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Faupin

Introduction:
The nuclear
optical
model

The
abstract
framework
of
dissipative
scattering
theory

Spectral
singularities

Asymptotic
complete-
ness

Applications

1 Introduction: The nuclear optical model

2 The abstract framework of dissipative scattering theory

3 Spectral singularities

4 Asymptotic completeness

5 Applications



Dissipative
quantum
systems:

scattering
theory and

spectral
singularities

Jérémy
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The nuclear optical model
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The nuclear optical model (I)

Quantum system

• Neutron targeted onto a complex nucleus

• Either the neutron is elastically scattered off the nucleus

• Or it is absorbed by the nucleus =⇒ Formation of a compound nucleus

• Concept of a compound nucleus was introduced by Bohr (’36)

Model

• Feshbach, Porter and Weisskopf (’54): nuclear optical model describing both
elastic scattering and absorption

• “Pseudo-Hamiltonian” on L2(R3)

H = −∆ + V (x)− iW (x)

with V and W real-valued, compactly supported, W ≥ 0

• Widely used in Nuclear Physics, refined versions include, e.g., spin-orbit
interactions

• Empirical model
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The nuclear optical model (II)

Interpretation

• −iH generates a strongly continuous semigroup of contractions
{
e−itH

}
t≥0

• Dynamics described by the Schrödinger equation{
i∂tut = Hut
u0 ∈ D(H)

If the neutron is initially in the normalized state u0, after a time t ≥ 0, it is in
the unnormalized state e−itHu0

• Probability that the neutron, initially in the normalized state u0 (supposed to be
orthogonal to bound states), eventually escapes from the nucleus:

pscatt(u0) = lim
t→∞

∥∥e−itHu0

∥∥2

• Probability of absorption:

pabs(u0) = 1− lim
t→∞

∥∥e−itHu0

∥∥2

• If pscatt(u0) > 0 (and u0 is orthogonal to bound states), one expects that there
exists an (unnormalized) scattering state u+ such that ‖u+‖2 = pscatt(u0) and

lim
t→∞

∥∥e−itHu0 − e it∆u+

∥∥ = 0
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The nuclear optical model (III)

Aim

• Explicit expression of H rests on experimental scattering data

• Nuclear optical model generalizes to any quantum system S interacting with
another system S ′ and susceptible of being absorbed by S ′

• Need to develop the full scattering theory of a class of models

References: mathematical scattering theory for dissipative operators in
Hilbert spaces

• Abstract framework: Lax-Phillips [’73], Martin [’75], Davies [’79,’80], Neidhardt
[’85], Exner [’85], Petkov [’89], Kadowaki [’02,’03], Stepin [’04], . . .

• Small perturbations: Kato [’66], Falconi-F-Fröhlich-Schubnel [’17], . . .

• Schrödinger operators: Mochizuki [’68], Simon [’79], Wang-Zhu [’14], . . .
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Abstract model

The model

• H complex Hilbert space

• Pseudo-Hamiltonian

H = H0 + V − iC∗C = HV − iC∗C ,

with H0 ≥ 0, V symmetric, C ∈ L(H) and V , C relatively compact with
respect to H0

• HV is self-adjoint, H is closed and maximal dissipative, with domains

D(H) = D(HV ) = D(H0)

• −iH generates a strongly continuous semigroup of contractions {e−itH}t≥0.

More precisely, −iH generates a group {e−itH}t∈R s.t.∥∥e−itH
∥∥ ≤ 1, t ≥ 0,

∥∥e−itH
∥∥ ≤ e‖C

∗C‖|t|, t ≤ 0

• σess(H) = σess(H0) and σ(H) \ σess(H) consists of an at most countable
number of eigenvalues of finite algebraic multiplicities that can only accumulate
at points of σess(H)
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Figure: Form of the spectrum of H.

Example

Example to keep in mind:

H = L2(R3), H0 = −∆, HV = −∆ + V (x) = H∗V , C = W (x)
1
2
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Spectral subspaces

Space of bound states

Hb(H) = Span
{
u ∈ D(H), ∃λ ∈ R, Hu = λu

}
Generalized eigenstates corresponding to non-real eigenvalues

• For λ ∈ σ(H) \ σess(H), Riesz projection defined by

Πλ =
1

2iπ

∫
γ

(zId− H)−1dz,

where γ is a circle centered at λ, of sufficiently small radius

• Ran(Πλ) spanned by generalized eigenvectors of H associated to λ, u ∈ D(Hk )
s.t. (H − λ)ku = 0

• Space of generalized eigenstates corresponding to non-real eigenvalues:

Hp(H) = Span
{
u ∈ Ran(Πλ), λ ∈ σ(H), Imλ < 0

}
“Dissipative space”

