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Abstract. We consider a Timoshenko system coupled with heat equations modelled by Cattaneo’s law.

The coupling is through the transverse displacement. Both ends of the beam are dynamic. One end
of the beam is fixed to a base in a translational motion and a tip mass is attached to the other end.

We design a feedback control acting at the base. It is shown that this feedback control is a reasonable
one and is capable of stabilizing the system. We prove an exponential and a polynomial stability result

using the multiplier technique. To this end, we introduce new functionals to form a suitable Lyapunov

functional.
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1. Introduction

A translational beam modelled as a Timoshenko system and coupled through its transversal displace-
ment component to two equations resulting from Cattaneo’s law, is considered here. One of its end is
attached to a base which moves in a translational manner and a dynamic mass is attached to the free
end of the beam. The dynamic of the structure is modelled by five differential equations: two partial
differential equations accounting for the Timoshenko system, two partial differential equations obeying
Cattaneo’s law and one ordinary differential equation modelling the dynamic of the base. More precisely,
we consider the model

(1.1)


m(Stt(t) + ϕtt(0, t)) +

∫ L
0
ρ1 (Stt(t) + ϕtt(x, t)) dx+mE (Stt(t) + ϕtt(L, t)) = τ (t) ,

ρ1 (Stt(t) + ϕtt(x, t))− k (ϕx(x, t) + ψ(x, t))x + γθx(x, t) = 0,
ρ2ψtt(x, t)− bψxx(x, t) + k (ϕx(x, t) + ψ(x, t)) = 0,
ρ3θt(x, t) + σ̄x(x, t) + γϕtx(x, t) = 0,
τ0σ̄t(x, t) + δσ̄(x, t) + κθx(x, t) = 0

with the boundary conditions

(1.2)

 ϕx(0, t) = ψ(0, t) = θ(0, t) = θ(L, t) = 0,
k(ϕx(L, t) + ψ(L, t)) +mE (Stt(t) + ϕtt(L, t)) + µ (St(t) + ϕt(L, t)) = 0,
bψx(L, t) + Jψtt(L, t) = 0

and the initial data

(1.3)

{
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), S(0) = S0, St(0) = S1,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), σ̄(x, 0) = σ̄0(x), θ(x, 0) = θ0(x),

where x ∈ [0, L] and t ∈ R+. Here, ϕ is the beam transversal displacement, ψ is the rotation angle of
the beam, θ is the temperature difference, σ̄ is the heat flux vector obeying Cattaneo’s law, S is the base
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motion displacement while τ is the feedback control. All the parameters are positive constants; ρ1 is the
mass density, ρ2 is the moment mass inertia, m is the mass of the translational base, mE is the mass with
rotational J attached at the free end of the beam, b is the rigidity coefficient (of the cross-section), k is
the shear modulus of elasticity and L is the length of the beam. The constants ρ3, γ, τ0, δ and κ relate to
hypotheses in thermoelasticity.

This model can derived easily from the simple Timoshenko beam model in translational movement by
taking into account the second sound. That is we modify the Hamilton principle

δ

∫ tb

ta

[Ek(t)− Ep(t) +W (t)] dt = 0,

where Ek(t) is the kinetic energy

Ek(t) :=
m

2
S2
t (t) +

ρ1
2
‖St + ϕt‖2 +

ρ2
2
‖ψt‖2 +mE [St(t) + ϕt(L, t)]

2
+
J

2
ψ2
t (L, t),

(‖·‖ here is the L2-norm) and Ep(t) is the potential energy

Ep(t) :=
b

2
‖ψx‖2 + k ‖ϕx + ψ‖2 ,

whilst the virtual work done by τ̃(t) (external force) is

δW (t) := τ̃(t)δS(t).

In view of the second sound, we add the expressions ‖θ‖2 and ‖σ̄‖2 . Then, applying the variational
operator, integrating (by parts) and using the appropriate boundary conditions, we end up with (1.1).

The system, as it is, is unstable. It is the purpose of this work to find a control to be applied to the
base so as to stabilize the system preferably in an exponential fashion.

We are not aware of similar works for beams in translational movement. Without translation, however,
that is with S ≡ 0, we can find a fairly big number of papers, let alone Timoshenko systems with other
types of damping (frictional, structural, viscoelastic) different from the thermal one [1], [7], [8], [10], [13],
[14], [15], [16], [20] and [21]. Many valuable papers may be found in the references of the papers cited
here.

For this particular type of thermoelasticity with second sound, we may distinguish two types of cou-
pling: the coupling through the rotation angle of the beam and the coupling through the beam transversal
displacement. The first case has been studied in [9] where it has been shown that the system is not ex-
ponentially stable when τ0 6= 0 (that is when we are not in the classical thermoelastic case). In [18],
the authors came up with a ’stability number’ and proved exponential stability in case this number is
zero. In case this number is not zero, there is no exponential stability but rather polynomial stability.
To stabilize the system, some authors have added extra damping (frictional or viscoelastic) like in the
paper [13].

We are interested in the second case S 6= 0. A closely related work to ours is in [2] where the authors
discussed the stability of the system without extra damping. However, they considered homogeneous
Dirichlet boundary conditions for the rotation angle of the beam and temperature difference whereas
the boundary conditions of the transversal displacement is of Neumann type, but again with S ≡ 0 and
without end mass.

In the present paper the situation is even more delicate. Indeed, we have a beam in translational
movement. In fact, both endpoints are dynamic. Mathematically, the type of boundary conditions at L
in (1.2) are not easy to deal with. In addition to, searching for an appropriate reasonable control to be
implemented at the base, one needs to handle the arising boundary terms. To this end, we have been
forced to come up with certain suitable functionals. These functionals are added to the classical energy
functional, in addition to some standard ones, with the aim to obtain an appropriate equivalent one to
work with. As a matter of fact, a common practice is to make a transformation so as to have zero means.
This allows us to use the Poincaré’s inequality (in case it cannot be applied to the original state) and also
to get rid of some boundary terms. In fact, our functionals are chosen, partly, to lead to this situation.
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The interest to beams subject to translational movement was motivated by works of engineers; see for
instance [6], [11], [22] and others. In particular, based on the analysis in [6], the present second and third
authors have initiated a series of papers on this important subject [3], [4], [5] and [12].

In the next section we transform the problem into a simpler one, determine a feedback control τ (see
(2.10) below), the energy, compute its derivative and show that the system is dissipative and well posed.
Several functionals are introduced in Section 3. Moreover, we prove an exponential stability in case a
’stability number’ (defined in (3.11)) is equal to zero. A polynomial stability result is proved in Section
4 in case this number is not zero. We end our paper by giving some general remarks in the last section.

2. Control, energy and well-posedness

In this section we first transform our problem into a simpler one. Then, we define the energy of the
system and suggest a reasonable feedback control. It is then proved that the energy is decaying (but
without an explicit rate at this stage).

We start by defining the total deflection of the beam as follows:

(2.1) χ(x, t) = S(t) + ϕ(x, t).

By combining the second equation in (1.1) and the boundary conditions (1.2)1, we get∫ L

0

ρ1 (Stt(t) + ϕtt(x, t)) dx− k (ϕx(L, t) + ψ(L, t)) = 0,

so, using the boundary conditions (1.2)2, we find∫ L

0

ρ1 (Stt(t) + ϕtt(x, t)) dx+mE (Stt(t) + ϕtt(L, t)) = −µ (St(t) + ϕt(L, t)) .

Then, with this new function χ defined in (2.1), the problem (1.1)-(1.3) is equivalent to

(2.2)


mχtt(0, t)− µχt(L, t) = τ (t) ,
ρ1χtt(x, t)− k (χx(x, t) + ψ(x, t))x + γθx(x, t) = 0,
ρ2ψtt(x, t)− bψxx(x, t) + k (χx(x, t) + ψ(x, t)) = 0,
ρ3θt(x, t) + σ̄x(x, t) + γχtx(x, t) = 0,
τ0σ̄t(x, t) + δσ̄(x, t) + κθx(x, t) = 0

with the boundary conditions

(2.3)

 χx(0, t) = ψ(0, t) = θ(0, t) = θ(L, t) = 0,
k(χx(L, t) + ψ(L, t)) +mEχtt(L, t) + µχt(L, t) = 0,
bψx(L, t) + Jψtt(L, t) = 0

and the initial data

(2.4)

{
χ(x, 0) = S0 + ϕ0(x) =: χ0(x), χt(x, 0) = S1 + ϕ1(x) =: χ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), σ̄(x, 0) = σ̄0(x), θ(x, 0) = θ0(x).

