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ABSTRACT
In this paper, we consider a viscoelastic plate equation with a
velocity-dependent material density and a logarithmic nonlinearity. Using
the Faedo-Galaerkin approximations and the multiplier method, we estab-
lish the existence of the solutions of the problem and we prove an explicit
and general decay rate result. These results extend and improve many
results in the literature.
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1. Introduction

In this paper, we deal with the existence and decay of solutions of the following plate problem:

|ut|ρutt +�2u +�2utt −
∫ t

0
g(t − s)�2u(s) ds = ku ln |u|, in�× (0,∞),

u(x, t) = ∂u
∂ν
(x, t) = 0, in ∂�× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in�, (1)

where � is a bounded domain of R
2, with a smooth boundary ∂�, ν is the unit outer normal to ∂�

and ρ and k are positive constants. The kernel g is satisfying some conditions to be specified later.

1.1. Problemswith a velocity-dependentmaterial density

Cavalcanti et al. [1] considered

|ut|ρutt −�u −�utt +
∫ t

0
g(t − s)�u(s) ds − γ�ut = 0, in�× (0,∞),

u(x, t) = 0, in ∂�× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in�, (2)
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where� is a bounded domain in R
n, n ≥ 1, with a smooth boundary ∂�, ρ is a positive real number

satisfying some conditions and g is a positive exponentially decaying function. They established a
global existence result when the constant γ ≥ 0, and an exponential decay result for the case γ > 0.
Messaoudi and Tatar [2] extended this decay result to the case where a source term is competing with
the viscoelastic and the strong damping. In the absence of the strong damping (γ = 0), Messaoudi
and Tatar [3,4] studied (2) and showed that the viscoelastic damping is strong enough to drive the
system uniformly to rest. Precisely, they showed that the energy of the solution decays exponentially
(resp. polynomially) if g decays exponentially (resp. polynomially). Later, Han andWang [5] consid-
ered (2) for γ = 0 andwith a relaxation function ofmore general decay type and established, similarly
to the work of Messaoudi [6,7], a general decay result in which the usual exponential and the poly-
nomial decay are only special cases. Liu [8] considered (2), for γ = 0, and in the presence of a source
term. He established a general decay result similar to the one in [5]. In [9], Liu studied the problem

|ut|ρutt −�u −�utt +
∫ t

0
g(t − s)�u(s) ds + α(t)h(ut) = b|u|p−2u, in�× (0,∞),

u(x, t) = 0, in ∂�× (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in�, (3)

and proved, without imposing growth conditions on h, a general decay result which depends on the
behavior of g, α and h. Messaoudi and Mustafa [10] studied (2) for relaxation functions satisfying

g′(t) ≤ −H(g(t)), (4)

whereH ∈ C
1(R+), withH(0) = 0 andH is linear or strictly increasing and strictly convex function

C
2 near the origin. They obtained an explicit and general relation between the decay rate for the

energy and that of the relaxation function g without imposing restrictive assumptions on the behavior
of g at infinity. Recently, Cavalcanti et al. [11] considered (2), with γ = 0, and a relaxation function
satisfying (4). In addition, they required

lim inf
x→0+

{x2H′′(x)− xH′(x)+ H(x)} ≥ 0

and some other condition and proved that the energy uniformly decays to zero with the rate that is
determined from the solutions of the ODE quantifying the behavior of g(t).

Very recently, Messaoudi and Al-Khulaifi [12] considered (2), with γ = 0, where the relaxation
function satisfies (11) below and established an optimal and general decay result.

1.2. Plate Problems

Concerning the study of plates, Lagnese [13] studied a viscoelastic plate equation and showed that
the energy decays to zero as time goes to infinity by intorducing a dissipative mechanism on the
boundary of the system. Rivera et al. [14] proved that the first- and second-order energy, associated
with the solutions of the viscoelastic plate equation, decay exponentially provided that the kernel of
the memory also decays exponentially. Komornik [15] investigated the energy decay of a plate model
under weak growth assumptions on the feedback function. Messaoudi [16] studied the following
problem:

utt +�2u + |ut|m−2ut = |u|p−2u, in QT = �× (0,T),

u = ∂u
∂ν

= 0, on 	T = ∂�× (0,T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in�, (5)
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and established an existence result and showed that the solution continues to exist globally ifm ≥ p,
and blows up in finite time ifm< p and the initial energy is negative. This result was later improved
by Chen and Zhou [17].

For boundary damping, Santos and Junior [18] studied the stability of the following problem:

utt +�2u = 0, in�× (0,∞),

u = ∂u
∂ν

= 0, on 	0 × (0,∞),

− u +
∫ t

0
g1(t − s)β1u(s) ds = 0, on 	1 × (0,∞),

∂u
∂ν

+
∫ t

0
g2(t − s)β2u(s) ds = 0, on 	2 × (0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), in�, (6)

where

β1u = �u + (1 − μ)B1u and β2u = ∂�u
∂μ

+ (1 − μ)
∂B2u
∂η

with

B1u = 2ν1ν2uxy − ν21uyy − ν22uxx and B2u = (ν1 − ν2)uxy + ν1ν2(uyy − uxx).

For more results in this direction, see [19–23].

1.3. Problemswith logarithmic nonlinearity

The logarithmic nonlinearity is of much interest in physics, since it appears naturally in inflation
cosmology and supersymmetric filed theories, quantummechanics and nuclear physics [24,25]. This
type of problems has applications in many branches of physics such as nuclear physics, optics and
geophysics [26–28]. Birula and Mycielski [27,29] studied the following problem:

utt − uxx + u − εu ln |u|2 = 0, in [a, b] × (0,T),

u(a, t) = u(b, t) = 0, in (0,T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in [a, b],

(7)

which is a relativistic version of logarithmic quantum mechanics and can also be obtained by taking
the limit p → 1 for the p-adic string equation [30,31]. In [32], Cazenave and Haraux considered

utt −�u = u ln |u|k, in R
3 (8)

and established the existence and uniqueness of the solution for the Cauchy problem. Gorka [28] used
some compactness arguments and obtained the global existence of weak solutions, for all

(u0, u1) ∈ H1
0([a, b])× L2([a, b]),

to the initial-boundary value problem (8) in the one-dimensional case. Bartkowski and Gorka [26]
proved the existence of classical solutions and investigated the weak solutions for the corresponding
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one-dimensional Cauchy problem for Equation (8). Hiramatsu et al. [33] introduced the following
equation:

utt −�u + u + ut + |u|2u = u ln |u| (9)

to study the dynamics of Q-ball in theoretical physics and presented a numerical study. However,
there was no theoretical analysis for the problem. In [34], Han proved the global existence of weak
solutions, for all

(u0, u1) ∈ H1
0(�)× L2(�),

to the initial boundary value problem (9) in R
3.

In this paper, we are concerned with the well-posedness and stability of the plate problem (1) with
kernels g having an arbitrary growth at infinity (condition (11) below). The obtained stability results
improve and generalize many results in the literature.

This paper is organized as follows. In Section 2, we present some notations and material needed
for our work. In Section 3, we establish the local existence of the solutions of the problem. The global
existence and the decay results are presented in Sections 4 and 5, respectively.

