = 0.

(101)443

Because k − k0 �= 0, then (95) holds. Consequently, (96) remains valid.444

Finally, the equivalence between (27) and (25) is established, and consequently, the proof of Theorem 3.1445

is completed. ⊓⊔446

4 Polynomial stability447

In this section, we prove the following polynomial stability independently from (25):448

Theorem 4.1 Assume that (15) and (24) hold. Then, for any m ∈ N
∗, there exists a constant cm > 0 such449

that, for any �0 ∈ D (Am) and t > 0,450

∥

∥

∥etA�0

∥

∥

∥

H
≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cm ‖�0‖D(Am)

(

ln t
t

)

m

4 ln t if ρ1b − ρ2k = 0,

cm ‖�0‖D(Am)

(

ln t
t

)

m

10 ln t if ρ1b − ρ2k �= 0.

(102)451

The key of the proof of Theorem 4.1 is the following known theorem:452

Theorem 4.2 [12] If a bounded C0 semigroup etA on a Hilbert space H generated by an operator A satisfies453

(26) and, for some j ∈ N
∗,454

sup
|λ|≥1

1

λ j

∥

∥(iλI − A)−1
∥

∥

L(H)
< ∞. (103)455

Then, for any m ∈ N
∗, there exists a positive constant cm such that456

∥

∥

∥etAz0

∥

∥

∥

H
≤ cm ‖z0‖D(Am)

(

ln t

t

)

m

j ln t, ∀z0 ∈ D
(

A
m
)

, ∀t > 0. (104)457

Proof In Sect. 3, we have proved that (24) implies (26). Then we only need to show (103), where j = 4 if458

ρ1b − ρ2k = 0, and j = 10 if ρ1b − ρ2k �= 0. Let us establish (103) by contradiction. Assume that (103) is459

false, then there exist sequences (�n)n ⊂ D (A) and (λn)n ⊂ R satisfying (46), (47) and460

lim
n→∞

λ
j
n ‖(iλn I − A) �n‖H = 0. (105)461

To get a contradiction with (46), we use similar arguments to the ones used in Sect. 3.2. Let462

�n =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

ϕn,
∼
ϕn, ψn,

∼
ψn, wn,

∼
wn, θn

)T

in case (1)

(

ϕn,
∼
ϕn, ψn,

∼
ψn, wn,

∼
wn, θn,

∼
θ n

)T

in case (4).

463
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4.1 Case of system (1) with ρ1b − ρ2k = 0464

The limit (105) with j = 4 implies that465

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ4
n

[

iλnϕn − ∼
ϕn

]

→ 0 in H1
∗ (0, 1) ,

λ4
n

[

iρ1λn
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]

→ 0 in L2 (0, 1) ,

λ4
n

[

iλnψn −
∼
ψn

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ4
n

[

iρ2λn

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]

→ 0 in L2 (0, 1) ,

λ4
n

[

iλnwn − ∼
wn

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ4
n

[

iρ1λn
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]

→ 0 in L2 (0, 1) ,

λ4
n

[

iρ3λnθn − βθnxx + δ
∼
wnx

]

→ 0 in L2 (0, 1) .

(106)466

Estimates on θnx and θn Taking the inner product of λ4
n (i λn I − A) �n with �n in H and using (17),467

we get468

Re
〈

λ4
n (i λn I − A) �n, �n

〉

H
= Re

(

iλ5
n ‖�n‖2

L2(0,1)
+ βλ4

n ‖θnx‖2
L2(0,1)

)

= βλ4
n ‖θnx‖2

L2(0,1)
.469

So (46) and (105) imply that470

λ2
nθnx −→ 0 in L2 (0, 1) . (107)471

Because θn in H1
∗ (0, 1) and thanks to Poincaré’s inequality, we deduce that472

λ2
nθn −→ 0 in L2 (0, 1) . (108)473

Estimates on ϕn , ψn and wn Multiplying (106)1, (106)3 and (106)5 by
1

λ5
n

, and using (46) and (47), we474

obtain (54).475

Estimate on 1
λn

wnxx Multiplying (106)6 by
1

λ5
n

and using (46), (47) and (107), we conclude (55).476

Estimates on λnwnx , λnwn ,
∼
wnx and

∼
wn Taking the inner product of (106)7 with

i

λ3
n

wnx in L2 (0, 1) and477

using (46) and (47), we get478

ρ3

〈

λ2
nθn, wnx

〉

L2(0,1)
− β 〈λnθnxx , iwnx 〉L2(0,1)479

−δ
〈

λn

(

iλnwnx − ∼
wnx

)