Before we move to the energy, its derivative and the control, we make another transformation. This will
allow the use of Poincaré’s inequality and also allows us to deal with certain boundary terms. Observe
that, from the last equation in (2.2) and the boundary conditions (2.3), we have

d

dt

∫ L

0

σ̄(x, t)dx = − δ

τ0

∫ L

0

σ̄(x, t)dx,

and therefore, by integrating and using the initial data (2.4),

(2.5)

∫ L

0

σ̄(x, t)dx = e−
δt
τ0

∫ L

0

σ̄0(x)dx.

Putting

(2.6) σ(x, t) = σ̄(x, t)− 1

L
e−

δt
τ0

∫ L

0

σ̄0(x)dx,
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we see that (2.5) and (2.6) lead to

(2.7)

∫ L

0

σ(x, t)dx = 0.

Profiting from the above property (2.7), the Poincaré’s inequality is applicable to σ. In addition, it may
be easily verified that (χ, ψ, θ, σ) satisfies the system

(2.8)


mχtt(0, t)− µχt(L, t) = τ (t) ,
ρ1χtt(x, t)− k (χx(x, t) + ψ(x, t))x + γθx(x, t) = 0,
ρ2ψtt(x, t)− bψxx(x, t) + k (χx(x, t) + ψ(x, t)) = 0,
ρ3θt(x, t) + σx(x, t) + γχtx(x, t) = 0,
τ0σt(x, t) + δσ(x, t) + κθx(x, t) = 0

with the boundary conditions (2.3) and the initial data

(2.9)

{
χ(x, 0) = χ0(x), χt(x, 0) = χ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

σ(x, 0) = σ̄0(x)− 1
L

∫ L
0
σ̄0(x)dx =: σ0(x), θ(x, 0) = θ0(x).

We suggest the feedback control force

(2.10) τ(t) = −Kχt(0, t)− µχt(L, t)− χ(0, t),

where K is a positive ’control gain’. This kind of feedback control is dictated by the calculations in
this method. In particular, it is needed for the dissipativity of the energy and in the derivation of the
differential inequalities satisfied by V1(t) and V2(t) (defined in Sections 3 and 4, respectively).

The problem (2.8) with the initial data (2.9) and the control (2.10) can be written in the form

(2.11)

{
Ψt = BΨ,
Ψ(t = 0) = Ψ0,

for Ψ := (χ,w, ψ, z, θ, σ, ξ, η, y)
T

and Ψ0 := (χ0, χ1, ψ0, ψ1, θ0, σ0, χ1(0, ·), ψ1(L, ·), χ1(L, ·))T with w = χt,
z = ψt, ξ = χt(0, ·), η = ψt(L, ·), y = χt(L, ·) and

(2.12) BΨ =



w
1
ρ1

[k (χx + ψ)x − γθx]

z
1
ρ2

[bψxx − k (χx + ψ)]

− 1
ρ3

(σx + γwx)

− 1
τ0

(δσ + κθx)

− 1
m (Kξ + χ(0, ·))
− b
Jψx(L, ·)

− 1
mE

[k(χx(L, ·) + ψ(L, ·)) + µy]


.

Taking into consideration (2.7) and the Dirichlet boundary conditions in (2.3), we introduce the spaces

L2
∗(0, L) :=

{
f ∈ L2(0, L) :

∫ L

0

f(x)dx = 0

}
,

H1
∗ (0, L) := H1(0, L) ∩ L2

∗(0, L), V0(0, L) :=
{
f ∈ H1(0, L) : f(0) = 0

}
and

H := H1(0, L)× L2(0, L)× V0(0, L)× L2(0, L)× L2(0, L)× L2
∗(0, L)× R3.

The Neumann boundary conditions in (2.3) are considered in the definition of the domain of B given by

D(B) :=
{

Ψ ∈ H : χ ∈ H2
∗ (0, L), ψ ∈ H2(0, L) ∩ V0(0, L), w ∈ H1(0, L), z ∈ V0(0, L),

θ ∈ H1
0 (0, L), σ ∈ H1

∗ (0, L), ξ = w(0, ·), η = z(L), y = w(L)
}
,

where

H2
∗ (0, L) :=

{
f ∈ H2(0, L) : fx(0) = 0

}
.
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Then (2.11) is a convenient formulation of (2.3), (2.8) and (2.9). The space H is a Hilbert space, where
for

Ψ = (χ,w, ψ, z, θ, σ, ξ, η, y)
T

and Ψ̃ =
(
χ̃, w̃, ψ̃, z̃, θ̃, σ̃, ξ̃, η̃, ỹ

)T
,

the inner product of H is given by

〈Ψ, Ψ̃〉H = k〈χx + ψ, χ̃x + ψ̃〉+ b〈ψx, ψ̃x〉+ ρ3〈θ, θ̃〉+
τ0
κ
〈σ, σ̃〉

+ρ1〈w, w̃〉+ ρ2〈z, z̃〉+mξξ̃ + Jηη̃ +mEyỹ + χ(0)χ̃(0).(2.13)

Here, 〈·, ·〉 is the standard inner product of L2(0, L). The associated energy to (2.3), (2.8) and (2.9) is
given by

(2.14) E1(t) :=
1

2
‖Ψ‖2H;

that is (we denote by ‖ · ‖2 the classical norm of L2(0, L))

E1(t) =
1

2

[
k ‖χx + ψ‖22 + b ‖ψx‖22 + ρ3 ‖θ‖22 +

τ0
κ
‖σ‖22 + ρ1 ‖χt‖22 + ρ2 ‖ψt‖22

]
+

1

2

[
mχ2

t (0, t) + Jψ2
t (L, t) +mEχ

2
t (L, t) + χ2(0, t)

]
.(2.15)

We see that, if ‖Ψ‖H = 0, then

(2.16) χ(0) = χt(L) = ψt(L) = χt(0) = ψt = χt = σ = θ = ψx = χx + ψ = 0,

which implies that χx = −ψ and ψ is a constant function with respect to x. According to the homogeneous
Dirichlet boundary conditions in (2.3), we deduce that ψ = 0 and χ is a constant function with respect to
x. But from (2.16) we have χ(0) = 0, so χ = 0. Consequently, Ψ = 0. This implies that (2.13) generates
a norm on H, and then H endowed with (2.13) is a Hilbert space.

Now, multiplying the second equation in (2.8) by χt(x, t) and integrating over [0, L], we find after
using the boundary conditions (2.3)

(2.17)
d

dt

[ρ1
2
‖χt‖22 +

mE

2
χ2
t (L, t)

]
+ k〈χxt, χx + ψ〉+ γ〈θx, χt〉+ µχ2

t (L, t) = 0.

Next, we multiply the third equation in (2.8) by ψt(x, t) and integrate over [0, L], we get

d

dt

[
ρ2
2
‖ψt‖22 +

b

2
‖ψx‖22

]
− bψt (L, t)ψx (L, t) + k〈ψt, χx + ψ〉 = 0

or, using the boundary conditions (2.3),

d

dt

[
ρ2
2
‖ψt‖22 +

b

2
‖ψx‖22

]
+ Jψtt(L, t)ψt (L, t) + k〈ψt, χx + ψ〉 = 0.

This identity may be rewritten as

(2.18)
d

dt

[
ρ2
2
‖ψt‖22 +

b

2
‖ψx‖22 +

J

2
ψ2
t (L, t)

]
+ k〈ψt, χx + ψ〉 = 0.

Continuing in the same way (multiply the fourth equation in (2.8) by θ(x, t)), we obtain

d

dt

[ρ3
2
‖θ‖22

]
+ 〈σx, θ〉+ γ〈χtx, θ〉 = 0,

so, by integrating by parts and using the boundary conditions (2.3), we find

(2.19)
d

dt

[ρ3
2
‖θ‖22

]
= 〈σ, θx〉+ γ〈χt, θx〉.

The last equation in (2.8) (multiplied by σ(x, t)) gives

(2.20)
d

dt

[ τ0
2κ
‖σ‖22

]
= − δ

κ
‖σ‖22 − 〈σ, θx〉.

Finally, multiplying the first equation in (2.8) by χt(0, t) and using (2.10) leads to

(2.21)
d

dt

[
m

2
χ2
t (0, t) +

1

2
χ2(0, t)

]
= −Kχ2

t (0, t).
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By virtue of the relations (2.15)-(2.21), we obtain

(2.22) E′1(t) = −Kχ2
t (0, t)− µχ2

t (L, t)−
δ

κ
‖σ‖22 .

Theorem 1. Assuming the initial data Ψ0 ∈ H, there exists a unique mild (weak) solution of (2.11)
satisfying

(2.23) Ψ ∈ C
(
R+,H

)
.