2. Preliminaries

In this section, we present some material needed for the proof of our results. We use the stan-
dard Lebesgue space L2(�) and Sobolev space H2

0(�) with their usual scalar products and norms.
Throughout this paper, c is used to denote a generic positive constant.

We consider the following hypotheses:

(A1) g : R
+ → R

+ is a C1- nonincreasing function satisfying

g(0) > 0, 1 −
∫ ∞

0
g(s) ds =  > 0. (10)

(A2) There exist a nonincreasing differentiable function ξ : R
+ → R

+, with ξ(0) > 0, and a con-
stant 1 ≤ p < 3

2 such that

g′(t) ≤ −ξ(t)gp(t), ∀t ∈ R
+. (11)

(A3) The constant k in (1) is such that

0 < k < k0 = 2πe3

cp
, (12)

where cp is the smallest positive number satisfying

‖∇u‖22 ≤ cp‖�u‖22, ∀u ∈ H2
0(�),

where ‖ · ‖2 = ‖ · ‖L2(�).
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The energy functional associated with problem (1) is

E(t) = 1
ρ + 2

‖ut‖ρ+2
ρ+2 + 1

2

((
1 −

∫ t

0
g(s) ds

)
‖�u‖22 + ‖�ut‖22 − k

∫
�

u2 ln |u| dx
)

+ k
4
‖u‖22 + 1

2
(go�u), (13)

where

(go�u)(t) =
∫ t

0
g(t − s)‖�u(s)−�u(t)‖22 ds.

Direct differentiation of (13), using (1), leads to

E′(t) = 1
2
(g′o�u)(t)− 1

2
g(t)‖�u‖22 ≤ 1

2
(g′o�u)(t) ≤ 0. (14)

Lemma 2.1 ([35,36]): (Logarithmic Sobolev inequality) Let u be any function in H1
0(�) and a> 0 be

any number. Then

∫
�

u2 ln |u| dx ≤ 1
2
‖u‖22 ln ‖u‖22 + a2

2π
‖∇u‖22 − (1 + ln a)‖u‖22. (15)

Corollary 2.2: Let u be any function in H2
0(�) and a> 0 be any number. Then

∫
�

u2 ln |u| dx ≤ 1
2
‖u‖22 ln ‖u‖22 + cpa2

2π
‖�u‖22 − (1 + ln a)‖u‖22. (16)

Lemma 2.3 ([32]): (Logarithmic Gronwall inequality) Let C > 0, γ ∈ L1(0,T;R+) and assume that
the function w : [0,T] → [1,∞) satisfies

w(t) ≤ C
(
1 +

∫ t

0
γ (s)w(s) ln (w(s)) ds

)
, ∀t ∈ [0,T]. (17)

Then

w(t) ≤ C exp
(
C
∫ t

0
γ (s) ds

)
, ∀t ∈ [0,T]. (18)

Lemma 2.4: Let ε0 ∈ (0, 1). Then there exists dε0 > 0 such that

s| ln s| ≤ s2 + dε0s
1−ε0 , ∀s > 0. (19)

Proof: Let r(s) = sε0(| ln s| − s). Notice that r is continuous on (0,∞) and its limit at 0+ is 0+, and
its limit at ∞ is −∞. Then r has a maximum dε0 on (0,∞), so (19) holds. �

3. Local existence

In this section, we state and prove the local existence result for problem (1).
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Definition 3.1: Let T> 0. A function

u ∈ C1([0,T],H2
0(�))

is called a weak solution of (1) on [0,T] if∫
�

|ut|ρutt(x, t)w(x) dx +
∫
�

�u(x, t)�w(x) dx +
∫
�

�utt�w dx

−
∫
�

�w(x)
∫ t

0
g(t − s)�u(s) ds dx = k

∫
�

w(x)u(x, t) ln |u(x, t)| dx, ∀w ∈ H2
0(�),

u(x, 0) = u0(x), ut(x, 0) = u1(x).

(20)

Theorem 3.2: Assume that (A1)–(A3) hold and let (u0, u1) ∈ H2
0(�)× H2

0(�). Then problem (1) has
a weak solution on [0,T].

Proof: To establish the existence of a solution to problem (1), we use the Faedo-Galerkin
approximations. Let {wj}∞j=1 be an orthogonal basis of the ‘separable’ space H2

0(�). Let Vm =
span{w1,w2, . . . ,wm} and let the projections of the initial data on the finite dimensional subspace
Vm be given by

um0 (x) =
m∑
j=1

ajwj(x), um1 (x) =
m∑
j=1

bjwj(x),

where

um0 → u0 in H2
0(�) and um1 → u in H2

0(�), asm → ∞. (21)

We search for an approximate solution

um(x, t) =
m∑
j=1

hmj (t)wj(x)

of the approximate problem in Vm∫
�

(
|umt |ρumtt w +�um�w +�umtt�w −

∫ t

0
g(t − s)�um(s)�wds

)
dx

= k
∫
�

wum ln |um| dx, ∀w ∈ Vm,

um(0) = um0 =
m∑
j=1
(u0,wj)wj,

umt (0) = um1 =
m∑
j=1
(u1,wj)wj.

(22)

This leads to a system of ODEs for unknown functions hmj (t). Based on standard existence theory for
ODE, one can obtain functions

hj : [0, tm) → R, j = 1, 2, . . . ,m,

which satisfy (22) in a maximal interval [0, tm), tm ∈ (0,T]. Next, we show that tm = T and that the
local solution is uniformly bounded independently of m and t. For this purpose, let w = umt in (22)
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and integrate by parts to obtain

d
dt
Em(t) ≤ 1

2
(g′o�um) ≤ 0, (23)

where

Em(t) = 1
ρ + 2

‖umt ‖ρ+2
ρ+2 + 1

2

(
‖�umt ‖22 +

(
1 −

∫ t

0
g(s) ds

)
‖�um‖22 + (go�um)(t)

)

+ k
4
‖um‖22 − k

2

∫
�

|um|2 ln |um| dx. (24)

From (23), we have

Em(t) ≤ Em(0), ∀t ≥ 0.

The last inequality together with the Logarithmic Sobolev inequality leads to

‖umt ‖ρ+2
ρ+2 + ‖�umt ‖22 +

(
− ka2cp

2π

)
‖�um‖22 +

[
k
2

+ k(1 + ln a)
]

‖um‖22 + go�um

≤ C + ‖um‖22 ln ‖um‖22, (25)

where C = 2Em(0). Choosing

e−3/2 < a <

√
2π
kcp

(26)

will make

− ka2cp
2π

> 0

and
k
2

+ k(1 + ln a) > 0.

This selection is possible thanks to (A3). So, we get

‖umt ‖ρ+2
ρ+2 + ‖�umt ‖22 + ‖�um‖22 + ‖um‖22 + go�um ≤ c(1 + ‖um‖22 ln ‖um‖22). (27)

Let us note that

um(·, t) = um(·, 0)+
∫ t

0

∂um

∂s
(·, s) ds.

