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ABSTRACT. In this paper, we study the energy decay for two one-dimensional thermoelastic Bresse-type
systems in a bounded open interval under mixed homogeneous Dirichlet-Neumann boundary conditions
and with two different kinds of dissipation working only on the vertical displacement and given by heat
conduction of types I and III. The two systems are consisting of three wave equations (Bresse-type
system) coupled, in a certain manner, with one heat equation (type I) or with one wave equation (type
IIT). We prove that, independently of the values of the coefficients, these systems are not exponentially
stable. Moreover, we show the polynomial stability for each system with a decay rate depending on the
smoothness of the initial data. The proof is based on the semigroup theory and a combination of the
energy method and the frequency domain approach. Our results complete our study [10] for the case of
a dissipation generated by an infinite memory.
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1. INTRODUCTION

We are interested in this paper in the asymptotic behavior at infinity of the solutions to two coupled
systems related to the Bresse model with two different types of dissipation given by heat conduction and
working only on the vertical displacement (the first equation of Bresse system). The first system is the
Bresse system with thermoelasticity of type I (classical thermoelasticity known also as the Fourier law)

prpw —k (e + 0 +1w), — ko (wy — lp) + 80, =0 in (0,1) x (0,00),
(1.1) P2t — bpa + k (pr + 9 +1w) =0 in (0,1) x (0,00),

prwie — ko (wy —lp), + 1k (0 + ¢ +1w) =0 in (0,1) x (0,00),

p30; — BOyz + 6ppe =0 in (0,1) x (0,00)

along with the initial data

¢ (2,0) = o (), ¢t (x,0) = 1 (x) i (0,1),
(1.2) ¥ (2,0) =g (), ¥ (#,0) =¢1 (x) in (0,1),

w (z,0) =wo (), we (2,0) =wy (x) in (0,1),

0 (,0) =6y (x) in (0,1)

and the mixed homogeneous Dirichlet-Neumann boundary conditions

(1.3)
v (L,t) =Y (1,t) = w(l,t)=0(1,t) =0  in (0,00).

{ (p(oat): 1/1m(07t): wx(ovt)zem(oat):() in (0700)7
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The second system is the Bresse system with thermoelasticity of type III

p1ow — k (0z + 9 +1w), — ko (wy — lp) + 00, =0 in (0,1) x (0,00),
(1.4) P2t — bpa + K (pr + 9 +1w) =0 in (0,1) x (0,00),
prwy — ko (wy — lo), + 1k (pz +9 +1lw) =0 in (0,1) x (0,00),
P30 — B0z — YO0par + 0 =0 in (0,1) x (0, 00)
along with (1.2), (1.3) and
(1.5) 0; (,0) =6, () in (0,1),

where p1, p2, p3, b, k, ko, 0, 8, v and [ are positive constants, w, ¢ and 1 represent, respectively, the
longitudinal, vertical and shear angle displacements, and 6 denotes the temperature.

The Bresse-type system is known as the circular arch problem and is given by the following equations:
p1pi = Qz +IN + F1, patpyy = My — Q+ Fo and  prwy = N, —1Q + F3,
with
N =ko(w, —lp), Q=k(ps+Ilw+1) and M = by,

where p1, po, I, k, ko and b are positive physical constants, N, @ and M denote, respectively, the axial
force, the shear force and the bending moment, and w, ¢ and v represent, respectively, the longitudinal,
vertical and shear angle displacements. Here

pr=pA, pr=pl, kg=FEA, k=KGA, b=FEI and |=R"!

such that p, F, G, k', A, I and R are positive constants and denote, respectively, the density, the modulus
of elasticity, the shear modulus, the shear factor, the cross-sectional area, the second moment of area of
the cross-section and the radius of curvature. Finally, F;, F5 and F3 are external forces, which play the
role of controls of the system.

