
Asymptotic
complete-

ness in
dissipative
scattering

theory

Jérémy
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The nuclear optical model (I)

Quantum system

• Neutron targeted onto a complex nucleus

• Either the neutron is elastically scattered off the nucleus

• Or it is absorbed by the nucleus =⇒ Formation of a compound nucleus

• Concept of a compound nucleus was introduced by Bohr (’36)

Model

• Feshbach, Porter and Weisskopf (’54) : nuclear optical model describing both
elastic scattering and absorption

• “Pseudo-Hamiltonian” on L2(R3)

H = −∆ + V (x)− iW (x)

with V and W real-valued, compactly supported, W ≥ 0

• Empirical model, widely used in Nuclear Physics

• Refined versions include, e.g., spin-orbit interactions
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The nuclear optical model (II)

Interpretation

• −iH generates a strongly continuous semigroup of contractions
{
e−itH

}
t≥0

• Dynamics described by the Schrödinger equation{
i∂tut = Hut
u0 ∈ D(H)

If the neutron is initially in the normalized state u0, after a time t ≥ 0, it is in
the unnormalized state e−itHu0

• Probability that the neutron, initially in the normalized state u0, eventually
escapes from the nucleus :

pscat = lim
t→∞

∥∥e−itHu0

∥∥2

• Probability of absorption :

pabs = 1− lim
t→∞

∥∥e−itHu0

∥∥2

• If pscat > 0, one expects that there exists an (unnormalized) scattering state u+

such that ‖u+‖2 = pscat and

lim
t→∞

∥∥e−itHu0 − e it∆u+

∥∥ = 0
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The nuclear optical model (III)

Aim

• Explicit expression of H rests on experimental scattering data

• Need to develop the full scattering theory of a class of models

References : mathematical scattering theory for dissipative operators in
Hilbert spaces

• Abstract framework : Lax-Phillips [’73], Martin [’75], Davies [’79,’80], Neidhardt
[’85], Exner [’85], Petkov [’89], Kadowaki [’02,’03], Stepin [’04], . . .

• Small perturbations : Kato [’66], Falconi-F-Fröhlich-Schubnel [’17], . . .

• Schrödinger operators : Mochizuki [’68], Simon [’79], Wang-Zhu [’14], . . .
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Abstract model

The model

• H complex Hilbert space

• Pseudo-Hamiltonian

H = H0 + V − iC∗C = HV − iC∗C ,

with H0 ≥ 0, V symmetric, C ∈ L(H) and V , C∗C relatively compact with
respect to H0

• HV is self-adjoint, H is closed and maximal dissipative, with domains

D(H) = D(HV ) = D(H0)

• −iH generates a strongly continuous semigroup of contractions {e−itH}t≥0.

More precisely, −iH generates a group {e−itH}t∈R s.t.∥∥e−itH
∥∥ ≤ 1, t ≥ 0,

∥∥e−itH
∥∥ ≤ e‖C

∗C‖|t|, t ≤ 0

• σess(H) = σess(H0) and σ(H) \ σess(H) consists of an at most countable
number of eigenvalues of finite algebraic multiplicities that can only accumulate
at points of σess(H)
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Spectral subspaces

Space of bound states

Hb(H) = Span
{
u ∈ D(H), ∃λ ∈ R, Hu = λu

}
Generalized eigenstates corresponding to non-real eigenvalues

• For λ ∈ σ(H) \ σess(H), Riesz projection defined by

Πλ =
1

2iπ

∫
γ

(zId− H)−1dz,

where γ is a circle centered at λ, of sufficiently small radius

• Ran(Πλ) spanned by generalized eigenvectors of H associated to λ, u ∈ D(Hk )
s.t. (H − λ)ku = 0

• Space of generalized eigenstates corresponding to non-real eigenvalues :

Hp(H) = Span
{
u ∈ Ran(Πλ), λ ∈ σ(H), Imλ < 0

}
“Dissipative space”

Hd(H) =
{
u ∈ H, lim

t→∞
‖e−itHu‖ = 0

}



Asymptotic
complete-

ness in
dissipative
scattering

theory

Jérémy
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The adjoint operator H∗

Properties of H∗

• H∗ = H0 + V + iC∗C

• λ ∈ σ(H∗) if and only if λ̄ ∈ σ(H)