Then, using Cauchy-Schwarz’ inequality, we get

‖um(t)‖22 ≤ 2‖um(0)‖22 + 2
∥∥∥∥
∫ t

0

∂um

∂s
(s) ds

∥∥∥∥
2

2

≤ 2‖um(0)‖22 + 2T
∫ t

0
‖umt (s)‖22 ds, (28)

hence, inequality (27) gives

‖um‖22 ≤ 2‖um(0)‖22 + 2Tc
(
1 +

∫ t

0
‖um‖22 ln ‖um‖22 ds

)
. (29)
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If we put C1 = max {2Tc, 2‖u(0)‖22}, (29) leads to

‖um‖22 ≤ 2C1

(
1 +

∫ t

0
‖um‖22 ln(‖um‖22) ds

)
.

Because C1 ≥ 0, we get

‖um‖22 ≤ 2C1

(
1 +

∫ t

0
(C1 + ‖um‖22) ln(C1 + ‖um‖22) ds

)
.

Applying the Logarithmic Gronwall inequality to the last inequality, we obtain the following estimate:

‖um‖22 ≤ 2C1e2C1T = C2.

Hence, from inequality (27) it follows that

(go�um)(t)+ ‖umt ‖ρ+2
ρ+2 + ‖�umt ‖22 + ‖�um‖22 + ‖um‖22 ≤ c(1 + C2 lnC2) = C3.

This implies

sup
t∈(0,tm)

[(go�um)(t)+ ‖umt ‖ρ+2
ρ+2 + ‖�umt ‖22 + ‖�um‖22 + ‖um‖22] ≤ C3. (30)

So, the approximate solution is uniformly bounded independent ofm and t. Therefore, we can extend
tm to T.

Substituting w = umtt in (22) and using Young’s and Cauchy-Schwarz’ inequalities, we obtain∫
�

|umt |ρ |umtt |2 dx + ‖�umtt ‖22 = −
∫
�

�um�umtt dx +
∫
�

∫ t

0
g(t − s)�um(s)�umtt (t) ds dx

+ k
∫
�

umtt u
m ln |um| dx

≤ δ‖�umtt ‖22 + 1
4δ

(∫ t

0
g(t − s)‖�um(s)‖2 ds

)2

+ δ‖�umtt ‖

+ 1
4δ

‖�um(t)‖2 + k
∫
�

umtt u
m ln |um| dx. (31)

To estimate the last term in the right-hand side of (31), we apply (19) with ε0 = 1
2 and use repeatedly

Young’s, Cauchy-Schwarz’ and the embedding inequalities as follows

k
∫
�

umtt u
m ln |um| dx ≤ c

∫
�

umtt
(
|um|2 + d2

√
um
)
dx

≤ c
(
δ

∫
�

|umtt |2 dx + 1
4δ

∫
�

(|um|2 + d2
√
um)2 dx

)

≤ cδ‖�umtt ‖22 + c
4δ

(∫
�

|um|4 dx +
∫
�

|um| dx
)

≤ cδ‖�umtt ‖22 + c
4δ
(‖�um‖42 + ‖um‖2). (32)

Combining (31) and (32) to have∫
�

|umt |ρ |umtt |2 dx + (1 − cδ)‖�umtt ‖22 ≤ 1
4δ

(∫ t

0
g(t − s)‖�um(s)‖2 ds

)2

+ 1
4δ

‖�um‖2 + c
δ
(‖�um‖42 + ‖um‖22). (33)
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Integrate the last inequality on (0,T) and use (10) and (30), we obtain

∫ T

0

∫
�

|umt |ρ |umtt |2 dx dt + (1 − cδ)
∫ T

0
‖�umtt ‖22 dt

≤ c
δ

∫ T

0
[(go�um)(t)+ ‖�um‖22 + ‖�um‖42 + ‖um‖22] dt. (34)

From the last inequality, choosing δ > 0 small enough and using (30), we get the following, for some
positive constant C4 not depending neither onm nor on t:

∫ T

0
‖�umtt ‖22 dt ≤ C4. (35)

From (30) and (35), we have

(um) is uniformly bounded in L∞(0,T;H2
0(�)),

(umt ) is uniformly bounded in L∞(0,T; Lρ+2(�)) ∩ L∞(0,T;H2
0(�)),

(umtt ) is uniformly bounded in L2(0,T;H2
0(�)),

(36)

which implies that there exists a subsequence of (um) (still denoted by (um)), such that

um⇀u weakly ∗ in L∞(0,T;H2
0(�)),

umt ⇀ut weakly ∗ in L∞(0,T; Lρ+2(�)) ∩ L∞(0,T;H2
0(�)),

um⇀u weakly in L2(0,T;H2
0(�)),

umt ⇀ut weakly in L2(0,T; Lρ+2(�)) ∩ L2(0,T;H2
0(�)),

umtt⇀
wutt in L2(0,T;H2

0(�)).

(37)

Analysis of the non-linear terms

(1) Term um ln |um|: using (36), we have (um) is bounded in L∞(0,T;H2
0(�)) which implies, using

the embedding ofH2
0(�) in L

∞(�) (� ⊂ R
2), the boundedness of (um) in L2(�× (0,T)). Sim-

ilarly, (umt ) is bounded in L2(�× (0,T)). Then, making use of Aubin-Lions’ theorem, we find,
up to a subsequence, that

um → u strongly in L2(�× (0,T))

and

um → u a.e. in�× (0,T).

Since the maps s → ks ln |s| is continuous, we have the following convergence:

kum ln |um| → ku ln |u| a.e. in�× (0,T). (38)

Using the embedding of H2
0(�) in L∞(�) (� ⊂ R

2), it is clear that k(um ln |um|) is bounded in
L∞(�× (0,T)). Next, taking into account the Lebesgue bounded convergence theorem (� is
bounded), we get

kum ln |um| → ku ln |u| strongly in L2(0,T; L2(�)). (39)
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(2) Term |umt |ρumt : using (35), we have (umt ) is uniformly bounded inL∞(0,T;H2
0(�))which implies

the boundedness of (umt ) in L∞(�× (0,T)), and so in L2(�× (0,T)). Using (35), we see that
(umtt ) is bounded in L2((0,T);H2

0(�)) which implies that (umtt ) is bounded in L2(�× (0,T)).
Now, using Aubin-Lions theorem, there exists a subsequence, still denoted by (umt ), such that

umt → ut strongly in L2(0,T; L2(�))

and

|umt |ρumt → |ut|ρut a.e. in�× (0,T). (40)

Using (30) and the embedding theorems, we have

‖|umt |ρut‖2L2(0,T;L2(�)) =
∫ T

0
‖umt ‖2(ρ+1)

2(ρ+1) dt

≤ c
∫ T

0
‖�umt (t)‖2(ρ+1)

2 dt ≤ cTCρ+1
3 , (41)

which implies that (|umt |ρumt ) is bounded in L2(�× (0,T)). Combining (40) and (41) and using
Lions’ lemma, see Lions ([37], pp. 12), we obtain

|umt |ρumt ⇀|ut|ρut weakly in L2(0,T; L2(�)). (42)