In case Ψ0 ∈ D(B), the solution is classical; that is,

(2.24) Ψ ∈ C
(
R+, D(B)

)
∩ C1

(
R+,H

)
.

Proof. The well-posedness may be derived easily in a standard way (see also [19]). We give here a
brief sketch of the proof. First, (2.11), (2.14) and (2.22) lead to

(2.25) 〈BΨ,Ψ〉H = −
[
Kχ2

t (0, t) + µχ2
t (L, t) +

δ

κ
‖σ‖22

]
≤ 0,

for any Ψ ∈ D(B), hence B is a dissipative operator.

Second, we show that I − B is surjective, where I denotes the identity operator. Let

F = (f1, · · · , f9) ∈ H.

We claim that there exists Ψ ∈ D (B) satisfying

(2.26) (I − B)Ψ = F.

Using the definition (2.12) of B, the first, third and last three equations in (2.26) are equivalent to

(2.27)


w = χ− f1,
z = ψ − f3,
ξ = 1

K+m (mf7 − χ(0)),

η = f8 − b
Jψx(L),

y = mE
mE+µf9 −

k
mE+µ (χx(L) + ψ(L)).

Consequently, if χ ∈ H2
∗ (0, L) and ψ ∈ H2(0, L) ∩ V0(0, L), then w, z, ξ, η and y exist and

(w, z) ∈ H1(0, L)× V0(0, L).

Moreover, ξ = w(0), η = z(L) and y = w(L) if

(2.28)


χ(0) = 1

K+m+1 [(K +m)f1(0) +mf7] := g1,

ψ(L) + b
Jψx(L) = f3(L) + f8 := g2,

k
mE+µ (χx(L) + ψ(L)) + χ(L) = f1(L) + mE

mE+µf9 := g3.

On the other hand, if σ ∈ H1
∗ (0, L), then the function

(2.29) θ(x) =
1

k

∫ x

0

[τ0f6(s)− (τ0 + δ)σ(s)] ds

satisfies the sixth equation in (2.26) with θ ∈ H1
0 (0, L). We put

χ̂ = χ− g1 and σ̂(x) =

∫ x

0

σ(s)ds.

Observe that, if χ̂ ∈ H2
∗ (0, L) ∩ V0(0, L), then χ ∈ H2

∗ (0, L) and χ(0) = g1 (notice that g1 is a constant).
Moreover, using (2.29) and the first relation in (2.27), we remark that the fifth equation in (2.26) holds
with σ = σ̂x ∈ H1

∗ (0, L) if χ ∈ H2
∗ (0, L) and the equation

(2.30)
ρ3(τ0 + δ)

k
σ̂ − σ̂xx = γ(χx − f1x)− ρ3f5 +

ρ3τ0
k

∫ x

0

f6(s)ds
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has a solution σ̂ ∈ H2(0, L) ∩ H1
0 (0, L). According to (2.27), (2.28), (2.29) and (2.30), we see that the

second, fourth and fifth equations in (2.26) can be reduced to

(2.31)


ρ1χ̂− k (χ̂x + ψ)x −

γ(τ0+δ)
k σ̂x = ρ1(f1 + f2 − g1)− γτ0

k f6 := h1,

ρ2ψ − bψxx + k (χ̂x + ψ) = ρ2(f3 + f4) := h2,

ρ3(τ0+δ)
2

k2 σ̂ − τ0+δ
k σ̂xx − γ(τ0+δ)

k χ̂x = τ0+δ
k

[
−γf1x − ρ3f5 + ρ3τ0

k

∫ x
0
f6(s)ds

]
:= h3.

Then, (2.26) has a solution Ψ ∈ D (B) if (2.31) has a solution

(2.32) (χ̂, ψ, σ̂) ∈ (H2(0, L) ∩ V0(0, L))× (H2(0, L) ∩ V0(0, L))× (H2(0, L) ∩H1
0 (0, L))

satisfying

(2.33)


χ̂x(0) = 0,
ψ(L) + b

Jψx(L) = g2,
k

mE+µ (χ̂x(L) + ψ(L)) + χ̂(L) = g3 − g1.

To this end, we consider the variational formulation of (2.31) in

H̄ := V0(0, L)× V0(0, L)×H1
0 (0, L).

By multiplying the equations in (2.31) by the test functions χ̃ ∈ V0(0, L), ψ̃ ∈ V0(0, L) and σ̃ ∈ H1
0 (0, L),

respectively, integrating by parts, using (2.33) and adding the obtained formulas, we get

(2.34) a((χ̂, ψ, σ̂), (χ̃, ψ̃, σ̃)) = l(χ̃, ψ̃, σ̃), ∀(χ̃, ψ̃, σ̃) ∈ H̄,

where

a((χ̂, ψ, σ̂), (χ̃, ψ̃, σ̃)) = k〈χ̂x + ψ, χ̃x + ψ̃〉+ b〈ψx, ψ̃x〉+
τ0 + δ

k
〈σ̂x, σ̃x〉+ ρ1〈χ̂, χ̃〉

+ρ2〈ψ, ψ̃〉+
ρ3(τ0 + δ)2

k2
〈σ̂, σ̃〉+

γ(τ0 + δ)

k
(〈χ̂, σ̃x〉

−〈σ̂x, χ̃〉) + (mE + µ)χ̂(L)χ̃(L) + Jψ(L)ψ̃(L)

and

l(χ̃, ψ̃, σ̃) = 〈h1, χ̃〉+ 〈h2, ψ̃〉+ 〈h3, σ̃〉+ (mE + µ)(g3 − g1)χ̃(L) + Jg2ψ̃(L).

It is easy to see that a is a bilinear, continuous and coercive form on H̄ × H̄. Moreover, because
h1, h2, h3 ∈ L2(0, L) and g1, g2 and g3 are constants, l is a linear and continuous form on H̄. Then,
Lax-Milgram theorem implies that (2.34) admits a unique solution (χ̂, ψ, σ̂) ∈ H̄, and hence, by classical
regularity arguments, we deduce that (χ̂, ψ, σ̂) solves (2.31) and satisfies (2.32) and (2.33). This proves
that (2.26) has a solution Ψ ∈ D (B).

Finally, the linear operator B is maximal monotone, and then it generates a linear C0-semigroup of
contractions on H and D(B) is dense in H. So, Theorem 1 holds thanks to Hille-Yosida theorem.

3. Exponential stability

In this section, we start by considering classical solutions, so the introduced functionals are well
differentiable and all the computations are justified. Our stability result (3.30) can then be extended
to mild solutions by density and continuity arguments, since the constants α and β in (3.30) depend
continuously on ‖Ψ0‖H.

Here, we introduce functionals Uj , j = 1, · · · , 8, to be added (with certain weights) to the energy E1

in order to obtain a new Lyapunov functional (equivalent to the energy; see (3.28) below) leading to an
exponential stability.

Let ω be the solution of

−ωxx = ψx, ωx (0) = ω (L) = 0.

This function ω can be explicitly given in term of ψ by

(3.1) ω(x, t) = −
∫ x

0

ψ(λ, t)dλ+

∫ L

0

ψ(λ, t)dλ.
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Lemma 1. The derivative of the following functional:

U1(t) :=

∫ L

0

(ρ1χtω + ρ2ψtψ) dx+ Jψt(L, t)ψ(L, t)

along solutions of (2.3), (2.8) and (2.9) satisfies, for any ε1, ε3 > 0,

(3.2) U ′1(t) ≤
(
γCp
4ε3
− b
)
‖ψx‖22 +

(
ρ1Cp
4ε1

+ ρ2

)
‖ψt‖22 + Jψ2

t (L, t) + γε3 ‖θ‖22 + ρ1ε1 ‖χt‖22 ,

where Cp is a positive constant depending only on L and Poincaré’s constant.

Proof. From the definition (3.1) of ω, we have −ωx = ψ. Then, differentiating the first term in U1(t)
and using the boundary conditions at x = 0 on χ and ψ, and at x = L on ω, we find

ρ1
d

dt

∫ L

0

χtωdx = ρ1

∫ L

0

(χttω + χtωt) dx

=

∫ L

0

[k (χx + ψ)x − γθx]ωdx+ ρ1

∫ L

0

χtωtdx

= −k
∫ L

0

(χx + ψ)ωxdx− γ
∫ L

0

θxωdx+ ρ1

∫ L

0

χtωtdx

= k

∫ L

0

(χx + ψ)ψdx+ γ

∫ L

0

θωxdx+ ρ1

∫ L

0

χtωtdx

= k

∫ L

0

(χx + ψ)ψdx− γ
∫ L

0

θψdx+ ρ1

∫ L

0

χtωtdx.