• iH∗ generates the strongly continuous contraction semigroup {e itH∗}t≥0

• Spectral subspaces

Hb(H∗) = Span
{
u ∈ D(H), ∃λ ∈ R, H∗u = λu

}
,

Hp(H∗) = Span
{
u ∈ Ran(Π∗λ), λ ∈ σ(H∗), Imλ > 0

}
,

Hd(H∗) =
{
u ∈ H, lim

t→∞
‖e itH

∗
u‖ = 0

}
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Hypotheses (I)

(H1) : Spectra of H0 and HV

σ(H0) is purely absolutely continuous, σsc(HV ) = ∅, HV has at most finitely many
eigenvalues of finite multiplicity, and each eigenvalue of HV is strictly negative

(H2) : Eigenvalues of H

The number of non-real eigenvalues of H is finite

(H3) : Wave operators for HV and H0

The wave operators

W±(HV ,H0) = s-lim
t→±∞

e itHV e−itH0 , W±(H0,HV ) = s-lim
t→±∞

e itH0e−itHV Πac(HV )

exist and are asymptotically complete, i.e.,

Ran(W±(HV ,H0)) = Hac(HV ) = Hpp(HV )⊥,

Ran(W±(H0,HV )) = H
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Hypotheses (II)

(H4) : Relative smoothness of C with respect to HV

There exists a constant cV > 0, such that∫
R

∥∥Ce−itHV Πac(HV )u
∥∥2

dt ≤ c2
V ‖Πac(HV )u‖2,

for all u ∈ H

Remarks

• Estimates of this form considered in [Kato ’66]

• (H4) is equivalent to∫
R

(∥∥C(HV − (λ+ i0+)
)−1

u
∥∥2

+
∥∥C(HV − (λ− i0+)

)−1
u
∥∥2
)
dλ ≤ 2πc2

V ‖u‖
2,

for all u ∈ Ran(Πac(HV ))

• The following estimate is satisfied∫ ∞
0

∥∥Ce−itHu
∥∥2

dt ≤ ‖u‖2
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Hypotheses (III)

Definition : spectral singularity

λ ∈ [0,∞) is a regular spectral point of H if there exists a compact interval Kλ ⊂ R
whose interior contains λ and such that the limit

C
(
H − (µ− i0+)

)−1
C∗ = lim

ε↓0
C
(
H − (µ− iε)

)−1
C∗

exists uniformly in µ ∈ Kλ in the norm topology of L(H). If λ is not a regular
spectral point of H, we say that λ is a “spectral singularity” of H

(H5) : Spectral singularities of H

H has a finite number of spectral singularities {λ1, . . . , λn} ⊂ [0,∞) and, for each
spectral singularity λj ∈ [0,∞), there exist an integer νj > 0 and a compact interval
Kλj

, whose interior contains λj , such that the limit

lim
ε↓0

(µ− λj )νjC
(
H − (µ− iε)

)−1
C∗

exists uniformly in µ ∈ Kλj
in the norm topology of L(H). Moreover there exists

m > 0 such that
sup

µ≥m, ε>0

∥∥C(H − (µ− iε)
)−1

C∗
∥∥ <∞
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Dissipative space

Theorem

Suppose that Hypotheses (H1)–(H5) hold. Then

Hd(H) = Hp(H)

Remarks

• Finding conditions implying this result quoted as open in [Davies ’80]

• For small perturbations, the theorem follows from similarity of H and H0 [Kato
’66], implying that Hd(H) = Hp(H) = {0}

• Interpretation for the nuclear optical model : unless the initial state is a linear
combination of generalized eigenstates corresponding to non-real eigenvalues of
H, the probability that the neutron eventually escapes from the nucleus is
always strictly positive
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Uniform boundedness of the solution to
the Schrödinger equation

Theorem

Suppose that Hypotheses (H1)–(H5) hold and that H has no spectral singularities in
[0,∞). Then there exist m1 > 0 and m2 > 0 such that, for all u ∈ Hp(H∗)⊥,

m1‖u‖ ≤
∥∥e−itHu

∥∥ ≤ m2‖u‖ , t ∈ R

Remarks

• The second inequality shows that the solution to the Schrödinger equation{
i∂tut = Hut
u0 ∈ Hp(H∗)⊥

cannot blow up, as t → −∞
• For Schrödinger operators with a complex potential, related result in [Goldberg

’10]



Asymptotic
complete-

ness in
dissipative
scattering

theory

Jérémy
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Asymptotic completeness (I)

Definition : wave operator

W−(H,H0) = s-lim
t→∞

e−itHe itH0

Theorem

Suppose that Hypotheses (H1)–(H5) hold and that H has no spectral singularities in
[0,∞). Then W−(H,H0) exists and is asymptotically complete, in the sense that

Ran(W−(H,H0)) =
(
Hb(H∗)⊕Hp(H∗)

)⊥
.