Now, we integrate (22) over (0, t) to obtain, for every w ∈ Vm,

1
ρ + 1

∫
�

|umt |ρumt w dx ds − 1
ρ + 1

∫
�

|um1 |um1 w dx +
∫ t

0

∫
�

�um(s)�w dx ds

+
∫
�

�umt �w dxds −
∫
�

�um1 �w dx −
∫
�

∫ t

0

(∫ τ

0
g(τ − s)�um(s)

)
�w ds dτ dx

= k
∫ t

0

∫
�

wum(s) ln |um(s)| dxds. (43)

Convergences (21), (37), (39) and (42) are sufficient to pass to the limit in (43) as m → ∞, and get,
for any w ∈ Vm andm ≥ 1,

1
ρ + 1

∫ t

0

∫
�

|us|ρusw dxds = 1
ρ + 1

∫
�

|um1 |um1 w dx −
∫ t

0

∫
�

�u(s)�w dxds

−
∫
�

�ut�w dxds +
∫
�

�um1 �w dx

+
∫
�

∫ t

0

(∫ τ

0
g(τ − s)�u(s)

)
�w ds dτ dx

+ k
∫ t

0

∫
�

wu(s) ln |u(s)| dxds, (44)

which implies that (44) is valid for any w ∈ H2
0(�). Using the fact that the terms in the right-hand

side of (44) are absolutely continuous (since they are functions of t defined by integrals over (0, t)),
then (44) is differentiable for a.e. t ∈ R

+. Thus, differentiating (44), we obtain, for a.e. t ∈ (0,T)
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and w ∈ H2
0(�), ∫

�

|ut|ρuttw dxds +
∫
�

�u(t)�w dx

+
∫
�

�utt�w dx −
∫
�

(∫ t

0
g(t − s)�u(s)

)
�w ds dx

= k
∫
�

wu(t) ln |u(t)| dxds. (45)

This ends the proof of Theorem 3.2. �

4. Global Existence

In this section, we state and prove a global existence result under smallness conditions on the initial
data (u0, u1). For this purpose, we introduce the following functionals:

J(t) = 1
2

((
1 −

∫ t

0
g(s) ds

)
‖�u‖22 + ‖�ut‖22 + go�u − k

∫
�

u2 ln |u| dx
)

+ k
4
‖u‖22 (46)

and

I(t) =
(
1 −

∫ t

0
g(s) ds

)
‖�u‖22 + ‖�ut‖22 + go�u − 3k

∫
�

u2 ln |u| dx. (47)

Lemma 4.1: The following inequalities hold:

− kd0
√

|�|c3∗‖�u‖3/22 ≤ k
∫
�

u2 ln |u| dx ≤ kc3∗‖�u‖32, ∀u ∈ H2
0(�), (48)

where d0 = sup0<s<1
√
s| ln s| = 2

e , |�| is the Lesbegue measure of� and c∗ is the smallest embedding
constant (∫

�

|u|3 dx
)1/3

≤ c∗‖�u‖2, ∀u ∈ H2
0(�) (49)

(c∗ exists thanks to the embedding of H2
0(�) in L∞(�) and� ⊂ R

2).

Proof: Let

�1 = {x ∈ � : |u(x)| > 1} and �2 = {x ∈ � : |u(x)| ≤ 1}.
So, using (49), we have

k
∫
�

u2 ln |u| dx = k
∫
�2

u2 ln |u| dx + k
∫
�1

u2 ln |u| dx

≤ k
∫
�1

u2 ln |u| dx ≤ k
∫
�1

|u|3 dx ≤ k
∫
�

|u|3 dx ≤ kc3∗‖�u‖32.
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On the other hand, using Hölder’s inequality and (49), we find

−k
∫
�

u2 ln |u| dx = −k
∫
�2

u2 ln |u| dx − k
∫
�1

u2 ln |u| dx

≤ −k
∫
�2

u2 ln |u| dx = k
∫
�2

u2| ln |u|| dx

≤ kd0
∫
�

|u|3/2 dx ≤ kd0
√

|�|
(∫

�

|u|3 dx
)1/2

≤ kd0
√

|�|c3∗‖�u‖3/22 ,

which implies the left inequality in (48). �

Lemma 4.2: Assume that (A1)–(A3). Let (u0, u1) ∈ H2
0(�)× H2

0(�) such that

I(0) > 0 and
√
54kc3∗

(
E(0)


)1/2
< . (50)

Then
I(t) > 0, ∀t ∈ [0,T). (51)

Proof: From (47), we have

k
∫
�

u2 ln |u| dx = 1
3

(
1 −

∫ t

0
g(s) ds

)
‖�u‖22 + 1

3
‖�ut‖22 + 1

3
go�u − 1

3
I(t). (52)

Substitute (52) in (46), we find

J(t) = 1
3

[(
1 −

∫ t

0
g(s) ds

)
‖�u‖22 + ‖�ut‖22 + go�u

]
+ k

4
‖u‖22 + 1

6
I(t). (53)

Since I(0) > 0 and I is continuous on [0,T], there exists t0 ∈ (0,T] such that I(t) > 0, for all t ∈
[0, t0). Let us denote by t0 the largest real number in (0,T] such that I> 0 on [0, t0). If t0 = T, then (51)
is satisfied.

We assume by contradiction that t0 ∈ (0,T). Thus I(t0) = 0 and

‖�u(t)‖22 ≤ 6

J(t) ≤ 6


E(t) ≤ 6


E(0), ∀t ∈ [0, t0). (54)

If ‖�u(t0)‖22 = 0, then (48) and (49) give

0 = I(t0) =
(
1 −

∫ t0

0
g(s) ds

)
‖�u(t0)‖22 + ‖�ut(t0)‖22 + go�u(t0)

− 3k
∫
�

u2(t0) ln |u(t0)| dx

≤ c‖�u(t0)‖22 + go�u(t0)

=
∫ t0

0
g(s)‖�u(s)‖22 ds. (55)

Consequently, if g> 0 on [0, t0), we get

‖�u(s)‖2 = 0, ∀s ∈ [0, t0).

Then
I(t) = 0, ∀t ∈ [0, t0),

which is not true since I> 0 on [0, t0). If g �= 0 on [0, t0), then let t1 ∈ [0, t0) the smallest real num-
ber such that g(t1) = 0. Because g(0) > 0 and g is positive, nonincreasing and continuous on R

+
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(condition (A1)), then t1 > 0 and g= 0 on [t1,∞). Therefore, from (55), we deduce that

0 =
∫ t0

0
g(s)‖�u(s)‖22 ds =

∫ t1

0
g(s)‖�u(s)‖22 ds,

then ‖�u(s)‖2 = 0, for any s ∈ [0, t1), which implies that I(t) = 0, for any t ∈ [0, t1). As in above,
this is a contraduction with the fact that I> 0 on [0, t0). Then we conclude that ‖�u(t0)‖22 > 0. On
the other hannd, we have

I(t0) ≥ ‖�u(t0)‖22 − 3k
∫
�

u(t0)2 ln |u(t0)| dx.