, iwnx

〉

L2(0,1)
+ δλ2

n ‖wnx‖2
L2(0,1)

−→ 0,480

then, integrating by parts and using the boundary conditions, we deduce that481

ρ3

〈

λ2
nθn, wnx

〉

L2(0,1)
+ β

〈

λ2
nθnx ,

i

λn

wnxx

〉

L2(0,1)

482

−δ
〈

λn

(

iλnwnx − ∼
wnx

)

, iwnx

〉

L2(0,1)
+ δλ2

n ‖wnx‖2
L2(0,1)

−→ 0. (109)483

Combining (46), (47), (55), (106)5, (107) and (108), we get484

λnwnx −→ 0 in L2 (0, 1) . (110)485
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Moreover, again by multiplying (106)5 by 1
λ4

n
, we find486

∼
wnx → 0 in L2 (0, 1) , (111)487

and, as wn,
∼
wn ∈

∼
H

1

∗ (0, 1) and thanks to Poincaré’s inequality, we have also (59) and (60).488

Estimates on λ2
nwn and λn

∼
wn Multiplying (106)1 and (106)3 by

1

λ4
n

, and using (46) and (47), we have489

(λnϕn)n and (λnψn)n are bounded in L2 (0, 1) . (112)490

Taking the inner product of (106)6 with
i

λ3
n

∼
wn in L2 (0, 1), integrating by parts and using (46), (47) and the491

boundary conditions, we get492

ρ1

∥

∥

∥λn
∼
wn

∥

∥

∥

2

L2(0,1)
+ k0

〈

λn (wnx − lϕn) , i
∼
wnx

〉

L2(0,1)
493

+lk
〈

λn (ϕnx + ψn + lwn) , i
∼
wn

〉

L2(0,1)
+ δ

〈

λnθnx , i
∼
wn

〉

L2(0,1)
→ 0. (113)494

So, using (59), (60), (107), (110), (111) and (112), we deduce that495

λn
∼
wn −→ 0 in L2 (0, 1) , (114)496

and by multiplying (106)5 by
1

λ3
n

and using (47), we find497

λ2
nwn −→ 0 in L2 (0, 1) . (115)498

Estimate on ϕnx Multiplying (106)2 and (106)4 by
1

λ5
n

and using (46) and (47), we get499

(

1

λn

ϕnxx

)

n

and

(

1

λn

ψnxx

)

n

are bounded in L2 (0, 1) . (116)500

On the other hand, taking the inner product of (106)6 with
1

λ4
n

ϕnx in L2 (0, 1), integrating by parts and using501

(46), (47) and the boundary conditions, we get502

iρ1

〈

λn
∼
wn, ϕnx

〉

L2(0,1)
+ 〈lk (ψn + lwn) + δθnx , ϕnx 〉L2(0,1)503

+l(k + k0) ‖ϕnx‖2
L2(0,1)

+ k0

〈

λnwnx ,
1

λn

ϕnxx

〉

L2(0,1)

→ 0. (117)504

Then, using (54), (107), (110), (114) and (116), we deduce that505

ϕnx → 0 in L2 (0, 1) . (118)506

Estimates on λnϕn and
∼
ϕn Taking the inner product of (106)2 with

1

λ4
n

ϕn in L2 (0, 1), using (46) and507

(47), integrating by parts and using the boundary conditions, we obtain508

−ρ1

〈∼
ϕn,

(

iλnϕn − ∼
ϕn

)〉

L2(0,1)
− ρ1

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
509

+k 〈(ϕnx + ψn + lwn) , ϕnx 〉L2(0,1) − lk0 〈(wnx − lϕn) , ϕn〉L2(0,1) → 0,510

then, using (54), (106)1 and (118), we find511

∼
ϕn → 0 in L2 (0, 1) . (119)512
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Moreover, multiplying (106)1 by
1