The derivative of the second term of U1(t) is equal to

ρ2
d

dt

∫ L

0

ψtψdx = ρ2

∫ L

0

(
ψttψ + ψ2

t

)
dx

= ρ2 ‖ψt‖22 + b

∫ L

0

ψxxψdx− k
∫ L

0

(χx + ψ)ψdx

= ρ2 ‖ψt‖22 + b [ψxψ]
L
0 − b ‖ψx‖

2
2 − k

∫ L

0

(χx + ψ)ψdx

= ρ2 ‖ψt‖22 − Jψtt(L, t)ψ(L, t)− b ‖ψx‖22 − k
∫ L

0

(χx + ψ)ψdx.

Therefore

(3.3) U ′1(t) = −b ‖ψx‖22 + ρ2 ‖ψt‖22 + Jψ2
t (L, t)− γ

∫ L

0

θψdx+ ρ1

∫ L

0

χtωtdx.

Using Young’s and Hölder’s inequalities, we deduce from (3.1) that

‖ωt‖22 =

∫ L

0

(
−
∫ x

0

ψt(λ, t)dλ+

∫ L

0

ψt(λ, t)dλ

)2

dx

≤ 2

∫ L

0

(∫ x

0

ψt(λ, t)dλ

)2

dx+ 2

∫ L

0

(∫ L

0

ψt(λ, t)dλ

)2

dx

≤ 2

∫ L

0

(∫ x

0

1dλ

)(∫ x

0

ψ2
t (λ, t)dλ

)
dx+ 2

∫ L

0

(∫ L

0

1dλ

)(∫ L

0

ψ2
t (λ, t)dλ

)
dx

≤ 4L2

∫ L

0

ψ2
t (λ, t)dλ,

then

(3.4) ‖ωt‖22 ≤ 4L2 ‖ψt‖22 .
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Therefore, using Young’s inequality and (3.4), for ε1, ε3 > 0, we get

(3.5) ρ1

∫ L

0

χtωtdx ≤ ρ1ε1 ‖χt‖22 +
ρ1L

2

ε1
‖ψt‖22 ,

and thanks to Young’s and Poincaré’s inequalities, we have (C0 is Poincaré’s constant)

(3.6) −γ
∫ L

0

θψdx ≤ γε3 ‖θ‖22 +
γC0

4ε3
‖ψx‖22 .

Summing up (3.3)-(3.6), it appears that, for Cp = max{4L2, C0},

U ′1(t) ≤ −b ‖ψx‖22 + ρ2 ‖ψt‖22 + Jψ2
t (L, t) + γε3 ‖θ‖22 +

γCp
4ε3
‖ψx‖22 + ρ1

(
ε1 ‖χt‖22 +

Cp
4ε1
‖ψt‖22

)
≤

(
γCp
4ε3
− b
)
‖ψx‖22 +

(
ρ1Cp
4ε1

+ ρ2

)
‖ψt‖22 + Jψ2

t (L, t) + γε3 ‖θ‖22 + ρ1ε1 ‖χt‖22

which is exactly what we announced in (3.2).

Let g(x) be a C1-function satisfying g(0) = −g(L) = 2 such as g(x) = − 4
Lx+ 2.

Lemma 2. For the functional

U2(t) := ρ2

∫ L

0

ψtψxg(x)dx,

we have, for any ε2 > 0,

(3.7) U ′2(t) ≤ −ρ2ψ2
t (L, t)− bψ2

x(L, t)− bψ2
x(0, t) +

(
2b

L
+ 2kε2

)
‖ψx‖22 +

k

2ε2
‖χx + ψ‖22 +

2ρ2
L
‖ψt‖22 .

Proof. Again, a differentiation followed by integration by parts yields

U ′2(t) = ρ2

∫ L

0

ψtψxtg(x)dx+ ρ2

∫ L

0

ψttψxg(x)dx

= ρ2

∫ L

0

dψ2
t

2dx
g(x)dx+ b

∫ L

0

dψ2
x

2dx
g(x)dx− k

∫ L

0

(χx + ψ)ψxg(x)dx

=
ρ2
2

[
ψ2
t g(x)

]L
0
− ρ2

2

∫ L

0

ψ2
t g
′(x)dx+

b

2

[
ψ2
xg(x)

]L
0
− b

2

∫ L

0

ψ2
xg
′(x)dx− k

∫ L

0

(χx + ψ)ψxg(x)dx,

and therefore, for any ε2 > 0,

U ′2(t) ≤ −ρ2ψ2
t (L, t) +

2ρ2
L
‖ψt‖22 − bψ

2
x(L, t)− bψ2

x(0, t) +
2b

L
‖ψx‖22 + 2kε2 ‖ψx‖22 +

k

2ε2
‖χx + ψ‖22

≤ −ρ2ψ2
t (L, t)− bψ2

x(L, t)− bψ2
x(0, t) +

(
2b

L
+ 2kε2

)
‖ψx‖22 +

k

2ε2
‖χx + ψ‖22 +

2ρ2
L
‖ψt‖22 .

The proof of (3.7) is complete.

Lemma 3. Differentiating the functional

U3 (t) := −ρ1
∫ L

0

(χx + ψ)

∫ x

0

χt(y, t)dydx

and estimating give, for any ε0, ε5, ε6 > 0,

U ′3(t) ≤ (γε6 − k) ‖χx + ψ‖22 +

(
ρ1 +

ρ1L

4
ε5

)
‖χt‖22 +

ρ1
ε5
‖ψt‖22

+
γ

4ε6
‖θ‖22 + Lρ1ε0 ‖χt‖22 +

ρ1
4ε0

χ2
t (L).(3.8)
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Proof. Clearly

U ′3(t) = −ρ1
∫ L

0

(χx + ψ)t

∫ x

0

χt(y, t)dydx− ρ1
∫ L

0

(χx + ψ)

∫ x

0

χtt(y, t)dydx

= −ρ1
∫ L

0

χxt

∫ x

0

χt(y, t)dydx− ρ1
∫ L

0

ψt

∫ x

0

χt(y, t)dydx

−
∫ L

0

(χx + ψ)

∫ x

0

k (χx + ψ)x (y, t)dydx+ γ

∫ L

0

(χx + ψ)

∫ x

0

θx(y, t)dydx

= ρ1 ‖χt‖22 − ρ1
∫ L

0

ψt

∫ x

0

χt(y, t)dydx− k ‖χx + ψ‖22 + γ

∫ L

0

(χx + ψ) θdx− ρ1χt(L)

∫ L

0

χt(y, t)dy.

Evaluating terms there, we may write, for any ε5, ε6 > 0,

U ′3(t) = −k ‖χx + ψ‖22 + ρ1 ‖χt‖22 − ρ1
∫ L

0

ψt

∫ x

0

χt(y, t)dydx+ γ

∫ L

0

(χx + ψ) θdx− ρ1χt(L)

∫ L

0

χt(y, t)dy

≤ −k ‖χx + ψ‖22 + ρ1 ‖χt‖22 +
ρ1
ε5
‖ψt‖22 +

ρ1L
2

4
ε5 ‖χt‖22 + γε6 ‖χx + ψ‖22

+
γ

4ε6
‖θ‖22 + Lρ1ε20 ‖χt‖22 +

ρ1
4ε20

χ2
t (L)

≤ (γε6 − k) ‖χx + ψ‖22 +

(
ρ1 +

ρ1L

4
ε5

)
‖χt‖22 +

ρ1
ε5
‖ψt‖22 +

γ

4ε6
‖θ‖22 + Lρ1ε0 ‖χt‖22 +

ρ1
4ε0

χ2
t (L).

This finishes the proof of (3.8).

Lemma 4. For the functional

U4 (t) := τ0ρ3

∫ L

0

θ (x, t)

(∫ x

0

σ (y, t) dy

)
dx,

it holds that, for any ε0 > 0,

(3.9) U ′4(t) ≤

(
τ0 +

(δρ3L)
2

+ (γτ0)
2

4ε0

)
‖σ‖22 + ε0 ‖χt‖22 + (ε0 − κρ3) ‖θ‖22 .