By using (54) and Lemma 4.1, we have

I(t0) ≥
[
− 3kc3∗

(
6E(0)


)1/2
]

‖�u(t0)‖22.

By recalling (50), we arrive at I(t0) > 0, which contradicts the assumption I(t0) = 0. Hence, t0 = T
and then

I(t) > 0, ∀t ∈ [0,T). �

5. Stability

In this section, we state and prove our stability result. We start by establishing several lemmas needed
for the proof of our main result.

Lemma 5.1: Assume that g satisfies (A1). Then, for u ∈ H2
0(�), we have∫

�

(∫ t

0
g(t − s)(u(t)− u(s)) ds

)2

dx ≤ c(go�u)(t)

and ∫
�

(∫ t

0
g′(t − s)(u(t)− u(s)) ds

)2

dx ≤ −c(g′o�u)(t).

Proof:

∫
�

(∫ t

0
g(t − s)(u(t)− u(s)) ds

)2

dx =
∫
�

(∫ t

0

√
g(t − s)

√
g(t − s)(u(t)− u(s)) ds

)2

dx.

By applying Cauchy-Schwarz’ and Poincaré’s inequalities, we can show that

∫
�

(∫ t

0
g(t − s)(u(t)− u(s)) ds

)2

dx

≤
∫
�

(∫ t

0
g(t − s) ds

)(∫ t

0
g(t − s)(u(t)− u(s))2 ds

)
dx

≤ (1 − )c(go�u)(t)

≤ c(go�u)(t). (56)

Similarly, the second inequality in Lemma 5.1 can be proved. �
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Lemma 5.2: Assume that g satisfies (A1) and (A2). Then∫ ∞

0
ξ(t)g1−σ (t) dt < ∞, ∀σ < 2 − p. (57)

Proof: Using (A1) and (A2), we easily see that, for any σ < 2 − p,

ξ(t)g1−σ (t) = ξ(t)g1−σ (t)gp(t)g−p(t) ≤ −g′(t)g1−σ−p(t).

Integrate the last inequality over (0,∞), we obtain∫ ∞

0
ξ(t)g1−σ (t) dt ≤ −

∫ ∞

0
g′(t)g1−σ−p(t) dt =

[
− g2−p−σ (t)
2 − p − σ

]∞

0
< ∞. �

Similar to Cavalcanti and Oquendo [38], we can easily have the following lemma:

Lemma 5.3: Assume that (A1)–(A3) and (50) hold and u is a solution of (1). Then, for any 0 < σ < 1,
we have

(go�u)(t) ≤ c
[(∫ t

0
g1−σ (t) dt

)
E(0)

](p−1)/(p−1+σ)
(gpo�u)σ/(p−1+σ).

By taking σ = 1
2 , we get

(go�u)(t) ≤ c
(∫ t

0
g1/2(s) ds

)(2p−2)/(2p−1)

(gpo�u)1/(2p−1)(t) (58)

and, for any ε0 ∈ (0, 1),

(go�u)1/(1+ε0)(t) ≤ c1/(1+ε0)
(∫ t

0
g1/2(s) ds

)(2p−2)/((2p−1)(1+ε0))
(gpo�u)1/((2p−1)(1+ε0))(t). (59)

Corollary 5.4: Assume that (A1)–(A3) and (50) hold and u is a solution of (1). Then

ξ(t)(go�u)(t) ≤ c(−E′(t))1/(2p−1) (60)

and, for any ε0 ∈ (0, 1),
ξ(t)(go�u)1/(1+ε0)(t) ≤ cε0 − E′(t))1/((2p−1)(1+ε0)). (61)

Proof: Multiply both sides of (58) by ξ(t) and use (57) and (14) to obtain

ξ(t)(go�u)(t) ≤ cξ (2p−2)/(2p−1)(t)
(∫ t

0
g1/2(s) ds

)(2p−2)/(2p−1)

ξ 1/(2p−1)(t)(gpo�u)1/(2p−1)(t)

≤ c
(∫ t

0
ξ(s)g1/2(s) ds

)(2p−2)/(2p−1)

(ξgpo�u)1/(2p−1)(t)

≤ c
(∫ ∞

0
ξ(s)g1/2(s) ds

)(2p−2)/(2p−1)
(−g′o�u)1/(2p−1)(t)

≤ c − E′(t))1/(2p−1). (62)

For the proof of (61), using (60) and because ξ is nonnegative and nonincreasing, we obtain

ξ(t)(go�u)1/(1+ε0)(t) = ξε0/(1+ε0)(t)(ξ(t)(go�u)(t))1/(1+ε0) ≤ cε0 − E′(t))1/((2p−1)(1+ε0)). �
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Lemma 5.5: Under the assumptions (A1)–(A3) and (50), the functional

ψ(t) := 1
ρ + 1

∫
�

|ut|ρutu dx +
∫
�

�u�ut dx

satisfies, along the solution of (1), the estimate

ψ ′(t) ≤ −
2

∫
�

|�u|2 dx +
∫
�

|�ut|2 dx + 1
ρ + 1

∫
�

|ut|ρ+2 dx + c(go�u)(t)

+ k
∫
�

u2 ln |u| dx. (63)

Proof: Direct differentiation of ψ , using (1), yields

ψ ′(t) = −
∫
�

|�u|2 dx +
∫
�

�u(t)
∫ t

0
g(t − s)�u(s) ds dx

+
∫
�

|�ut|2 dx + 1
ρ + 1

∫
�

|ut|ρ+2 dx + k
∫
�

u2 ln |u| dx. (64)

We then estimate the second term on the right side of (64). We have, using (10),

∫
�

�u(t)
∫ t

0
g(t − s)�u(s) ds dx =

∫
�

�u(t)
∫ t

0
g(t − s)(�u(s)−�u(t)+�u(t)) ds dx

≤ (1 − )

∫
�

|�u|2 dx−
∫
�

(∫ t

0
g(t − s) (�u(t)−�u(s)) ds

)
dx.

By exploiting Lemma 5.1 and

ab ≤ 1
2η

a2 + η

2
b2, ∀a, b ≥ 0, ∀η > 0,

we arrive at
∫
�

�u(t)
∫ t

0
g(t − s)�u(s) ds dx

≤ (1 − )

∫
�

|�u|2 dx + 1
2η

∫
�

(∫ t

0
g(t − s)|�u(t)−�u(s)| ds

)2

dx

+ η

2

∫
�

|�u|2 dx

≤
(
1 − + η

2

) ∫
�

|�u|2 dx + c
η
(go�u)(t).