In order to stabilize Bresse-type systems, various choices of controls F} (linear or nonlinear dampings,
finite or infinite memories, heat conduction of different types, boundary feedbacks, ...) have been used in
the literature and several decay results have been established, where the decay rate of solutions depends
on the controls Fj, the regularity of the initial data and the coefficients p1, p2, I, k, ko and b. It is
worthnoting that the system considered by Bresse [3] is obtained by taking

(F17 F27 Fd) = (07 _’thv 0)7
with v > 0. For more details in what concerns mathematical modeling of the thermoelasticity, we refer
the readers to the works [4], [7], [8], [16] and [17].

The well-posedness and stability of Bresse-type systems has attracted the attention of many researchers
in the last few years. Under different types of direct or indirect controls, various stability results have
been obtained, depending on the nature and the number of controls, the regularity of the initial data and
the values of the coefficients. Let us focus our attention on the stability of Bresse system with indirect
controls via the coupling with other parabolic and/or hyperbolic equations, which is the subject of the
present paper.

The authors of [19] considered the damped Bresse system via the coupling with two heat equations
proee — k (pr + 9 +lw), —lko (we —lp) +160 = 0,

P2ttt — bzx + K (0z + ¢ +lw) + 0g, = 0,

(1.6) prwye — ko (wz — 1), + 1k (@ + 1 +1w) + 660, =0,

P30 = Ozz + B (wz — lp), = 0,

P34t = Qoo + Pthar = 0

on (0,L) x (0,00), where L > 0, with homogeneous Dirichlet or mixed Dirichlet-Neumann boundary
conditions. They proved the exponential stability of (1.6) if

(17) k‘pg - bpl =k— k‘o =0.
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Otherwise, the polynomial stability of (1.6) was proved in [19] with decay rates depending on the regularity
of the initial data.

In [6], the authors considered the coupled Bresse system with only one heat equation
prow — k(0o + 0 +1w), — ko (wa — lp) =0,
p2it — bzz + K (0 + ¢ +1w) + 00, =0,
prwe — ko (we —lp), + 1k (02 + ¢ +1w) =0,
p30; — Opz + (Bt)z = 0

on (0,L) x (0,00) and proved that the exponential stability of (1.8) is equivalent to (1.7), but (1.8) is
polynomially stable in general. The results of [6] were extended in [21] to the local dissipation case; that
is § and 8 are functions on x and vanish on some part of (0, L).

(1.8)

The authors of [15] considered the following thermoelastic Bresse system (known as the Cattaneo law):
p1ow — k(oo + ¥ +1lw), —lko (wy —lp) =0,

p2ther — bpoe + k (@ + b +lw) + 66, =0,

(1.9) prwy — ko (we —1p), + 1k (P + ¢ +1w) =0,

P30 + gz + 0thye = 0,

TG+ Bq+ 0, =0

in (0,1) x (0,00) and proved that (1.9) is exponentially stable if

p1 P2 Tkp3 6% :
k—ko=——-——]1- —— =0 d I 11
0 <k b)( p1> ; an is small,

and (1.9) is not exponentially stable if

Moreover, when

k 52
k—Fko =0, (m_p2)<1_7p3>7&7' and [ is small,
P1

the polynomial stability for (1.9) was also proved in [15].
Recently in [1], it was proved that the exponential stability of

prow — k (pa + 9 +1w), — ko (wa —lp) =0,

P21t — baw + k (0o +1p +1w) =0,

(1.10) prwe — ko (wy — 1), + 1k (pz + 10 +1w) + 60, =0,
P30t + ¢z + 0wy = 0,

7@+ Bqg+0,=0

in (0,1) x (0,00) is equivalent to

— — — — & — 2 =
(1.11) kps —bp1 = (k — ko) (Ps Tk) 0°=0
and
kopa +bpy 7 2 kp1
1.12 R L B i (T +—"— VmeZ
(1.12) # kop2 <2 mﬂ) pr(k+ko)