λ4
n

and using (47) and (119), we get513

λnϕn → 0 in L2 (0, 1) . (120)514

Estimates on ψnx and
∼
ψn and conclusion First, taking the inner product of (106)4 with

1

λ4
n

ψn in L2 (0, 1),515

using (46) and (47), integrating by parts and using the boundary conditions, we obtain516

−ρ2

〈

∼
ψn,

(

iλnψn −
∼
ψn

)〉

L2(0,1)

− ρ2

∥

∥

∥

∥

∼
ψn

∥

∥

∥

∥

2

L2(0,1)

517

+b ‖ψnx‖2
L2(0,1)

+ k 〈(ϕnx + ψn + lwn) , ψn〉L2(0,1) → 0,518

then, using (54) and (106)3, we find519

b ‖ψnx‖2
L2(0,1)

− ρ2

∥

∥

∥

∥

∼
ψn

∥

∥

∥

∥

2

L2(0,1)

→ 0. (121)520

Second, taking the inner product of (106)2 with
1

λ4
n

ψnx , integrating by parts and using the boundary conditions,521

(46) and (47), we obtain522

−k ‖ψnx‖2
L2(0,1)

+ k 〈ϕnx , ψnxx 〉L2(0,1) + iρ1λn

〈∼
ϕn, ψnx

〉

L2(0,1)
523

−l(k + k0) 〈wnx , ψnx 〉L2(0,1) − l2k0 〈ϕnx , ψn〉L2(0,1) → 0 in L2 (0, 1) .524

Exploiting (110) and (118), we get525

−k ‖ψnx‖2
L2(0,1)

+ k 〈ϕnx , ψnxx 〉L2(0,1) + iρ1λn

〈∼
ϕn, ψnx

〉

L2(0,1)
→ 0 in L2 (0, 1) . (122)526

Third, taking the inner product of
k

bλ4
n

ϕnx with (106)4, integrating by parts and using the boundary conditions,527

(46) and (47), we obtain528

−k 〈ϕnx , ψnxx 〉L2(0,1) −
iρ2kλn

b

〈∼
ϕn, ψnx

〉

L2(0,1)
+

k2

b
〈ϕnx , (ϕnx + ψn + lwn)〉L2(0,1)529

+
kρ2

b

〈

ϕn, iλn

(

iλnψnx −
∼
ψnx

)〉

L2(0,1)

−
ikρ2

b

〈

λn

(

iλnϕn − ∼
ϕn

)

, ψnx

〉

L2(0,1)
→ 0 in L2 (0, 1) ,530

so, from (106)1, (106)3 and (118), we find531

−k 〈ϕnx , ψnxx 〉L2(0,1) −
iρ2kλn

b

〈∼
ϕn, ψnx

〉

L2(0,1)
→ 0 in L2 (0, 1) . (123)532

By adding (122) and (123) and using the equality ρ1b − ρ2k = 0, we see that533

ψnx → 0 in L2 (0, 1) . (124)534

Therefore, from (121), we get535

∼
ψn → 0 in L2 (0, 1) . (125)536

Finally, the limits (54), (59), (108), (110), (118), (119), (124) and (125) imply (50), which is a contradiction537

with (46). Consequently, (103) with j = 4 holds.538
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4.2 Case of system (1) with ρ1b − ρ2k �= 0539

The limit (105) with j = 10 implies (106) with λ10
n instead of λ4

n; that is540

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ10
n

[

iλnϕn − ∼
ϕn

]

→ 0 in H1
∗ (0, 1) ,

λ10
n

[

iρ1λn
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]

→ 0 in L2 (0, 1) ,

λ10
n

[

iλnψn −
∼
ψn

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ10
n

[

iρ2λn

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]

→ 0 in L2 (0, 1) ,

λ10
n

[

iλnwn − ∼
wn

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ10
n

[

iρ1λn
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δθnx

]

→ 0 in L2 (0, 1) ,

λ10
n

[

iρ3λnθn − βθnxx + δ
∼
wnx

]

→ 0 in L2 (0, 1) .