In particular,

H = Hb(H)⊕Hp(H)⊕
(
Hb(H∗)⊕Hp(H∗)

)⊥
and the restriction of H to (Hb(H∗)⊕Hp(H∗))⊥ is similar to H0

Remarks

• Existence of W−(H,H0) follows from standard arguments

• Not difficult to verify that Ran(W−(H,H0)) =
(
Hb(H∗)⊕Hd(H∗)

)⊥
• Main issues : Hd(H∗) = Hp(H∗) and Ran(W−(H,H0)) is closed
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Asymptotic completeness (II)

Theorem

Suppose that Hypotheses (H1)–(H5) hold. Assume that there exist an interval
J ⊂ [0,∞) and a vector u ∈ H such that

lim
ε↓0

∫
J

∥∥C(H − (λ− iε))−1C∗u
∥∥2

dλ =∞ (∗)

Then W−(H,H0) is not asymptotically complete :

Ran(W−(H,H0)) (
(
Hb(H∗)⊕Hp(H∗))⊥

Remark

For Schrödinger operators with bounded, compactly supported V and C , a spectral
singularity corresponds to a real resonance. In particular condition (∗) is always
satisfied for any such singularity
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The wave operator W+(H0,H) and the
scattering operator

Definition

• Let Πb(H) denotes the orthogonal projection onto Hb(H) and

W+(H0,H) = s-lim
t→∞

e itH0e−itHΠb(H)⊥ = W+(H∗,H0)∗

• Scattering operator : S(H,H0) = W+(H0,H)W−(H,H0)

Theorem

Suppose that Hypotheses (H1)–(H5) hold and that H has no spectral singularities in
[0,∞). Then W+(H0,H) : H → H is surjective and

Ker(W+(H0,H)) = Hb(H)⊕Hp(H).

Moreover, S(H,H0) : H → H is bijective

Remarks

• [Davies ’80] : Closedness of Ran(W−(H,H0)) implies bijectivity of S(H,H0)

• Interpretation for the nuclear optical model : for any initial state u0 6= 0
orthogonal to all the generalized eigenstates of H, there exists a scattering state
u+ 6= 0 s.t. ‖e−itHu0 − e−itH0u+‖ → 0, as t →∞
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Application : the nuclear optical model (I)

Theorem

Let H = −∆ + V (x)− iW (x) on L2(R3) with W ≥ 0, W (x) > 0 on some non-trivial
open set and V ,W ∈ L∞c (R3;R). Suppose that 0 is neither an eigenvalue nor a
resonance of HV = −∆ + V (x). Then

Hd(H) = Hp(H).

Moreover, the wave operator W−(H,H0) = s-limt→∞ e−itHe itH0 , with H0 = −∆, is
asymptotically complete in the sense that

Ran(W−(H,H0)) = Hp(H∗)⊥

if and only if H does not have real resonances. In this case, the restriction of H to
Hp(H∗)⊥ is similar to H0 and there exist m1 > 0 and m2 > 0 such that, for all

u ∈ Hp(H∗)⊥,

m1‖u‖ ≤
∥∥e−itHu

∥∥ ≤ m2‖u‖, t ∈ R
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Application : the nuclear optical model (II)

Verification of the abstract assumptions

• Spectra of H0 and HV : well-known

• H has a finite number of eigenvalues : well-known for compactly supported
potentials, see e.g. [Frank,Laptev,Safronov ’16] for more general conditions

• Wave operators for H0 and HV : well-known

• Relative smoothness of C w.r.t. HV : [Ben-Artzi,Klainerman ’92] for all ε > 0∫
R