Hd(H) =
{
u ∈ H, lim

t→∞
‖e−itHu‖ = 0

}
⊃ Hp(H)
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The adjoint operator H∗

Properties of H∗

• H∗ = H0 + V + iC∗C

• λ ∈ σ(H∗) if and only if λ̄ ∈ σ(H)

• iH∗ generates the strongly continuous contraction semigroup {e itH∗}t≥0

• Spectral subspaces

Hb(H∗) = Span
{
u ∈ D(H), ∃λ ∈ R, H∗u = λu

}
,

Hp(H∗) = Span
{
u ∈ Ran(Π∗λ), λ ∈ σ(H∗), Imλ > 0

}
,

Hd(H∗) =
{
u ∈ H, lim

t→∞
‖e itH

∗
u‖ = 0

}
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The wave operators

The wave operator W−(H,H0)

• Defined by
W−(H,H0) = s-lim

t→∞
e−itHe itH0

• If it exists, W−(H,H0) is a contraction

• W−(H,H0)H0 = HW−(H,H0)

The wave operator W+(H0,H)

• Defined by
W+(H0,H) = s-lim

t→∞
e itH0e−itHΠb(H)⊥

where Πb(H)⊥ denotes the orthogonal projection onto Hb(H)⊥

• If it exists, W+(H0,H) is a contraction

• H0W+(H0,H) = W+(H0,H)H

• Under some conditions, W+(H0,H) = W+(H∗,H0)∗

• For u ∈ Hb(H)⊥,

u+ = W+(H0,H)u ⇐⇒ lim
t→∞

∥∥e−itHu − e−itH0u+

∥∥ = 0
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The scattering operator and matrices

The scattering operator S(H,H0)

• Defined by

S(H,H0) = W+(H∗,H0)∗W−(H,H0) = W+(H0,H)W−(H,H0)

• If it exists, S(H,H0) is a contraction

• S(H,H0) commutes with H0

The scattering matrices S(λ)

• Defined by the fiber decomposition

S(H,H0) =

∫ ⊕
Λ

S(λ)dλ in H =

∫ ⊕
Λ
H(λ)dλ, Λ = σ(H0)

• If H0 has a purely absolutely continuous spectrum of constant multiplicity, then

H(λ) =M

and S(H,H0) acts in H = L2(Λ;M) as

[S(H,H0)u](λ) = S(λ)u(λ)
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Basic assumptions

(H1) Spectrum of H0

The spectrum of H0 is purely absolutely continuous and has a constant multiplicity
(which may be infinite)

(H2) Spectrum of HV

HV has finitely many eigenvalues counting multiplicity, no embedded eigenvalues,
and σsc(HV ) = ∅

(H3) Wave operators for HV and H0

The wave operators

W±(HV ,H0) = s-lim
t→±∞

e itHV e−itH0 , W±(H0,HV ) = s-lim
t→±∞

e itH0e−itHV Πac(HV )

exist and are asymptotically complete, i.e.,

Ran(W±(HV ,H0)) = Hac(HV ) = Hpp(HV )⊥,

Ran(W±(H0,HV )) = H
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Regularity of C w.r.t. HV

(H4) Relative smoothness of C with respect to HV

There exists a constant cV > 0, such that∫
R

∥∥Ce−itHV Πac(HV )u
∥∥2

dt ≤ c2
V ‖Πac(HV )u‖2,

for all u ∈ H

Remarks

• Estimates of this form considered in [Kato ’66]

• The following estimate is always satisfied∫ ∞
0

∥∥Ce−itHu
∥∥2

dt ≤
1

2
‖u‖2
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Basic results

Existence and properties of the wave operators

Suppose (H1)–(H4). Then

∗ W−(H,H0) and W+(H0,H) exist

∗ W−(H,H0) is an injective contraction and

Ran(W−(H,H0)) =
(
Hb(H∗)⊕Hd(H∗)

)⊥
∗ W+(H0,H) is a contraction with dense range and

Ker(W+(H0,H)) = Hb(H)⊕Hd(H)

∗ S(H,H0) exists and is a contraction
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Definition of asymptotic completeness and
consequences

Definition

• W−(H,H0) is said to be asymptotically complete if

Ran(W−(H,H0)) =
(
Hb(H∗)⊕Hp(H∗)

)⊥
• Main issues: prove that Hd(H∗) = Hp(H∗) and that Ran(W−(H,H0)) is closed

Consequences of asymptotic completeness

∗ Direct sum decomposition

H = Hb(H)⊕Hp(H)⊕
(
Hb(H∗)⊕Hp(H∗)

)⊥
and the restriction of H to (Hb(H∗)⊕Hp(H∗))⊥ is similar to H0

∗ W+(H0,H) : H → H is surjective and

Ker(W+(H0,H)) = Hb(H)⊕Hp(H)