Moreover, the polynomial stability of (1.10) in general was also proved in [1]. Very similar results
to the ones of [1] was obtained in [2] and [11], where the dissipation is generated via the longitudinal
displacements (F; = Fy = 0) by, respectively, a linear frictional damping (F3 = —yw;) and a thermoelastic
effect of type I or type III.
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The author of the present paper studied in [10] the case where the Bresse system is controled only via
its vertical displacement by an infinite memory; that is

Fy,=F;=0 and F; = 7/ 9(8) Pz (z,t — $)ds,
0

where g : Ry — R, is a given funcion converging exponentially to zero at inifinity. The author of [10]
showed that this case is deeply different in the sense that, independently on the coefficients and the kernel
g, the exponential stability does not hold, but the system is still stable at least polynomially, where the
decay rate of solutions depends only on the smoothness of the initial data. For more reading about the
stability of Bresse-type systems with infinite memories, we refer to [5], [9], [12], [13] and the references
therein.

We mention that (1.6), (1.8), (1.9) and (1.10) are consisting of coupled conservative three hyperbolic
equations and one or two dissipative parabolic equations, so the stability of the overall system is preserved
thanks to the dissipation generated by the parabolic equations. In particular, under some relationship
between the coefficients, the exponential stability of the whole system holds. Moreover, we note that
in (1.6), the three hyperbolic equations are damped by the dissipation from the two heat equations.
However, in (1.8) and (1.9), only the second hyperbolic equation is damped by the dissipation from the
parabolic equation satisfied by 6, and in (1.10), only the third hyperbolic equation is damped by the
dissipation from the fourth one. For our systems (1.1) and (1.4), only the first hyperbolic equation is
damped by the dissipation from one heat equation (type I) or one wave equation (type III).

Contrary to the systems (1.6), (1.8), (1.9) and (1.10), and as in [10], we prove that (1.1) — (1.3) and
(1.2) — (1.5) are not exponentially stable whatever the coefficients are. Moreover, we show the polynomial
stability of (1.1) — (1.3) and (1.2) — (1.5), where the decay rate depends only on the smoothness of the
initial data.

The proof of the well-posedness is based on the semigroup theory. However, the non-exponential and
polynomial stability results are proved using the energy method combining with the frequency domain
approach.

The paper is organized as follows. In section 2, we prove the well-posedness of (1.1) — (1.3) and
(1.2) — (1.5). In section 3, we show that (1.1) — (1.3) and (1.2) — (1.5) are not exponentially stable.
Section 4 will be devoted to the proof of the polynomial stability of (1.1) — (1.3) and (1.2) — (1.5).
Finally, we end our paper by some general comments and related issues in section 5.

2. THE SEMIGROUP SETTING

In this section, we give an idea on the proof of the well-posedness of (1.1) — (1.3) and (1.2) — (1.5).
We introduce the spaces
HL(0,1)={feH"(0,1): f(0) =0},

~

H;(0,1)={f€H" (0,1): f(1) =0},
H2(0,1) = H?(0,1)NnH!(0,1),

*

H? (0,1) = H2(0,1) N H! (0,1)

and the energy space

- L?(0,1) in case (1.1),

H==Hx ~
HL(0,1) x L2(0,1) in case (1.4),
where
H = H!(0,1) x L*(0,1) x H} (0,1) x L?(0,1) x H} (0,1) x L*(0,1),

equipped with the inner product

<‘I)17 ‘1)2>H =k <(%01x + wl +1 wl) 3 (<P2w + ¢2 +1 w2)>L2(0,1) +b <¢1x; ¢2I>L2(0}1)

ko (wie = lp1) s (waz = 192)) 129 1) + P1{(B1, B2) 20,1y + P2(Wh1, Do) r2(0,1) + p1 (D1, W) 20,1
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p3(01,62) 120 1) in case (1.1),
B(010,022) 12001y + P3 <91, 92>L2(071) in case (1.4),
where
o { (5> Bi» j» Vg, wj, Wy, 0;)7 in case(1.1), -
J= - ~ - ~ . J=12
(0> s Vi Yy, wj, Wy, 05, 0;)7 in case (1.4),