∥∥(1 + x2)−
1+ε

2 e−itHV Πac(HV )u
∥∥2

dt ≤ c2
ε‖Πac(HV )u‖2

• Spectral singularities : resonances theory

Remarks

• H does not have real eigenvalues

• [Wang ’11] : 0 cannot be a resonance of H = −∆ + V (x)− iW (x)

• [Wang ’12] : For any λ > 0, one can construct smooth compactly supported
potentials V and W such that λ is a spectral singularity of H
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Application : scattering for Lindblad master
equations (I)

Lindbladian and quantum dynamical semigroup

• If one considers a quantum particle interacting with a dynamical target, takes
the trace over the degrees of freedom of the target and studies the reduced
effective evolution of the particle, then, in the kinetic limit, the dynamics of the
particle is given by a quantum dynamical semigroup {e−itL}t≥0 generated by a
Lindbladian L

• On J1(H) (space of trace-class operators), L is given by

L(ρ) = Hρ− ρH∗ + i
∑
j∈N

WjρW
∗
j , H = HV −

i

2

∑
j∈N

W ∗j Wj ,

where, for all j ∈ N, Wj ∈ L(H), and
∑

j∈N W ∗j Wj ∈ L(H)

• H is a dissipative operator on H
• On a suitable domain, L is the generator of a quantum dynamical semigroup
{e−itL}t≥0 (strongly continuous semigroup on J1(H) such that, for all t ≥ 0,

e−itL preserves the trace and is a completely positive operator)

• Free dynamics : group of isometries {e−itL0}t∈R,

L0(ρ) = H0ρ− ρH0
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Application : scattering for Lindblad master
equations (II)

Modified wave operator ([Davies ’80], [Alicki ’81])

• Π⊥pp : H → H : orthogonal projection onto (Hb(H)⊕Hp(H))⊥

• Modified wave operator :

Ω̃+(L0,L) := s-lim
t→+∞

e itL0
(
Π⊥ppe

−itL(·)Π⊥pp
)

Theorem

Suppose that Hypotheses (H1)–(H5) hold and that H has no spectral singularities in

[0,∞). Then Ω̃+(L0,L) exists on J1(H)

Interpretation

For all ρ ∈ J1(H) with ρ ≥ 0 and tr(ρ) = 1, the number tr(Ω̃+(L0,L)ρ) ∈ [0, 1] is
interpreted as the probability that the particle, initially in the state ρ, eventually
escapes from the target
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Step 1 : the range of the wave operator
and the inverse semigroup

Lemma

Suppose that Hypotheses (H1), (H3), (H4) hold. Then

Ran(W−(H,H0)) = S(H) ∩Hb(H)⊥

where

S(H) =
{
u ∈ H, sup

t≥0

∥∥e itHu∥∥ <∞}

Elements of the proof

• [Davies ’80] : Hb(H)⊥ = Hac(H), where Hac(H) is the closure of

M(H) =
{
u ∈ H, ∃cu > 0, ∀v ∈ H,

∫ ∞
0

∣∣〈e−itHu, v〉
∣∣2dt ≤ cu‖v‖2

}
• Easy to verify that Ran(W−(H,H0)) ⊂ S(H) ∩Hb(H)⊥

• Converse inclusion : uses that for all u ∈ S(H) and v ∈ Hac(H),〈
v , e itHu

〉
→ 0, t →∞
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Step 2 : spectral projections

Spectral projections for non-self-adjoint operators

• Let I ⊂ [0,∞) is a closed interval and

EH(I ) = w-lim
ε↓0

1

2iπ

∫
I

(
(H − (λ+ iε))−1 − (H − (λ− iε))−1

)
dλ

Then EH(I ) is a well-defined projection if H does not have spectral singularities
in I , EH(I )EH(J) = EH(I ∩ J)

• Considered in [Dunford ’52, ’58], [J. Schwartz ’60]

• Studied in relation with stationary scattering theory : [Mochizuki ’67,’68],
[Goldstein ’70,’71], [Huige ’71]

Lemma

Suppose that Hypotheses (H1), (H3) and (H4) hold. Let I ⊂ [0,∞) be a closed
interval containing no spectral singularities of H. Then

Ran(EH(I )) ⊂ Ran(W−(H,H0))

Element of the proof

Use that Ran(W−(H,H0)) = S(H) ∩Hb(H)⊥
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Step 3 : proof that Hd(H) = Hp(H) (I)