(126)541

Similarly to the case ρ1b − ρ2k = 0 (Sect. 4.1), we see that (54), (55), (112), (116) and (118) hold (for (112)542

and (118), we have just to use
1

λ10
n

instead of
1

λ4
n

, and for (116), we use
1

λ11
n

instead of
1

λ5
n

).543

Moreover, the same computations as in Sect. 4.1 (case ρ1b −ρ2k = 0) give (instead of (107), (108), (110),544

(111), (59) and (60))545

λ5
nθnx , λ

5
nθn, |λn|

5
2 wnx , |λn|

3
2

∼
wnx , |λn|

3
2

∼
wn, |λn|

5
2 wn −→ 0 in L2 (0, 1) (127)546

(for (110), we replace
i

λ3
n

wnx by
i

λ6
n

wnx and use (55), and for (111), we use
1

|λn|
17
2

instead of
1

λ4
n

). Now, we547

prove some other limits to get (50).548

Estimate on wnxx Dividing (126)6 by λ10
n and using (46), (47) and (127), we deduce that549

(wnxx )n is uniformly bounded in L2 (0, 1) . (128)550

Estimates on ϕnx , ϕn and
∼
ϕn Taking the inner product of (126)6 with

ϕnx

λ9
n

in L2 (0, 1), integrating by551

parts and using (46), (47) and the boundary conditions, we get552

−ρ1

〈∼
wn, λn

(

iλnϕnx − ∼
ϕnx

)〉

L2(0,1)
+ ρ1

〈

λn
∼
wnx ,

∼
ϕn

〉

L2(0,1)
553

+k0

〈

λ2
nwnx ,

ϕnxx

λn

〉

L2(0,1)

+ l (k + k0) λn ‖ϕnx‖2
L2(0,1)

554

+lk 〈λn (ψn + lwn) , ϕnx 〉L2(0,1) + δ 〈λnθnx , ϕnx 〉L2(0,1) −→ 0,555

hence, using (126)1, (112), (116), (118) and (127), we obtain556

|λn|
1
2 ϕnx −→ 0 in L2 (0, 1) . (129)557

Therefore, according to Poincaré’s inequality, (129) leads to558

|λn|
1
2 ϕn −→ 0 in L2 (0, 1) . (130)559

On the other hand, taking the inner product of (126)2 with
ϕn

λ9
n

in L2 (0, 1), integrating by parts and using (46),560

(47) and the boundary conditions, we get561

−ρ1λn

〈∼
ϕn,

(

iλnϕn − ∼
ϕn

)〉

L2(0,1)
− ρ1λn

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
562

+kλn 〈(ϕnx + ψn + lwn) , ϕnx 〉L2(0,1) − lk0λn 〈(wnx − lϕn) , ϕn〉L2(0,1) −→ 0,563

123

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

“40065_2018_210_ArticleOA” — 2018/6/7 — 15:56 — page 24 — #24

Arab. J. Math.

this implies564

−ρ1

〈∼
ϕn, λn

(

iλnϕn − ∼
ϕn

)〉

L2(0,1)
− ρ1λn

∥

∥

∥

∼
ϕn

∥

∥

∥

2

L2(0,1)
+ kλn ‖ϕnx‖2

L2(0,1)
565

+k 〈(λnψn + lλnwn) , ϕnx 〉L2(0,1) − lk0 〈(λnwnx − lλnϕn) , ϕn〉L2(0,1) −→ 0,566

so, using (126)1, (112), (127) and (129), we deduce that567

|λn|
1
2
∼
ϕn −→ 0 in L2 (0, 1) , (131)568

and from (126)1, we obtain that569

|λn|
3
2 ϕn −→ 0 in L2 (0, 1) . (132)570

Estimates on λnϕnx and λn
∼
ϕn Multiplying (126)2 by

1

|λn|10+ 1
2

and using (47), we get571

iρ1
λn

|λn|
1
2

∼
ϕn − k

ϕnxx

|λn|
1
2

− k
ψnx

|λn|
1
2

− l (k + k0)
wnx

|λn|
1
2

+ l2k0
ϕn

|λn|
1
2

−→ 0 in L2 (0, 1) ,572

then, using (46) and (131), we deduce that573

ϕnxx

|λn|
1
2

−→ 0 in L2 (0, 1) . (133)574

On the other hand, by integrating by parts and using the boundary conditions, we see that575