Proof. In virtue of the last two equations in (2.8), we have

U ′4(t) = τ0ρ3

∫ L

0

θt

(∫ x

0

σ (y, t) dy

)
dx+ τ0ρ3

∫ L

0

θ

(∫ x

0

σt (y, t) dy

)
dx

= −τ0
∫ L

0

(σx + γχtx)

(∫ x

0

σ (y, t) dy

)
dx− ρ3

∫ L

0

θ

(∫ x

0

(δσ + κθx) (y, t) dy

)
dx

= −τ0
∫ L

0

σx

(∫ x

0

σ (y, t) dy

)
dx− γτ0

∫ L

0

χtx

(∫ x

0

σ (y, t) dy

)
dx

−δρ3
∫ L

0

θ

(∫ x

0

σ (y, t) dy

)
dx− κρ3

∫ L

0

θ

(∫ x

0

θx (y, t) dy

)
dx.

Then, integrating by parts, we entail

U ′4(t) = −τ0
[
σ

(∫ x

0

σ (y, t) dy

)]L
0

+ τ0 ‖σ‖22 − γτ0
[
χt

(∫ x

0

σ (y, t) dy

)]L
0

+γτ0

∫ L

0

χtσdx− δρ3
∫ L

0

θ

(∫ x

0

σ (y, t) dy

)
dx− κρ3 ‖θ‖22

= τ0 ‖σ‖22 + γτ0

∫ L

0

χtσdx− δρ3
∫ L

0

θ

(∫ x

0

σ (y, t) dy

)
dx− κρ3 ‖θ‖22 .(3.10)

After, estimating the second and third terms in (3.10), we get

U ′4(t) ≤ τ0 ‖σ‖22 + ε0 ‖χt‖22 +
(γτ0)

2

4ε0
‖σ‖22 + ε0 ‖θ‖22 +

(δρ3)
2

4ε0
L2 ‖σ‖22 − κρ3 ‖θ‖

2
2
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or

U ′4(t) ≤

(
τ0 +

(δρ3L)
2

+ (γτ0)
2

4ε0

)
‖σ‖22 + ε0 ‖χt‖22 + (ε0 − κρ3) ‖θ‖22 .

The proof of (3.9) is complete.

We introduce the number

(3.11) D :=
γb

k
− 1

γ

(
κρ2
τ0
− bρ3

)(
1− bρ1

kρ2

)
.

Lemma 5. If D =0, the functional

U5 (t) := −ρ2
∫ L

0

ψt (χx + ψ) dx−bρ1
k

∫ L

0

χtψxdx+
ρ2ρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θψtdx+
ρ2
γ

(
1− bρ1

kρ2

)∫ L

0

σψxdx

verifies, for any ε0, ε4, ε9 > 0,

U ′5(t) ≤ k

(
1 +

ρ23A

4

)
‖χx + ψ‖22 − ρ2 ‖ψt‖

2
2 + bε4ψ

2
x (L, t) +

b

ε4
(χx + ψ)

2
(L, t) +

bρ1
kε0

χ2
t (L, t)

+
1

4

(
bρ1ε0
k

+
Aρ2
ε9

)
ψ2
t (L, t) +Aρ2ε9σ

2(L, t) + kA ‖θ‖22 + ε0
Aδρ2
τ0
‖ψx‖22 +

Aδρ2
4ε0τ0

‖σ‖22 ,(3.12)

where A := 1
γ

∣∣∣ bρ1kρ2
− 1
∣∣∣.

Proof. First, we differentiate each term in U5 (t) separately with respect to time, take into account
the equations in (2.8) and integrate by parts, we get

−ρ2
d

dt

∫ L

0

ψt (χx + ψ) dx = −ρ2
∫ L

0

ψtt (χx + ψ) dx− ρ2
∫ L

0

ψt (χx + ψ)t dx(3.13)

= −
∫ L

0

(χx + ψ) [bψxx − k (χx + ψ)] dx− ρ2
∫ L

0

ψt (χxt + ψt) dx

= −bψx(L, t) (χx + ψ) (L, t) + b

∫ L

0

(χx + ψ)x ψxdx

+k ‖χx + ψ‖22 − ρ2
∫ L

0

ψtχxtdx− ρ2 ‖ψt‖22 ,(3.14)

−bρ1
k

d

dt

∫ L

0

χtψxdx = −bρ1
k

∫ L

0

χttψxdx−
bρ1
k

∫ L

0

χtψxtdx

= − b
k

∫ L

0

ψx [k (χx + ψ)x − γθx] dx− bρ1
k

∫ L

0

χtψxtdx

= −b
∫ L

0

ψx (χx + ψ)x dx+
γb

k

∫ L

0

ψxθxdx−
bρ1
k

∫ L

0

χtψxtdx,(3.15)

ρ2ρ3
γ

(
bρ1
kρ2
− 1

)
d

dt

∫ L

0

θψtdx =
ρ2ρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θtψtdx+
ρ2ρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θψttdx

= −ρ2
γ

(
bρ1
kρ2
− 1

)∫ L

0

ψt (σx + γχtx) dx

+
ρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θ [bψxx − k (χx + ψ)] dx

= −ρ2
γ

(
bρ1
kρ2
− 1

)∫ L

0

ψtσxdx− ρ2
(
bρ1
kρ2
− 1

)∫ L

0

ψtχtxdx

−bρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θxψxdx−
kρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θ (χx + ψ) dx(3.16)
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and

ρ2
γ

(
1− bρ1

kρ2

)
d

dt

∫ L

0

σψxdx =
ρ2
γ

(
1− bρ1

kρ2

)∫ L

0

σtψxdx+
ρ2
γ

(
1− bρ1

kρ2

)∫ L

0

σψxtdx

= − ρ2
τ0γ

(
1− bρ1

kρ2

)∫ L

0

ψx (δσ + κθx) dx+
ρ2
γ

(
1− bρ1

kρ2

)∫ L

0

σψxtdx

= −δρ2
τ0γ

(
1− bρ1

kρ2

)∫ L

0

ψxσdx−
κρ2
τ0γ

(
1− bρ1

kρ2

)∫ L

0

ψxθxdx

+
ρ2
γ

(
1− bρ1

kρ2

)
σ(L, t)ψt(L, t)−

ρ2
γ

(
1− bρ1

kρ2

)∫ L

0

σxψtdx.(3.17)

Next, we sum up the previous expressions (3.14)-(3.17), we find

U ′5(t) = −bψx(L, t) (χx + ψ) (L, t) + b

∫ L

0

(χx + ψ)x ψxdx+ k ‖χx + ψ‖22 − ρ2
∫ L

0

ψtχxtdx

−ρ2 ‖ψt‖22 − b
∫ L

0

ψx (χx + ψ)x dx+
γb

k

∫ L

0

ψxθxdx−
bρ1
k
χt(L, t)ψt(L, t) +

bρ1
k

∫ L

0

χtxψtdx

−ρ2
γ

(
bρ1
kρ2
− 1

)∫ L

0

ψtσxdx− ρ2
(
bρ1
kρ2
− 1

)∫ L

0

ψtχtxdx−
bρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θxψxdx

−kρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θ (χx + ψ) dx+
δρ2
τ0γ

(
bρ1
kρ2
− 1

)∫ L

0

ψxσdx+
κρ2
τ0γ

(
bρ1
kρ2
− 1

)∫ L

0

ψxθxdx

−ρ2
γ

(
bρ1
kρ2
− 1

)
σ(L, t)ψt(L, t) +

ρ2
γ

(
bρ1
kρ2
− 1

)∫ L

0

σxψtdx.

This simplifies to

U ′5(t) = k ‖χx + ψ‖22 − ρ2 ‖ψt‖
2
2 − bψx(L, t) (χx + ψ) (L, t)− bρ1

k
χt(L, t)ψt(L, t)

−ρ2
γ

(
bρ1
kρ2
− 1

)
σ(L, t)ψt(L, t)−

kρ3
γ

(
bρ1
kρ2
− 1

)∫ L

0

θ (χx + ψ) dx

+
δρ2
τ0γ

(
bρ1
kρ2
− 1

)∫ L

0

ψxσdx+

[
γb

k
− 1

γ

(
κρ2
τ0
− bρ3

)(
1− bρ1

kρ2

)]∫ L

0

θxψxdx.(3.18)

We can estimate terms in the right side of (3.18) as follows, using Young’s inequality, for any ε0, ε4, ε9 > 0:

(3.19)
δρ2
γτ0

(
bρ1
kρ2
− 1

)∫ L

0

ψxσdx ≤
Aδρ2
τ0

(
ε0 ‖ψx‖22 +

1

4ε0
‖σ‖22

)
,

(3.20) −kρ3
1

γ

(
bρ1
kρ2
− 1

)∫ L

0

θ (χx + ψ) dx ≤ kA
(
‖θ‖22 +

ρ23
4
‖χx + ψ‖22

)
,

(3.21) −bψx(L, t) (χx + ψ) (L, t) ≤ b
(
ε4ψ

2
x (L, t) +

1

ε4
(χx + ψ)