From the definition of H} (0,1) and ];i (0,1), we notice that, if (¢, 1, w) € H} (0,1) x I;i (0,1) x I—Z} (0,1)
satisfying
kl(pe + ¢ —|—l’UJ)||iz(071) +b ||%/1xHi2(o,1) + ko [|(ws — l‘P)HQL?(o,l) =0,
then ¥ = 0,
p(x) = —esin (lz) and w(z) = ccos (lz),

where ¢ is a constant such that ¢ =0 or [ = 5 + mm, for some m € N. So, if
T
(2.1) l7é§—|—m7r, vm e N,

then ¢ = w = 0. Here and after we assume that (2.1) is satisfied. Thus, H is a Hilbert space.

We introduce also the vectors

. T
(‘Pa @, 1, ¥, w, w, 9) in case (1.1),
(b —

~ AN\T
(%0’ @7 wv ¢> w, 'lI)7 97 9) in case (14)

and
o { (¢0: @1, Yo, ¥1, wo, w1, fo)” in case (1.1),
0 =
(90, @15 W0, Y1, wo, w1, Bo, 61)"  in case (1.4),

where ¢ = ¢;, 1 = 9y, W = w; and 6 = 6. Systems (1.1) — (1.3) and (1.2) — (1.5) can be written as a

first order system given by
b, = AP in (0,00),

22) { ¢ (0, 00)

¢ (t=0) = Do,

where A is a linear operator defined by

@
k Ik )
(e Y w), + 2 (e — L) — -6,
p1 P1 P1
b
b k
Ad = p27/) 0 (¢ (0 )
w
ko
— (wz —1p), — — (pz + 9 +lw)
P1 1
ﬁemaj_ 6()593
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in case (1.1), and

@
k Ik
Z(pr o+ lw), + — (wy — lp) — —b,
P1 1
W
b
— g — (‘Pw+¢+lw)
AP — P2
w
ko
pfl(wx_l@)r_*(ﬁpx"‘w‘f'lw)

in case (1.4). The domain of A is given by

Dy=] TEHIvE HIO.1): ¥, w0 € H2(0,1)5 ¢ € H! (0,1);
1Z7U~}G Hi(ovl)v @x(l)zﬂfz(o):wz(o):@z(o):0

in case (1.1), and

PeH| pe H2(0,1); 9, w, B0+~ € H2(0,1); ¢ € H!(0,1);

D(A) = K R
7#7171’96 Hi(oal); (pw(l):wx(O):wx(O):GI(O):O

in case (1.4).
Now, we prove that the operator A generates a Cy semigroup of contractions on H. A direct calculation
gives

—B ||9w||iz(071) in case (1.1),

(2.3) (AD, ®),, = 5

in case (1.4).

_ gr‘
7” “1lL2(0,1)

Hence, A is dissipative in H. On the other hand, we show that 0 € p (A); that is, for any F' € H, there
exists Z € D (A) satisfying

(2.4) AZ=F.

2.1. Case of system (1.1) — (1.3). Let F' = (f1, -+, fr)7 and Z = (z1,--+ ,27)T. The first, third and
fifth equations in (2.4) are equivalent to

(2.5) z2=f1, za=[f3 and 2= fs,
and then, because F' € H,
(2.6) 29 € H(0,1) and 24, 26 € H!(0,1).

Second, substitute 2o into the last equation in (2.4), we conclude that the last equation in (2.4) is reduced
to

é

B B

By a direct integration, we see that (2.7) has a unique solution z; satisfying

(2.8) zr € H2(0,1) and 27,(0) =0,

this solution is given by

orlo) = 3 / ’ / " 5£12(7) + pafa(r)] dr dy.
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Finally, the second, fourth and sixth equations in (2.4) become

k(212 4+ 23 +125), + lko (250 — l21) = d275 + p1fas
(2.9) b23zz — k (210 + 23 + 1 25) = p2fa,

ko (252 — l21), — lk (210 + 23 + 1 25) = p1 fe.