∗ S(H,H0) : H → H is bijective
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Spectral singularities
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Regular spectral point and spectral
singularity

Notation

Recall that
Λ = σ(H0) = σess(H)

and set

R(z) = (H − z)−1, RV (z) = (HV − z)−1, R0(z) = (H0 − z)−1

Definition

λ ∈ Λ̊ is a regular spectral point of H if there exists a compact interval Kλ ⊂ R
whose interior contains λ and such that the limit

CR(µ− i0+)C∗ = lim
ε↓0

CR(µ− iε)C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(H). If λ is not a regular
spectral point of H, we say that λ is a “spectral singularity” of H
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Equivalent possible definitions of a regular
spectral point

Theorem [F., Nicoleau]

Suppose

• (H1)–(H4)

• V is strongly smooth w.r.t. H0 and C is strongly smooth w.r.t. HV

Let λ ∈ Λ̊. The following conditions are equivalent:

∗ λ is a regular spectral point of H

∗ λ is not an accumulation point of eigenvalues of H located in λ− i(0,∞) and
the limit

CR(λ− i0)C∗ := lim
ε↓0

CR(λ− iε)C∗

exists in the norm topology of L(H)

∗ I − iCRV (λ− i0)C∗ is invertible in L(H)

∗ S(λ) is invertible in L(M)

Proposition [F., Nicoleau]

{Spectral singularities of H} = closed set of Lebesgue measure 0
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Properties of the scattering matrices

Theorem [F., Nicoleau]

Under the previous assumptions, for all λ ∈ Λ̊,

∗ S(λ) is a contraction

∗ S(λ)− I is compact

∗ If in addition dimM = +∞, then ‖S(λ)‖ = 1



Dissipative
quantum
systems:

scattering
theory and

spectral
singularities

Jérémy
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Consequences: Properties of the scattering
operator

Theorem [F., Nicoleau]

Under the previous assumptions, if dimM = +∞,

‖S(H,H0)‖ = 1

Suppose in addition that

• Λ \ Λ̊ is finite

• All λ ∈ Λ \ Λ̊ are regular in a suitable sense (if Λ is right-unbounded, we assume
in addition that +∞ is regular).

Then

∗ S(H,H0) is invertible in L(H) ⇐⇒ H has no spectral singularities in Λ̊

∗ If the previous equivalent conditions hold, then

Ran(W−(H,H0)) =
(
Hb(H∗)⊕Hd(H∗)

)⊥
∗ In particular,

H has a spectral singularity =⇒W−(H,H0) is not asymptotically complete
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Spectral singularity of finite order

Definition

We say that λ ∈ Λ̊ is a spectral singularity of H of finite order if λ is a spectral
singularity of H and there exists ν ∈ N∗ and a compact interval Kλ, whose interior
contains λ, such that the limit

lim
ε↓0

(µ− λ)νCR(µ− iε)C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(H)
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Asymptotic completeness
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Further conditions

(H5) Pure point spectrum of H

H has at most finitely many eigenvalues

(H6) Spectral singularities of H

• H has at most finitely many spectral singularities in Λ̊

• Each spectral singularity is of finite order

• If Λ is right-unbounded, +∞ is regular
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Faupin

Introduction:
The nuclear
optical
model

The
abstract
framework
of
dissipative
scattering
theory

Spectral
singularities

Asymptotic
complete-
ness

Applications

Dissipative space

Theorem [F., Fröhlich]

Suppose (H1)–(H6). Then
Hd(H) = Hp(H)

Remarks

• Finding conditions implying this result quoted as open in [Davies ’80]

• For small perturbations, the theorem follows from similarity of H and H0 [Kato
’66], implying that Hd(H) = Hp(H) = {0}

• Interpretation for the nuclear optical model: unless the initial state is a linear
combination of generalized eigenstates corresponding to non-real eigenvalues of
H, the probability that the neutron eventually escapes from the nucleus is
always strictly positive

Idea

Generalization of spectral projections for non self-adjoint operators with spectral
singularities
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Consequence: Asymptotic completeness

Theorem [F., Fröhlich]

Suppose (H1)–(H6). Then

∗ H has no spectral singularities in Λ =⇒ W−(H,H0) is asymptotically complete
i.e.,

Ran(W−(H,H0)) =
(
Hb(H∗)⊕Hp(H∗)

)⊥
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Applications
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Application: the nuclear optical model (I)

Setting

On H = L2(R3),

H0 = −∆, HV = H0 + V (x), H = HV − iW (x)

References

• Spectral and scattering theories for (HV ,H0): Kato [’66], Reed-Simon [’78],
Isozaki-Kitada [’85], Koch-Tataru [’06], Yafaev [’10]