2
(L, t)

)
,

(3.22) −bρ1
k
χt(L, t)ψt(L, t) ≤

bρ1
k

(
1

ε0
χ2
t (L, t) +

ε0
4
ψ2
t (L, t)

)
and

(3.23) −ρ2
1

γ

(
bρ1
kρ2
− 1

)
σ(L, t)ψt(L, t) ≤ Aρ2

(
ε9σ

2(L, t) +
1

4ε9
ψ2
t (L, t)

)
.
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Gathering (3.19)-(3.23) and using the fact that D = 0, we infer from (3.18), that

U ′5(t) ≤ k ‖χx + ψ‖22 − ρ2 ‖ψt‖
2
2 + b

(
ε4ψ

2
x (L, t) +

1

ε4
(χx + ψ)

2
(L, t)

)
+
bρ1
k

(
ε9χ

2
t (L, t) +

1

4ε9
ψ2
t (L, t)

)
+Aρ2

(
ε9σ

2(L, t) +
1

4ε9
ψ2
t (L, t)

)
+kA

(
‖θ‖22 +

ρ23
4
‖χx + ψ‖22

)
+
Aδρ2
τ0

(
ε0 ‖ψx‖22 +

1

4ε0
‖σ‖22

)
or

U ′5(t) ≤ k

(
1 +

ρ23A

4

)
‖χx + ψ‖22 − ρ2 ‖ψt‖

2
2 + bε4ψ

2
x (L, t) +

b

ε4
(χx + ψ)

2
(L, t) +

bρ1
k
ε9χ

2
t (L, t)

+
1

4

(
bρ1
ε9k

+
Aρ2
ε9

)
ψ2
t (L, t) +Aρ2ε9σ

2(L, t) + kA ‖θ‖22 + ε0
Aδρ2
τ0
‖ψx‖22 +

Aδρ2
4ε0τ0

‖σ‖22 .

This finishes the proof of (3.12).

Lemma 6. The rate of change of

U6(t) := mχt(0, t)χ(0, t)

satisfies, for any ε0 > 0,

(3.24) U ′6(t) ≤
(
m+

K2

4ε0

)
χ2
t (0, t) + (ε0 − 1)χ2(0, t).

Proof. Indeed, from the first equation in (2.8), it holds that

U ′6(t) = mχ2
t (0, t) +mχtt(0, t)χ(0, t) = mχ2

t (0, t) + (τ (t) + µχt(L, t))χ(0, t).

Then, by our suggested control,

U ′6(t) = mχ2
t (0, t) + [−Kχt(0, t)− χ(0, t)]χ(0, t)

= mχ2
t (0, t)−Kχt(0, t)χ(0, t)− χ2(0, t)

≤ mχ2
t (0, t)− χ2(0, t) + ε0χ

2(0, t) +
K2

4ε0
χ2
t (0, t)

≤
(
m+

K2

4ε0

)
χ2
t (0, t) + (ε0 − 1)χ2(0, t).

The proof of (3.24) is complete.

Lemma 7. The functional

U7(t) := ρ1

∫ L

0

χt (χx + ψ) g(x)dx− γτ0
κ

∫ L

0

σ (χx + ψ) g(x)dx− τ0ρ3
κ

∫ L

0

σθg(x)dx,

where g(x) = − 4
Lx+ 2, fulfills, for any ε0, ε7 > 0,

U ′7(t) ≤ −k (χx + ψ)
2

(L, t) +

(
ε0 +

2k

L

)
‖χx + ψ‖22 − ρ1χ

2
t (L, t)

−kρ1χ2
t (0, t) + ρ1

(
ε7 +

2

L

)
‖χt‖22 +

(
ε0 +

2ρ3
L

)
‖θ‖22 −

τ0
κ
σ2(L, t)− τ0

κ
σ2(0, t)

+

(
ε0 +

ρ1
ε7

)
‖ψt‖22 +

[
2τ0
Lκ

+
[
(γδ)

2
+ (γτ0)

2
+ (δρ3)

2
] 1

ε0κ2

]
‖σ‖22 .(3.25)
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Proof. A simple differentiation taking into account the equations in (2.8), yields

U ′7(t) = ρ1

∫ L

0

χtt (χx + ψ) g(x)dx+ ρ1

∫ L

0

χt (χx + ψ)t g(x)dx− γτ0
κ

∫ L

0

σt (χx + ψ) g(x)dx

−γτ0
κ

∫ L

0

σ (χx + ψ)t g(x)dx− τ0ρ3
κ

∫ L

0

σtθg(x)dx− τ0ρ3
κ

∫ L

0

σθtg(x)dx

=

∫ L

0

[k (χx + ψ)x − γθx] (χx + ψ) g(x)dx+ ρ1

∫ L

0

χt (χx + ψ)t g(x)dx

+
γ

κ

∫ L

0

(δσ + κθx) (χx + ψ) g(x)dx− γτ0
κ

∫ L

0

σ (χx + ψ)t g(x)dx

+
ρ3
κ

∫ L

0

(δσ + κθx) θg(x)dx− τ0ρ3
κ

∫ L

0

σθtg(x)dx

or

U ′7(t) =

∫ L

0

k (χx + ψ)x (χx + ψ) g(x)dx− γ
∫ L

0

θx (χx + ψ) g(x)dx

+ρ1

∫ L

0

χt (χx + ψ)t g(x)dx+
γδ

κ

∫ L

0

σ (χx + ψ) g(x)dx+ γ

∫ L

0

θx (χx + ψ) g(x)dx

−γτ0
κ

∫ L

0

σχxtg(x)dx− γτ0
κ

∫ L

0

σψtg(x)dx+
ρ3δ

κ

∫ L

0

σθg(x)dx

+ρ3

∫ L

0

θxθg(x)dx+
τ0
κ

∫ L

0

σσxg(x)dx+
γτ0
κ

∫ L

0

σχtxg(x)dx.

Therefore

U ′7(t) = k

∫ L

0

d

2dx
(χx + ψ)

2
g(x)dx+ ρ1

∫ L

0

dχ2
t

2dx
g(x)dx+ ρ1

∫ L

0

χtψtg(x)dx

+
γδ

κ

∫ L

0

σ (χx + ψ) g(x)dx− γτ0
κ

∫ L

0

σψtg(x)dx+
ρ3δ

κ

∫ L

0

σθg(x)dx

+ρ3

∫ L

0

dθ2

2dx
g(x)dx+

τ0
κ

∫ L

0

dσ2

2dx
g(x)dx.

Next, we integrate by parts, we get

U ′7(t) =
k

2

[
(χx + ψ)

2
g(x)

]L
0
− k

2

∫ L

0

(χx + ψ)
2
g′(x)dx+

ρ1
2

[
χ2
t g(x)

]L
0

−ρ1
2

∫ L

0

χ2
t g
′(x)dx+ ρ1

∫ L

0

χtψtg(x)dx+
γδ

κ

∫ L

0

σ (χx + ψ) g(x)dx− γτ0
κ

∫ L

0

σψtg(x)dx

+
ρ3δ

κ

∫ L

0

σθg(x)dx+
ρ3
2

[
θ2g(x)

]L
0
− ρ3

2

∫ L

0

θ2g′(x)dx+
τ0
2κ

[
σ2g(x)

]L
0
− τ0

2κ

∫ L

0

σ2g′(x)dx.

By Young’s inequality, we may write, for any ε0, ε7 > 0,

U ′7(t) ≤ −k (χx + ψ)
2

(L, t) +
2k

L
‖χx + ψ‖22 − ρ1χ

2
t (L, t)

−kρ1χ2
t (0, t) +

2ρ1
L
‖χt‖22 + ε7ρ1 ‖χt‖22 +

ρ1
ε7
‖ψt‖22 + ε0 ‖χx + ψ‖22

+
1

ε0

(
γδ

κ

)2

‖σ‖22 + ε0 ‖ψt‖22 +
1

ε0

(γτ0
κ

)2
‖σ‖22 + ε0 ‖θ‖22 +

1

ε0

(
δρ3
κ

)2

‖σ‖22

+
2ρ3
L
‖θ‖22 −

τ0
κ
σ2(L, t)− τ0

κ
σ2(0, t) +

2τ0
Lκ
‖σ‖22 .(3.26)
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Simplifying the expression (3.26), we end up with

U ′7(t) ≤ −k (χx + ψ)
2

(L, t) +

(
ε0 +

2k

L

)
‖χx + ψ‖22 − ρ1χ

2
t (L, t)− kρ1χ2

t (0, t)

+ρ1

(
ε7 +

2

L

)
‖χt‖22 +

(
ε0 +

2ρ3
L

)
‖θ‖22 −

τ0
κ
σ2(L, t)− τ0

κ
σ2(0, t)

+

(
ε0 +

ρ1
ε7

)
‖ψt‖22 +

[
2τ0
Lκ

+
[
(γδ)

2
+ (γτ0)

2
+ (δρ3)

2
] 1

ε0κ2

]
‖σ‖22 .