By taking η = , we find

∫
�

�u(t)
∫ t

0
g(t − s)�u(s) ds dx ≤ 2 − 

2

∫
�

|�u|2 dx + c(go�u)(t). (65)

Inserting (65) in (64), estimate (63) is established. �
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Lemma 5.6: Under the assumptions (A1)–(A3) and (50), the functional

χ(t) := −
∫
�

(
�2ut + 1

ρ + 1
|ut|ρut

)∫ t

0
g(t − s)(u(t)− u(s)) ds dx

satisfies, along the solution of (1) and for any δ, δ1, δ2 > 0, the estimate

χ ′(t) ≤
[
(1 + 2(1 − )2)δ1 + δ

4

] ∫
�

|�u|2 dx − 1
ρ + 1

(∫ t

0
g(s) ds

)∫
�

|ut|ρ+2 dx

+ c
(
δ1 + 1

δ1
+ 1
δ

)
(go�u)(t)− c

δ2
(g′o∇u)(t)

+
[
δ2 + cδ2(E(0))ρ −

∫ t

0
g(s) ds

] ∫
�

|�ut|2 dx + cε0,δ(go�u)1/(1+ε0)(t). (66)

Proof: Differentiating χ with respect to t and making use of (1), we find

χ ′(t) =
∫
�

�u(t)
∫ t

0
g(t − s)(�u(s)−�u(t)) ds dx

−
∫
�

(∫ t

0
g(t − s)�u(s) ds

)(∫ t

0
g(t − s)(�u(s)−�u(t)) ds

)
dx

−
(∫ t

0
g(s) ds

)∫
�

|�ut|2 dx −
∫
�

�ut(t)
∫ t

0
g′(s)(�u(s)−�u(t)) ds dx

− 1
ρ + 1

∫
�

|ut|ρut
∫ t

0
g′(t − s)(u(s)− u(t)) ds dx

− 1
ρ + 1

(∫ t

0
g(s) ds

)∫
�

|ut|ρ+2 dx − k
∫
�

u ln |u|
∫ t

0
g(t − s)(u(t)− u(s)) ds dx. (67)

Now we proceed, using repeatedly Cauchy-Schwarz’ inequality, Young’s inequality and Lemma 5.1,
to estimate each term in the right-hand side of (67). The first term may be estimated as follows

∫
�

�u(t)
∫ t

0
g(t − s)(�u(s)−�u(t)) ds dx

≤ δ1

∫
�

|�u|2 dx + c
δ1
(go�u)(t), ∀δ1 > 0. (68)

For the second term, we recall (10) and the fact that (a + b)2 ≤ 2(a2 + b2) to get, for any δ1 > 0,

−
∫
�

(∫ t

0
g(t − s)�u(s) ds

)(∫ t

0
g(t − s)(�u(s)−�u(t)) ds

)
dx

≤ δ1

∫
�

∣∣∣∣
∫ t

0
g(t − s)�u(s) ds

∣∣∣∣
2

dx + 1
4δ1

∫
�

∣∣∣∣
∫ t

0
g(t − s)(�u(s)−�u(t)) ds

∣∣∣∣
2

dx

≤ δ1

∫
�

(∫ t

0
g(t − s)(|�u(s)−�u(t)| + |�u(t)|) ds

)2

dx + c
δ1
(go�u)(t)

≤ c
(
δ1 + 1

δ1

)
(go�u)(t)+ 2δ1(1 − )2

∫
�

|�u|2 dx. (69)
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For the fourth term, it is easy to see that, for any δ2 > 0,

−
∫
�

�ut
∫ t

0
g′(t − s)(�u(s)−�u(t)) ds dx

≤ δ2

∫
�

|�ut|2 dx + c
δ2

∫
�

∫ t

0
(−g′(t − s))|�u(s)−�u(t)|2 ds dx. (70)

The fifth term may be handled similarly

− 1
ρ + 1

∫
�

|ut|ρut
∫ t

0
g′(t − s)(u(s)− u(t)) ds dx

≤ 1
ρ + 1

[
δ2

∫
�

|ut|2(ρ+1) dx + c
δ2

∫
�

∫ t

0

(−g′(t − s)
) |�u(s)−�u(t)|2 ds dx

]
. (71)

Using (13), (14), (46), (51) and (53), we have

E(0) ≥ E(t) = J(t)+ 1
ρ + 2

‖ut‖ρ+2
ρ+2 ≥ J(t) ≥ 1

6
‖�ut‖22,

which gives

‖�ut‖22 ≤ 6E(0). (72)

By exploiting the Sobolev embedding

H1
0(�) ↪→ L2(ρ+1)(�), (73)

and (72), we obtain ∫
�

|ut|2(ρ+1) dx ≤ c(E(0))ρ‖�ut‖22. (74)

Therefore (71) takes the form

− 1
ρ + 1

∫
�

|ut|ρut
∫ +∞

0
g′(s)(u(t − s)− u(t)) ds dx

≤ cδ2(E(0))ρ‖�ut‖22 − c
δ2
(g′o�u)(t). (75)

Applying (19) for s = |u|, using the embedding of H2
0(�) in L∞(�) and performing the same

calulactions as before, we get, for any δ3 > 0 and any ε0 ∈ (0, 1),

− k
∫
�

u ln |u|
∫ t

0
g(t − s)(u(t)− u(s)) ds dx

≤ k
∫
�

(u2 + dε0 |u|1−ε0)
∣∣∣∣
∫ t

0
g(t − s)(u(t)− u(s)) ds dx

∣∣∣∣
≤ c

∫
�

|u|2
∣∣∣∣
∫ t

0
g(t − s)(u(t)− u(s)) ds

∣∣∣∣ dx + δ3

∫
�

u2 dx

+ cε0,δ3

∫
�

∣∣∣∣
∫ t

0
g(t − s)(u(t)− u(s)) ds

∣∣∣∣
2/(1+ε0)

dx

≤ cδ3||�u||22 + c
δ3

∫
�

∣∣∣∣
∫ t

0
g(t − s)(u(t)− u(s)) ds

∣∣∣∣
2

dx

+ cε0,δ3

∫
�

∣∣∣∣
∫ t

0
g(t − s)(u(t)− u(s)) ds

∣∣∣∣
2/(1+ε0)

dx,
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then, puting δ/4 = cδ3 and using Holder’s inequality and Lemma 5.1, we find

−k
∫
�

u ln |u|
∫ t

0
g(t − s)(u(t)− u(s)) ds dx ≤ δ

4
||�u||22 + c

δ
(go�u)(t)

+ cε0,δ(go�u)1/(1+ε0)(t). (76)

Combining (67)–(70), (75) and (76), estimate (66) is established. �

Lemma 5.7: Assume that (A1)–(A3) and (50) hold and let ε0 ∈ (0, 1). Assume that

0 < E(0) <
eπ
4cp

. (77)

Then, for k small enough, there exist positive constants ε and N such that the functional

L = NE + εψ + χ

satisfies

L ∼ E (78)

and, for any t0 > 0, there exists a positive constant m such that

L′(t) ≤ −mE(t)+ c(go�u)(t)+ cε0(go�u)1/(1+ε0)(t), ∀t ≥ t0. (79)

Proof: To prove (78), we use Young’s inequality, the Sobolev embedding H1
0(�) ↪→ Lρ+2(�), (51),

(53), (72) and (74) to obtain

|L(t)− NE(t)| ≤ ε

ρ + 2
||ut||ρ+2

ρ+2 + ε

(ρ + 1)(ρ + 2)
||u||ρ+2

ρ+2 + ε

2
||�ut||22

+ ε

2
||�u||22 + 1

2(ρ + 1)
||ut||2(ρ+1)

2(ρ+1) + 1 − 

2(ρ + 1)
cp(go�u)(t)

+ 1
2
||�ut||22 + 1 − 

2
(go�u)(t)

≤ εE(t)+ ε
cρ+2

(ρ + 1)(ρ + 2)

(
6

E(0)

)1+(ρ/2)
E(t)+ 3εE(t)

+ 3ε

E(t)+ 3c

(ρ + 1)
(E(0))ρE(t)+ 3(1 − )

(ρ + 1)
cpE(t)

+ 3E(t)+ 3(1 − )E(t)

≤ c(1 + ε)E(t), (80)

that is

[N − c(1 + ε)]E(t) ≤ L(t) ≤ [N + c(1 + ε)]E(t).