• Relative smoothness/Analysis at threshold: Kato [’66], Jensen-Kato [’79],
Constantin-Saut [’89], Ben Artzi-Klainerman [’92], Jensen-Nenciu [’01],
Fournais-Skibsted [’04], Schlag [’07]

• Mourre’s theory: Mourre [’81], Boutet de Monvel-Georgescu [’96]

• Resonances theory: Sjöstrand [’02], Dyatlov-Zworski [’18]

• Dissipative framework: Simon [’79], Wang [’11,’12]



Dissipative
quantum
systems:

scattering
theory and

spectral
singularities

Jérémy
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Application: the nuclear optical model (II)

Theorem

Let V ,W ∈ L∞(R3;R). Assume that

• V ∈ C2(R3) s.t. for |α| ≤ 2, ∂αx V (x) = O(〈x〉−ρ−|α|) with ρ > 3,

• W (x) ≥ 0, W (x) > 0 on a non-trivial open set, W (x) = O(〈x〉−δ) with δ > 2,

• 0 is neither an eigenvalue nor a resonance of HV

Then,

∗ S(λ) ∈ L(L2(S2)) is invertible⇐⇒ λ is not a spectral singularity of H

∗ S(H,H0) is invertible in L(L2(R3))⇐⇒ H has no spectral singularities in Λ

∗ If the previous equivalent conditions hold, then

Ran(W−(H,H0)) = Hd(H∗)⊥
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Application: the nuclear optical model (III)

Theorem

Let V ,W ∈ L∞(R3;R). Assume that

• V and W are compactly supported,

• W (x) ≥ 0, W (x) > 0 on a non-trivial open set,

• 0 is neither an eigenvalue nor a resonance of HV

Then

∗
Hd(H) = Hp(H)

∗
W−(H,H0) is asymptotically complete ⇐⇒ Ran(W−(H,H0)) = Hp(H∗)⊥

⇐⇒ H has no spectral singularities

∗ If the previous equivalent conditions hold, then

∗ S(H,H0) is invertible in L(L2(R3)),

∗ The restriction of H to Hp(H∗)⊥ is similar to H0

∗ There exist m1 > 0 and m2 > 0 such that, for all u ∈ Hp(H∗)⊥,

m1‖u‖ ≤
∥∥e−itHu

∥∥ ≤ m2‖u‖, t ∈ R
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Application: the nuclear optical model (IV)

Remarks

• Spectral singularity = real resonance

• H has no real eigenvalues

• [Wang ’11]: 0 cannot be a resonance of H

• [Wang ’12]: For any λ > 0, one can construct smooth compactly supported
potentials V and W such that λ is a spectral singularity of H

• Work in progress: prove that “generically”, there is no spectral singularity
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Application: scattering for Lindblad master
equations (I)

References

• Davies [’80]

• Different approach: Alicki [’81], Alicki-Frigerio [’83]

• Falconi-F.-Fröhlich-Schubnel [’16]
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Application: scattering for Lindblad master
equations (II)

Lindbladian and quantum dynamical semigroup

• If one considers a quantum particle interacting with a dynamical target, takes
the trace over the degrees of freedom of the target and studies the reduced
effective evolution of the particle, then, in the kinetic limit, the dynamics of the
particle is given by a quantum dynamical semigroup {e−itL}t≥0 generated by a
Lindbladian L

• On J1(H) (space of trace-class operators), L is given by

L(ρ) = Hρ− ρH∗ + i
∑
j∈N

WjρW
∗
j , H = HV −

i

2

∑
j∈N

W ∗j Wj ,

where, for all j ∈ N, Wj ∈ L(H), and
∑

j∈N W ∗j Wj ∈ L(H)

• H is a dissipative operator on H
• On a suitable domain, L is the generator of a quantum dynamical semigroup
{e−itL}t≥0 (strongly continuous semigroup on J1(H) such that, for all t ≥ 0,

e−itL preserves the trace and is a completely positive operator)

• Free dynamics: group of isometries {e−itL0}t∈R,

L0(ρ) = H0ρ− ρH0
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Application: scattering for Lindblad master
equations (III)

Modified wave operator ([Davies ’80], [Alicki ’81])

• Π⊥pp : H → H : orthogonal projection onto (Hb(H)⊕Hp(H))⊥

• Modified wave operator:

Ω̃+(L0,L) := s-lim
t→+∞

e itL0
(
Π⊥ppe

−itL(·)Π⊥pp
)

Theorem

Suppose that Hypotheses (H1)–(H6) hold and that H has no spectral singularities in

Λ. Then Ω̃+(L0,L) exists on J1(H)

Interpretation

For all ρ ∈ J1(H) with ρ ≥ 0 and tr(ρ) = 1, the number tr(Ω̃+(L0,L)ρ) ∈ [0, 1] is
interpreted as the probability that the particle, initially in the state ρ, eventually
escapes from the target
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