This is what we wanted to prove in (3.25).

Lemma 8. The rate of change of the functional

U8(t) = −ρ1ρ3
∫ L

0

θ

∫ x

0

χt(y, t)dydx

fulfills, for any ε0, ε8, ε21 > 0,

U ′8(t) ≤ ρ1 (ε0 + L(ε21 + γε0)− γ) ‖χt‖22 + ρ3 (γ + kε8) ‖θ‖22 +
kρ3
4ε8
‖χx + ψ‖22

+
ρ1
4ε0
‖σ‖22 +

ρ1
4ε21

σ2(L) +
γρ1
4ε0

χ2
t (L).(3.27)

Proof. It is easy to see that

U ′8(t) = −ρ3
∫ L

0

θ

∫ x

0

[k (χx + ψ)x − γθx] (y, t)dydx+ ρ1

∫ L

0

[σx + γχtx]

∫ x

0

χt(y, t)dydx

= −ρ3
∫ L

0

θ [k (χx + ψ)− γθ] dx+ ρ1

∫ L

0

σx

∫ x

0

χt(y, t)dydx+ γρ1

∫ L

0

χtx

∫ x

0

χt(y, t)dydx

= −kρ3
∫ L

0

θ (χx + ψ) dx+ γρ3 ‖θ‖22 − ρ1
∫ L

0

σχtdx+ ρ1

[
σ

∫ x

0

χt(y, t)dy

]L
0

+γρ1

[
χt

∫ x

0

χt(y, t)dy

]L
0

− γρ1 ‖χt‖22

= −kρ3
∫ L

0

θ (χx + ψ) dx+ γρ3 ‖θ‖22 − ρ1
∫ L

0

σχtdx

−γρ1 ‖χt‖22 + ρ1(σ(L) + γχt(L))

∫ L

0

χt(y, t)dy.

Therefore

U ′8(t) ≤ −γρ1 ‖χt‖22 + γρ3 ‖θ‖22 + kρ3ε8 ‖θ‖22 +
kρ3
4ε8
‖χx + ψ‖22

+ρ1ε0 ‖χt‖22 +
ρ1
4ε0
‖σ‖22 + Lρ1(ε21 + γε22) ‖χt‖22 +

ρ1
4ε21

σ2(L) +
γρ1
4ε22

χ2
t (L)

≤ ρ1 (ε0 + L(ε21 + γε0)− γ) ‖χt‖22 + ρ3 (γ + kε8) ‖θ‖22

+
kρ3
4ε8
‖χx + ψ‖22 +

ρ1
4ε0
‖σ‖22 +

ρ1
4ε21

σ2(L) +
γρ1
4ε0

χ2
t (L).

The proof of (3.27) is complete.

Having introduced all our functionals, we define now the functional V1 as follows:

(3.28) V1 := ME1 +

8∑
i=1

MiUi,

where M,Mi, i = 1, · · · , 8, are positive constants to be selected later. We can check that V1 is equivalent
to the energy functional E1 if M is large enough; that is, for some β1, β2 > 0,

(3.29) β1E1 ≤ V1 ≤ β2E1.
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Theorem 2. Assume that D =0 holds. Then, for any Ψ0 ∈ H, there exist two positive constants α
and β (depending continuously on E1 (0)) such that

(3.30) E1 (t) ≤ βe−αt.

Proof. Gathering all our previous findings (2.22), (3.2), (3.7)-(3.12), (3.24), (3.25) and (3.27), we
obtain

V ′1(t) ≤ A1χ
2
t (0, t) +A2 ‖σ‖22 +A3 ‖ψx‖22 +A4 ‖ψt‖22 +A5 ‖χt‖22 +A6 ‖θ‖22 +A7 ‖χx + ψ‖22

+A8ψ
2
t (L, t) +A9ψ

2
x (L, t) +A10χ

2
t (L, t) +A11σ

2(L, t) +A12 (χx + ψ)
2

(L, t)

+ [2M2 (ε0 − 1) +M6 (ε0 − 1)]χ2(0, t)− τ0
κ
M7σ

2(0, t)− bM2ψ
2
x(0, t),(3.31)

where

A1 := M6

(
m+

K2

4ε0

)
− kρ1M7 −MK,

A2 := M4

(
τ0 +

(δρ3L)
2

+ (γτ0)
2

4ε0

)
+M5

Aδρ2
4ε0τ0

+M8
ρ1
4ε0

+M7

[
2τ0
Lκ

+
[
(γδ)

2
+ (γτ0)

2
+ (δρ3)

2
] 1

ε0κ2

]
−M δ

κ
,

A3 := M1

(
γCp
4ε3
− b
)

+M5ε0
Aδρ2
τ0

+M2

(
2b

L
+ 2kε2

)
,

A4 := M1

(
ρ1Cp
4ε1

+ ρ2

)
+M3

ρ1
ε5

+M2
2ρ2
L

+M7

(
ε0 +

kρ1
ε7

)
−M5ρ2,

A5 := M1ρ1ε1 +M3

(
ρ1(1 + Lε0) +

ρ1L

4
ε5

)
+M4ε0

+M7kρ1

(
ε7 +

2

L

)
+M8ρ1 (ε0 + L(ε21 + γε0)− γ) ,

A6 := M1γε3 +M3
γ

4ε6
+M4 (ε0 − κρ3) +M7

(
ε0 +

2ρ3
L

)
+M8ρ3 (γ + kε8) +M5kA,

A7 := M3 (γε6 − k) +M7

(
ε0 +

2k

L

)
+M2

k

2ε2
+M8

kρ3
4ε8

+ kM5

(
1 +

ρ23A

4

)
,

A8 := M1J +
1

4

(
bρ1ε0
k

+
Aρ2
ε9

)
M5 − ρ2M2,

A9 := M5bε4 − bM2,

A10 :=
ρ1
4ε0

M3 +
bρ1
kε0

M5 − ρ1M7 +
γρ1
4ε0

M8 − µM,

A11 := M5Aρ2ε9 −
τ0
κ
M7 +

ρ1
4ε21

M8

and

A12 :=
b

ε4
M5 −M7k.

Notice, first, that the three terms A1, A2 and A10 may be made negative by taking a large M. This gives
us the freedom to allow all other terms in these expressions to be as big as we wish. In this respect, ε0
may be small and ignored at this stage. Consequently, we want to choose the different parameters so as
to have

M5
b

2
+M2

(
2b

L
+ 2kε2

)
< M1

(
b− γCp

4ε3

)
,

M1

(
ρ1Cp
4ε1

+ ρ2

)
+M3

ρ1
ε5

+M2
2ρ2
L

+M7
kρ1
ε7

< M5ρ2,

M1ρ1ε1 +M3

(
ρ1 +

ρ1L

4
ε5

)
+M7kρ1

(
ε7 +

2

L

)
+ Lρ1ε21M8 < M8ρ1γ,
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M1γε3 +M3
γ

4ε6
+M7

2ρ3
L

+M8ρ3 (γ + kε8) +M5kρ3Aε4 < M4κρ3,

M7
2k

L
+M2

k

2ε2
+M8

kρ3
4ε8

+ kM5

(
1 +

ρ23A

4

)
< M3 (k − γε6) ,

M1J +
Aρ2
4ε9

M5 < ρ2M2,

M5bε4 < bM2,

M5Aρ2ε9 +
ρ1M3

4ε21
<
τ0
κ
M7

and
b

ε4
M5 < M7k.

As we can pick M4 large, ε3, ε4 and ε8 also may be taken large and ε6 small. We get

M5
b

2
+M2

(
2b

L
+ 2kε2

)
< M1b,

M1

(
ρ1Cp
4ε1

+ ρ2

)
+M3

ρ1
ε5

+M2
2ρ2
L

+M7
kρ1
ε7

< M5ρ2,

M1ε1 +M3

(
1 +

L

4
ε5

)
+M7k

(
ε7 +

2

L

)
+ Lε21M8 < M8γ,

M7
2k

L
+M2

k

2ε2
+ kM5

(
1 +

ρ23A

4

)
< M3k,

M1J +
Aρ2
4ε9

M5 < ρ2M2,

M5ε4 < M2,

M5Aρ2ε9 +
ρ1M3

4ε21
<
τ0
κ
M7

and
b

ε4
M5 +

ρ1M8

4ε21
< M7k.