Use of spectral projections

• Ran(EH∗ (I )) ⊂ Ran(W+(H∗,H0))

• Taking orthogonal complements

Ran(W+(H∗,H0))⊥ ⊂
⋂

I⊂[0,∞)

Ran(EH∗ (I ))⊥,

i.e.
Ker(W+(H0,H)) ⊂

⋂
I⊂[0,∞)

Ker(EH(I )),

where the intersection runs over all closed intervals I ⊂ [0,∞) with the property
that I does not contain any spectral singularities of H

• Since
Hb(H)⊕Hd(H) = Ker(W+(H0,H)),

it suffices to prove that

K :=
⋂

I⊂[0,∞)

Ker(EH(I )) ⊂ Hb(H)⊕Hp(H)
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Step 3 : proof that Hd(H) = Hp(H) (II)

Spectral mapping theorem and Riesz projections

• Let R = (H − i)−1. Then

Id = Πpp(R) +
1

2iπ

∮
Γε

(µ− R)−1dµ, (∗∗)

where Πpp(R) = sum of Riesz projections corresponding to isolated eigenvalues
of R, and Γε = Γ1,ε ∪ Γ2,ε ∪ Γ3,ε ∪ Γ4,ε

• Ran(Πpp(R)) = Hb(H)⊕Hp(H)

• If H does not have spectral singularities, taking the weak limit ε ↓ 0 gives

Id = Πpp(R) + w-lim
ε↓0

1

2iπ

∫ ∞
0

{(
H − (λ+ iε)

)−1 −
(
H − (λ− iε)

)−1}
dλ

and therefore

K =
⋂

I⊂[0,∞)

Ker(EH(I )) = Ker(EH([0,∞))) ⊂ Hb(H)⊕Hp(H)
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Γ3,εΓ1,ε

Γ2,ε

Γ4,ε

Figure: The spectrum of R = (H − i)−1 and the contour Γε.
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Step 3 : proof that Hd(H) = Hp(H) (III)

Regularizing the spectral singularities

• If {λ1, . . . λn} ⊂ [0,∞) are the spectral singularities of H, let µj = (λj − i)−1,

j = 1, . . . , n, be the corresponding “spectral singularities” of R = (H − i)−1

• Composing (∗∗) by R4
∏n

j=1(R − µj )νj gives

R4
n∏

j=1

(R − µj )νj =R4
n∏

j=1

(R − µj )νj Πpp(R)

−
1

2iπ

∮
Γε

µ4
n∏

j=1

(µ− µj )νj (R − µ)−1dµ

• Taking the weak limit ε ↓ 0 gives the modified spectral decomposition formula

n∏
j=1

(R − µj )νj =
n∏

j=1

(R − µj )νj Πpp(R) + w-lim
ε↓0

1

2iπ

∫ ∞
0

n∏
j=1

(
(λ− i)−1 − µj

)νj
{(

H − (λ+ iε)
)−1 −

(
H − (λ− iε)

)−1}
dλ

• Using in particular Lebesgue’s dominated convergence theorem

K =
⋂

I⊂[0,∞)

Ker(EH(I )) ⊂ Hb(H)⊕Hp(H)
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Step 4 : asymptotic completeness

Parseval’s theorem

For all ε > 0 and u ∈ (Hb(H∗)⊕Hp(H∗))⊥,∫ ∞
0

e−sε
∥∥Ce isHu∥∥2

ds =
1

2π

∫
R

∥∥C(H − (λ− iε))−1u
∥∥2

dλ (∗ ∗ ∗)

Asymptotic completeness

• Recall Ran(W−(H,H0)) = S(H) ∩Hb(H)⊥

• Observe that

S(H) =
{
u ∈ H,

∫ ∞
0

∥∥Ce isHu∥∥2
ds <∞

}
• If H does not have spectral singularities, uniform bound in ε > 0 in the right

side of (∗ ∗ ∗) implies that u ∈ S(H) and hence to Ran(W−(H,H0))

• If H does have a spectral singularity, one constructs a vector

u ∈ (Hb(H∗)⊕Hp(H∗))⊥

such that the limit as ε→ 0 in the right side of (∗ ∗ ∗) is infinite and therefore
u /∈ Ran(W−(H,H0))
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