By fixing N large enough so that N > c(1 + ε), we obtain the desired result (78).
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For the proof of (79), since g is positive and g(0) > 0 then, for any t0 > 0, we have∫ t

0
g(s) ds ≥

∫ t0

0
g(s) ds = g0 > 0, ∀t ≥ t0.

By using (14), (63) and (66) then, for t ≥ t0, we have

L′(t) ≤
(
N
2

− c
δ2

)
(g′o�u)(t)− g0 − ε

ρ + 1

∫
�

|ut|ρ+2 dx

−
[
ε


2
− (1 + 2(1 − )2)δ1 − δ

4

]
‖�u‖22

− [g0 − ε − δ2 − cδ2(E(0))ρ]‖�ut‖22
+ c

(
ε + δ1 + 1

δ1
+ 1
δ

)
(go�u)(t)

+ cε0,δ(go�u)1/(1+ε0)(t)+ εk
∫
�

u2 ln |u| dx. (81)

Using the definition of E(t), we obtain, for anym > 0,

L′(t) ≤ −mE(t)+
(
N
2

− c
δ2

)
(g′o�u)(t)−

(
g0 − ε

ρ + 1
− m
ρ + 2

)∫
�

|ut|ρ+2 dx

−
[
ε


2
− (1 + 2(1 − )2)δ1 − δ

4
− m(1 − g0)

2

]
‖�u‖22

−
[
g0 − ε − δ2 − cδ2(E(0))ρ − m

2

]
‖�ut‖22

+
[
c
(
ε + δ1 + 1

δ1
+ 1
δ

)
+ m

2

]
(go�u)(t)

+ cε0,δ(go�u)1/(1+ε0)(t)+ mk
4

‖u‖22

+
(
ε − m

2

)
k
∫
�

u2 ln |u| dx. (82)

Using the Logarithmic Sobolev inequality (16), we get, for 0 < m < 2ε,

L′(t) ≤ −mE(t)+
[
N
2

− c
δ2

]
(g′o�u)(t)−

(
g0 − ε

ρ + 1
− m
ρ + 2

)∫
�

|ut|ρ+2 dx

−
[
ε


2
− (1 + 2(1 − )2)δ1 − δ

4
− m(1 − g0)

2
−
(
ε − m

2

) kcpa2

2π

]
‖�u‖22

−
(
g0 − ε − δ2 − cδ2(E(0))ρ − m

2

)
‖�ut‖22

+
[
c
(
ε + δ1 + 1

δ1
+ 1
δ

)
+ m

2

]
(go�u)(t)+ cε0,δ(go�u)1/(1+ε0)(t)

−
(
ε − m

2

) k
2
(2(1 + ln a)− ln ‖u‖22)‖u‖22 + mk

4
‖u‖22. (83)

At this point, we choose our constant carefully. First, we pick 0 < ε < g0, then δ1, δ2 and δ small
enough so that

k1 := ε


2
− (1 + 2(1 − )2)δ1 − δ

4
> 0
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and

k2 := g0 − ε − δ2 − cδ2(E(0))ρ > 0.

Then, N sufficiently large so that

N > c(1 + ε) and
N
2

− c
δ2

≥ 0.

Consequently, we get

L′(t) ≤ −mE(t)−
(
g0 − ε

ρ + 1
− m
ρ + 2

)∫
�

|ut|ρ+2 dx

−
[
k1 − m(1 − g0)

2
−
(
ε − m

2

) kcpa2

2π

]
‖�u‖22

−
(
k2 − m

2

)
‖�ut‖22 +

(
c + m

2

)
(go�u)(t)

+ cε0(go�u)1/(1+ε0)(t)+ mk
4

‖u‖22

−
(
ε − m

2

) k
2
(2(1 + ln a)− ln ‖u‖22)‖u‖22. (84)

Finally, we choosem and k small enough so thatm ≤ ε (so (mk)/4 ≤ (ε − m/2)k/2),

g0 − ε

ρ + 1
− m
ρ + 2

> 0,

k1 − m(1 − g0)
2

−
(
ε − m

2

) kcpa2

2π
> 0

and

k2 − m
2
> 0,

we get

L′(t) ≤ −mE(t)+ c(go�u)(t)+ cε0(go�u)1/(1+ε0)(t)

−
(
ε − m

2

) k
2
(1 + 2 ln a − ln ‖u‖22)‖u‖22. (85)

Using (13), (14), (46), (51), (53) and (77), we have

ln ‖u‖22 ≤ ln
(
4
k
J(t)

)
≤ ln

(
4
k
E(t)

)
≤ ln

(
4
k
E(0)

)
≤ ln

(
eπ
kcp

)
. (86)

By taking a satisfying

max

{
e−3/2,

√
π

kcp

}
< a <

√
2π
kcp

(so (26) is satisfied), we guarantee

1 + 2 ln a − ln ‖u‖22 ≥ 0.

Which completes the proof of (79). �
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Remark 5.8: Using (10), (13), (46), (51) and (53), we have

E(t) = J(t)+ 1
ρ + 2

‖ut‖ρ+2
ρ+2 ≥ J(t) ≥ l

6
‖�u(t)‖22,

then, using (14),

‖�u(t)‖22 ≤ 6
l
E(t) ≤ 6

l
E(0). (87)

So, from (14) and using Young’s inequality, we get

|E′(t)| = 1
2
g(t)‖�u(t)‖22 − 1

2
(g′o�u)(t)

≤ 1
2
g(t)‖�u(t)‖22 −

∫ t

0
g′(t − s)(‖�u(t)‖22 + ‖�u(s)‖22) ds

≤ 6
l

(
1
2
g(t)+ 2g(0)− 2g(t)

)
E(0)

≤ cE(0). (88)

Theorem 5.9: Let (u0, u1) ∈ H2
0(�)× H2

0(�), ε ∈ (0, 2p − 1) and t0 > 0. Assume that (A1)–(A3)
and (50) hold. Then, for k small enough, there exists a positive constant K such that the solution of (1)
satisfies

E(t) ≤ K
(
1 +

∫ t

t0
ξ 2p−1+ε(s) ds

)−1/(2p−2+ε)
, ∀t ≥ t0. (89)

Moreover, if there exist ε1 ∈ (0, 2p − 1) and t0 > 0 such that

∫ ∞

t0

(
1 +

∫ t

t0
ξ 2p−1+ε1(s) ds

)−1/(2p−2+ε1)
dt < ∞, (90)

then, for any r ∈ (0, p) and t0 > 0, there exists a positive constant K such that the solution of (1) satisfies