λn 〈wnxx , iλnϕnx 〉L2(0,1) = λ2
n 〈iwnx , ϕnxx 〉L2(0,1)576

=
〈

λn

(

iλnwnx − ∼
wnx

)

, ϕnxx

〉

L2(0,1)
+ λn

〈∼
wnx , ϕnxx

〉

L2(0,1)
577

=
〈

λ2
n

(

iλnwnx − ∼
wnx

)

,
ϕnxx

λn

〉

L2(0,1)

+
〈

λn |λn |
1
2

∼
wnx ,

ϕnxx

|λn | 1
2

〉

L2(0,1)

,578

then, using (47), (126)5, (127) and (133), we obtain579

λn 〈wnxx , iλnϕnx 〉L2(0,1) −→ 0. (134)580

Furthermore, integrating by parts and using the boundary conditions, we have581

λn

〈

(ϕnx + ψn + lwn)x ,
∼
ϕn

〉

L2(0,1)
= −λn

〈

(ϕnx + ψn + lwn) ,
∼
ϕnx

〉

L2(0,1)
582

= −
1

lk

〈

λ2
n

[

iλnρ1
∼
wn − k0 (wnx − lϕn)x583

+ lk (ϕnx + ψn + lwn) + δθnx

]

,

∼
ϕnx

λn

〉

L2(0,1)

584

−
1

lk

〈(

iλnρ1
∼
wn + δθnx

)

, λn

(

iλnϕnx − ∼
ϕnx

)〉

L2(0,1)
585

+
k0

lk

〈

(wnx − lϕn)x , λn

(

iλnϕnx − ∼
ϕnx

)〉

L2(0,1)
−

λ3
n

lk

〈

iρ1
∼
wnx , iϕn

〉

L2(0,1)
586

+
δ

lk

〈

λ2
nθnx , iϕnx

〉

L2(0,1)
−

k0λn

lk
〈wnxx , iλnϕnx 〉L2(0,1) −

k0λ
2
n

k
i ‖ϕnx‖2

L2(0,1)
,587

then, using (126)1, (126)6, (127), (128), (132) and (134), we find588

λn

〈

(ϕnx + ψn + lwn)x ,
∼
ϕn

〉

L2(0,1)
+

k0

k
i ‖λnϕnx‖2

L2(0,1)
−→ 0. (135)589
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Taking the inner product of (126)2 with

∼
ϕn

λ9
n

in L2 (0, 1) and using (46) and (47s), we get590

ρ1i

∥

∥

∥λn
∼
ϕn

∥

∥

∥

2

L2(0,1)
− kλn

〈

(ϕnx + ψn + lwn)x ,
∼
ϕn

〉

L2(0,1)
− lk0

〈

(λnwnx − lλnϕn) ,
∼
ϕn

〉

L2(0,1)
−→ 0,591

then, using (135), we obtain592

ρ1i

∥

∥

∥λn
∼
ϕn

∥

∥

∥

2

L2(0,1)
+ ik0 ‖λnϕnx‖2

L2(0,1)
− lk0

〈

(λnwnx − lλnϕn) ,
∼
ϕn

〉

L2(0,1)
−→ 0,593

and from (127), (131) and (132), we deduce that594

λn
∼
ϕn −→ 0 in L2 (0, 1) (136)595

and596

λnϕnx −→ 0 in L2 (0, 1) . (137)597

Estimates on ψnx and
∼
ψn and conclusion Taking the inner product of (126)2 with

ψnx

λ10
n

in L2 (0, 1) and598

using (46) and (47), we get599

ρ1

〈

iλn
∼
ϕn, ψnx

〉

L2(0,1)
− k 〈ϕnxx , ψnx 〉L2(0,1) − k ‖ψnx‖2

L2(0,1)
600

601

−l(k + k0) 〈wnx , ψnx 〉L2(0,1) + l2k0 〈ϕn, ψnx 〉L2(0,1) → 0,602

then, integrating by parts and using the boundary conditions, we obtain603

ρ1

〈

iλn
∼
ϕn, ψnx

〉

L2(0,1)
+ k

〈

λnϕnx ,
ψnxx

λn

〉

L2(0,1)