Next, by taking ε21 = γ
4L , it is clear that M8 may be arbitrarily large. This allows ε1, ε5 and ε7 to be

large. We are left with

M5
b

2
+M2

(
2b

L
+ 2kε2

)
< M1b,

M1ρ2 +M2
2ρ2
L

< M5ρ2,

M7
2k

L
+M2

k

2ε2
+ kM5

(
1 +

ρ23A

4

)
< M3k,

M1J +
Aρ2
4ε9

M5 < ρ2M2,

M5ε4 < M2,

M5Aρ2ε9 <
τ0
κ
M7

and
b

ε4
M5 < M7k.

Now, it is the turn of M3 with small ε2, thus

M5

2
+

2

L
M2 < M1,

M1 +M2
2

L
< M5,

M1J +
Aρ2
4ε9

M5 < ρ2M2,
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M5ε4 < M2,

b

k
ε9M5 < kM7,

M5Aρ2ε9 <
τ0
κ
M7

and
b

ε4
M5 < M7k.

Clearly we can choose M7 large allowing ε9 to be large and ε4 small, remains

M5

2
+

2

L
M2 < M1 and M1 +M2

2

L
< M5.

This is possible for sufficiently small M2. Finally, we go back in the reverse order to select the parameters,
and then, using (3.31) and the right inequality in (3.29), we get, for some α̃ > 0,

(3.32) V ′1 ≤ −α̃E1 ≤ −
α̃

β2
V1 := −αV1.

By integrating the differential inequality (3.32), we deduce that

V1(t) ≤ V1(0)e−αt,

which implies (3.30) with β = 1
β1
V1(0) thanks to the left inequality in (3.29).

4. t−1-stability

In this section we prove that, in the absence of the condition D = 0, we obtain a t−1-stability result
for strong solutions of the system. Differentiating the last four equations in (2.8) with respect to time,
multiplying by χtt, ψtt, θt and σt, respectively and integrating over [0, L], we find that the second-order
energy functional

E2(t) :=
1

2

[
mEχ

2
tt (L, t) + Jψ2

tt (L, t) + ρ1 ‖χtt‖22
]

+
1

2

[
ρ2 ‖ψtt‖22 + ρ3 ‖θt‖22 + b ‖ψxt‖22 + k ‖(χx + ψ)t‖

2
2

+
τ0
κ
‖σt‖22

]
(4.1)

satisfies

(4.2) E′2(t) ≤ − δ
κ
‖σt‖22 .

Passing to this second-order energy functional (4.1) allows us to deal with higher order terms. In partic-
ular, there is no need to impose the condition D = 0 in order to cancel the last term in (3.18). Indeed,
for any ε10 > 0, the evaluation∣∣∣∣∣

∫ L

0

ψxθxdx

∣∣∣∣∣ ≤ ε10 ‖ψx‖22 +
1

4ε10
‖θx‖22 ≤ ε10 ‖ψx‖

2
2 +

1

2κ2ε10

(
τ20 ‖σt‖

2
2 + δ2 ‖σ‖22

)
deals comfortably with this term. Moreover, the dissipation property of the system through the thermal
effect (which may be seen from the presence of −‖σ‖22 and −‖σt‖22 in the derivatives (2.22) and (4.2)

of the first and second-order energy, respectively), shows that ε10 ‖ψx‖22 may be considered arbitrarily
small.

Theorem 3. If D 6= 0, then, for any Ψ0 ∈ D(B), there exists a positive constant C (depending
continuously on E1(0) and E2(0)) such that

(4.3) E1(t) ≤ Ct−1.

Proof. Here, we add the second-order energy to the modified energy functional V1; that is,

V2 := V1 +ME2.
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We have

V ′2(t) = V ′1(t) +ME′2(t)

≤ V ′1(t) +DM5

[
ε10 ‖ψx‖22 +

1

2κ2ε10

(
τ20 ‖σt‖

2
2 + δ2 ‖σ‖22

)]
−M δ

κ
‖σt‖22 .(4.4)

According to the discussion above on V ′1 to choose the different parameters and the fact that ε10 may be
selected as small as we wish, it appears that, for a larger value of M , (4.4) implies that

V ′2 ≤ −C1E1,

for some positive constant C1. An integration with respect to time of this inequality, taking into account
that E1 is non-increasing yields

tE1(t) ≤
∫ t

0

E1(s)ds ≤ V2(0)

C1
.

This completes the proof of (4.3).

5. General remarks

Remark 1. We suspect that the condition D = 0 is necessary for exponential stability (3.30), but
this should be proved. As an adequate method to prove this kind of results, the spectral theory which
gives a direct connection between the exponential stability and the spectrum of operators generated by
hyperbolic systems; see for example [17]. This method is completely different from the one used in the
present paper.

Remark 2. The mass can be deleted; that is mE = 0. In this case, the last line in BΨ, the variable y
and its space R are not considered, and the relation y = w(L, ·) (in the definition of D(B)) is replaced by

K(χx(L, t) + ψ(L, t)) + µw(L, t) = 0.

Our well-posedness and stability results hold true.

Remark 3. Our well-posedness and stability results are valid for the following class of feedback control
forces:

(5.1) τ(t) = −Kχt(0, t)− µ̃χt(L, t)− χ(0, t),

where µ̃ ∈ R satisfying

(5.2) (µ− µ̃)2 ≤ 4µK.

The feedback control is applied at the base. The terms χ(0, t) and χ(L, t) can be measured by displacement
sensing devices whilst χt(0, t) and χt(L, t) are computed by a backward difference algorithm of the values
of χ(0, t) and χ(L, t), respectively. In case (5.1), we have instead of (2.22)

E′1(t) = −Kχ2
t (0, t)− µχ2

t (L, t) + (µ− µ̃)χt(L, t)χt(0, t)−
δ

κ
‖σ‖22 ,

so, for any real number ε satisfying

(5.3)
(µ− µ̃)2

2µ
< |µ− µ̃|ε < 2K

(ε exists according to (5.2)), we get

E′1(t) ≤ −
(
K − |µ− µ̃|ε

2

)
χ2
t (0, t)−

(
µ− |µ− µ̃|

2ε

)
χ2
t (L, t)−

δ

κ
‖σ‖22 .

Because K − |µ−µ̃|ε2 > 0 and µ− |µ−µ̃|2ε > 0 (thanks to (5.3)), the proofs of the well-posedness (with small
modification of the operator B) and stability results are very similar.

Mathematically, (5.2) means that

µ− 2
√
µK ≤ µ̃ ≤ µ+ 2

√
µK.

This means, roughly, that if the control gain K is important, then any ’small’ coefficient µ̃ should be
enough. Whereas, if the control gain K is small, there is a threshold for µ̃.
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Remark 4. Our well-posedness and stability results are still satisfied if we add the term λθ to the
fourth equation in (2.8), where λ is a positive constant. In this case, the derivative of E1 satisfies

(5.4) E′1(t) = −Kχ2
t (0, t)− µχ2

t (L, t)−
δ

κ
‖σ‖22 − λ ‖θ‖

2
2 .

We see that the term λθ generates the last dissipation in (5.4), and then the situation becomes more
favorable mathematically. We can take either K = 0 or µ = 0.

Remark 5. The results of this paper can be extended easily to the Fourier’s law case; that is τ0 = 0.
Indeed, from the last equation in (2.8), σ can be explicitly expressed in term of θ by σ = −κδ θx. Then,
the fourth equation in (2.8) can be transformed into the following heat equation in term of θ:

(5.5) ρ3θt −
κ

δ
θxx + γχtx = 0.

In this case, the last two equations in (2.8) will be replaced by (5.5), σ will not be considered in the
definition of Ψ, and thanks to the homogeneous Dirichlet boundary conditions on θ in (2.3), the derivative
of E1 becomes

(5.6) E′1(t) = −Kχ2
t (0, t)− µχ2

t (L, t)−
κ

δ
‖θx‖22 .

According to Poincaré’s inequality, ‖θ‖22 is dominated by ‖θx‖22, and so the dissipation (5.6) is strong
enough to stabilize the system (and even we can take K = 0 or µ = 0).

Remark 6. The stability estimate (4.3) is satisfied only for classical solutions (Ψ0 ∈ D(B)) and it can
not be extended to weak solutions (Ψ0 ∈ H) by density arguments, since the constant C in (4.3) depends
on E2, which is not defined for weak solutions even in the distributions sense.
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