E(t) ≤ K
(
1 +

∫ t

t0
ξp+r(s) ds

)−1/(p−1+r)

, ∀t ≥ t0. (91)

Remark 5.10: Using (89) and (90), we can easily show that

∫ +∞

0
E(t) dt < +∞. (92)

Proof: Wemultiply (79) by ξ(t) and use Corollary 5.4 and (88) to get, for any t ≥ t0,

ξ(t)L′(t) ≤ −mξ(t)E(t)+ c(−E′(t))1/(2p−1) + c(−E′(t))1/((2p−1)(1+ε0))

≤ −mξ(t)E(t)+ c(−E′(t))ε0/((2p−1)(1+ε0))(−E′(t))1/((2p−1)(1+ε0))

+ c(−E′(t))1/((2p−1)(1+ε0))

≤ −mξ(t)E(t)+ c(−E′(t))1/((2p−1)(1+ε0)), ∀t ≥ t0. (93)
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Multiply the last inequality by ξγ (t)Eγ (t), where γ = (2p − 1)(1 + ε0)− 1, and notice that ξ ′ ≤ 0
to obtain

ξγ+1(t)Eγ (t)L′(t) ≤ −mξγ+1(t)Eγ+1(t)+ c(ξE)γ (t)(−E′(t))1/(γ+1), ∀t ≥ t0.

Use of Young’s inequality, with q = γ + 1 and q∗ = (γ + 1)/γ , gives, for any ε′ > 0,

ξγ+1(t)Eγ (t)L′(t) ≤ −mξγ+1(t)Eγ+1(t)+ c(ε′ξγ+1(t)Eγ+1 − cε′E′(t))

= −(m − ε′c)ξγ+1(t)Eγ+1 − cE′(t), ∀t ≥ t0.

We then choose 0 < ε′ < m/c and recall that ξ ′ ≤ 0 and E′ ≤ 0, to get, for c1 = m − ε′c,

(ξγ+1Eγ L)′(t) ≤ ξγ+1(t)Eγ (t)L′(t) ≤ −c1ξγ+1(t)Eγ+1(t)− cE′(t), ∀t ≥ t0,

which implies

(ξγ+1Eγ L + cE)′(t) ≤ −c1ξγ+1(t)Eγ+1(t), ∀t ≥ t0.

Let F = ξγ+1Eγ L + cE. Then F ∼ E (thanks to (78)) and

F′(t) ≤ −cξγ+1(t)Fγ+1(t) = −cξ (2p−1)(1+ε0)(t)F(2p−1)(1+ε0)(t), ∀t ≥ t0.

Integrating over (t0, t) and using the fact that F ∼ E, we obtain (89) with ε = (2p − 1)ε0.
To establish (91), we use the idea of Messaoudi and Al-Khulaifi [12]. Let

η(t) =
∫ t

0
‖�u(t)−�u(t − s)‖22 ds.

Using (89), (87), (90) and (92), we have

η(t) ≤ 2
∫ t

0
(‖�u(t)‖22 + ‖�u(t − s)‖22) ds

≤ 12
l

∫ t

0
(E(t)+ E(t − s)) ds

≤ 24
l

∫ t

0
E(s) ds <

24
l

∫ ∞

0
E(s) ds < ∞.

This implies that

sup
t>0

η1−(1/p)(t) < ∞. (94)

Assume that η(t) > 0. Then, because ξ is nonincreasing, we find

ξ(t)(g ◦�u)(t) ≤ η(t)
η(t)

∫ t

0
(ξp(s)gp(s))1/p‖�u(t)−�u(t − s)‖22 ds.

Applying Jensen’s inequality to get

ξ(t)(g ◦�u)(t) ≤ η(t)
(

1
η(t)

∫ t

0
ξp(s)gp(s)‖�u(t)−�u(t − s)‖22, ds

)1/p

.

Therefore, using (A2) and (94) we obtain

ξ(t)(g ◦�u)(t) ≤ η1−(1/p)(t)
(
ξp−1(0)

∫ t

0
ξ(s)gp(s)‖�u(t)−�u(t − s)‖22 ds

)1/p

≤ c(−g′ ◦�u)1/p(t),
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and then, according to (14),

ξ(t)(g ◦�u)(t) ≤ c(−E′(t))1/p. (95)

So, since ξ is nonincreasing,

ξ(t)(g ◦�u)1/(1+ε0)(t) = (ξε0(t)ξ(t)(g ◦�u)(t))1/(1+ε0)

≤ (ξ ε0(0)ξ(t)(g ◦�u)(t))1/(1+ε0)

≤ c(ξ(t)(g ◦�u)(t))1/(1+ε0)

≤ c(−E′(t))1/(p(1+ε0)). (96)

If η(t) = 0, then s → �u(s) is a constant function on [0, t]. Therefore

(g ◦�u)(t) = 0,

and hence (95) and (96) hold.
Now, multiplying (79) by ξ(t) and using (88), (95) and (96) to find, for any t ≥ t0 (as for (93)),

ξ(t)L′(t) ≤ −mξ(t)E(t)+ c(−E′(t))1/p + c(−E′(t))1/(p(1+ε0))

≤ −mξ(t)E(t)+ c(−E′(t))ε0/(p(1+ε0))(−E′(t))1/(p(1+ε0)) + c(−E′(t))1/(p(1+ε0))

≤ −mξ(t)E(t)+ c(−E′(t))1/(p(1+ε0)), ∀t ≥ t0. (97)

Inequality (93) with 2p−1 replaced by p is exactely (97). Then, the proof of (91) can be completed as
for the one of (89) (by taking γ = p(1 + ε0)− 1 and ε = pε0). This completes the proof of our main
result. �

Remark 5.11: We note here that 2p − 2 + ε and p − 1 + ε can be arbitrary close to 2p−2 and p−1,
respectively, since ε can be arbitrary close to zero. On the other hand, in the absence of the logarithmic
‘forcing’ term (k= 0), the estimates (19) and (76) drop out and, consequently, (79) takes the form

L′(t) ≤ −mE(t)+ c(go�u)(t), ∀t ≥ t0. (98)

In this case, we obtain the following result.

Theorem 5.12: Let (u0, u1) ∈ H2
0(�)× H2

0(�) and t0 > 0. Assume that (A1)–(A2) hold. Then, there
exists a positive constant K such that the solution of (1) satisfies, for all t ≥ t0,

E(t) ≤ Ke−λ
∫ t
t0
ξ(s) ds if p = 1 (99)

and

E(t) ≤ K
(
1 +

∫ t

t0
ξ 2p−1(s) ds

)−1/(2p−2)

if 1 < p <
3
2
. (100)

Moreover, if 1 < p < 3
2 and∫ ∞

0

(
1 +

∫ t

t0
ξ 2p−1(s) ds

)−1/(2p−2)

dt < ∞, (101)

then

E(t) ≤ K
(
1 +

∫ t

t0
ξp(s) ds

)−1/(p−1)

, ∀t ≥ t0. (102)
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