− k ‖ψnx‖2
L2(0,1)

604

−l(k + k0) 〈wnx , ψnx 〉L2(0,1) + l2k0 〈ϕn, ψnx 〉L2(0,1) → 0,605

so, using (54), (116), (127), (136) and (137), we deduce that606

ψnx −→ 0 in L2 (0, 1) . (138)607

Taking the inner product of (126)4 with
ψn

λ10
n

in L2 (0, 1), integrating by parts and using (46), (47) and the608

boundary conditions, we get609

−ρ2

〈

∼
ψn,

(

iλnψn −
∼
ψn

)〉

L2(0,1)

− ρ2

∥

∥

∥

∥

∼
ψn

∥

∥

∥

∥

2

L2(0,1)

+ b ‖ψnx‖2
L2(0,1)

610

+ 〈k (ϕnx + ψn + lwn) , ψn〉L2(0,1) −→ 0,611

hence, using (54), (126)3 and (138), we get612

∼
ψn −→ 0 in L2 (0, 1) . (139)613

A combination of the limits (54), (118), (127), (136), (138) and (139) leads to (50), which is a contradiction614

with (46). Consequently, (103) with j = 10 holds.615
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4.3 Case of system (4) with ρ1b − ρ2k = 0616

The limit (105) with j = 4 implies that617

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ4
n

[

iλnϕn − ∼
ϕn

]

→ 0 in H1
∗ (0, 1) ,

λ4
n

[

iρ1λn
∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn)

]

→ 0 in L2 (0, 1) ,

λ4
n

[

iλnψn −
∼
ψn

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ4
n

[

iρ2λn

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]

→ 0 in L2 (0, 1) ,

λ4
n

[

iλnwn − ∼
wn

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ4
n

[

iρ1λn
∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn) + δ

∼
θ nx

]

→ 0 in L2 (0, 1) ,

λ4
n

[

iλnθn −
∼
θ n

]

→ 0 in
∼

H1
∗ (0, 1) ,

λ4
n

[

iρ3λnθn − β

(

θn + γ
∼
θ n

)

xx

+ δ
∼
wnx

]

→ 0 in L2 (0, 1) .

(140)618

Estimates on θnx , θn ,
∼
θ nx and

∼
θ n and conclusion Taking the inner product of λ4

n (i λn I − A) �n with619

�n in H and using (17), we get620

Re
〈

λ4
n (i λn I − A) �n, �n

〉

H
= Re

(

iλ5
n ‖�n‖2

L2(0,1)
+ γ λ4

n

∥

∥

∥

∥

∼
θ nx

∥

∥

∥

∥

2

L2(0,1)

)

621

= γ λ4
n

∥

∥

∥

∥

∼
θ nx

∥

∥

∥

∥

2

L2(0,1)

.622

So (46) and (105) imply that623

λ2
n

∼
θ nx −→ 0 in L2 (0, 1) . (141)624

Because θn in H1
∗ (0, 1) and thanks to Poincaré’s inequality, we deduce that625

λ2
n

∼
θ n −→ 0 in L2 (0, 1) . (142)626

Multiplying (140)7 by
1

λ2
n

and using (46), (47), (141) and (142), we have627

λ3
nθnx −→ 0 in L2 (0, 1) (143)628

and629

λ3
nθn −→ 0 in L2 (0, 1) , (144)630

so (107) and (108) hold. Consequently, the proof can be ended exactly as in case of system (1) with j = 4631

(Sect. 4.1).632
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4.4 Case of system (4) with ρ1b − ρ2k �= 0633

The limit (105) with j = 10 implies (140) with λ10
n instead of λ4

n . Similar calculations as in the case of system634

(1) with ρ1b − ρ2k �= 0 (Sect. 4.2) give the desired result. We omit the details.635

Hence, the proof of our Theorem 4.1 is completed. ⊓⊔636
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