To prove that (2.9) admits a solution (z1, 23, z5) satisfying

(2.10) 2 € H2(0,1), 23, 25 € ﬁf (0,1) and 215(1) = 23,(0) = 25,(0) = 0,
we put
Ho = H! (0,1) x };j (0,1) x I;j (0,1)
and we define the bilinear form on Hg X Ho
a((v1, v2, v3), (w1, w2, w3)) =k (viz + v2 + vz, Wie + w2 + lws) 204
+b (v2g, Waz) 1201y + Ko (vse — lv1, w3e — lwi) 120y
and the linear form on Hg
li (v1, v2, v3) = (0275 + ,01f2,U1>L2(071) + <,02f4702>L2(071) + <p1f67'03>L2(0,1) .
Thus, the variational formulation of (2.9) is given by
(2.11) a((z1, 23, 25) , (w1, wa, wy)) =11 (w1, wa, ws), ¥ (wy, wa, wg)T € Ho.
From the Lax-Milgram theorem, it follows that (2.11) has a unique solution
(21, 23, 25) € Ho.

Therefore, using classical elliptic regularity arguments, we conclude that (21, z3, 25) solves (2.9) and
satisfies the regularity and boundary conditions (2.10). This proves that (2.4) has a unique solution
Z € D (A). By the resolvent identity, we have AI — A is surjective, for any A > 0 (see [20]), where I denotes
the identity operator. Consequently, the Lumer-Phillips theorem implies that A is the infinitesimal
generator of a linear Cj semigroup of contractions on .

2.2. Case of system (1.2) — (1.5). Let F = (f1,---, fs)T and Z = (z1,--- ,28)T. The first, third, fifth
and seventh equations in (2.4) are equivalent to

(2.12) z2=[f1, za=1/fs, z=/[fs and =z25=fr,
and then, because F' € H,
(2.13) 29 € HI(0,1) and 24, 26, 28 € H!(0,1).

Second, substitute z; and zg into the last equation in (2.4), we conclude that the last equation in (2.4)
is reduced to

(2.14) (Bzr + Vf7) g = 0.f12 + p3fs.

Because d f1, + p3fs € L?(0,1) and f; € H} (0,1), then, by classical arguments, we see that (2.14) has a
unique solution z7 satisfying

(2.15) Bzr +vfr € 1;3 0,1), zr e I;,} (0,1) and z7,(0) = 0.
Finally, the second, fourth and sixth equations in (2.4) become

k(z1p + 23 +125), + ko (250 — l21) = 0 frz + p1fo,
(2.16) bzzea — k (212 + 23 + 1 25) = p2fa,

ko (250 —l21), — 1k (210 + 23 +125) = p1fs.

To prove that (2.16) admits a solution (21, 23, 25) satisfying (2.10), we follow the same arguments as in
the previous case by considering the variational formulation of (2.16) given by

a((21, 23, 25) , (w1, wa, w3)) = la (w1, wa, w3), ¥ (wi, wa, wz)" € Ho,
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where
12 (vlu U27 v3) = <6f7:v + p1f27vl>L2(0’1) + <p2f4av2>L2(0’1) + <P1f67 v3>L2(0,1) .
Consequently, the following well-posedness results for (2.2) hold (see [22]):

Theorem 2.1. Assume that (2.1) holds. Then, for any m € N and ®q € D(A™), system (2.2) admits a
unique solution

(2.17) ® N, C™ 7 (Ry; D (A)).

In the next two sections, we will show the non-exponential and plynomial stability of (2.2), where the
proof is based on the following theorems:

Theorem 2.2. ([14] and [23]) A Cy semigroup of contractions on a Hilbert space H generated by an
operator A is exponentially stable if and only if

(2.18) iIRCp(A) and sup H(MI - A)le < 0.
PYS L(H)

Theorem 2.3. ([18]) If a bounded Cy semigroup e** on a Hilbert space H generated by an operator A
satisfies, for some j € N*,
1

2.19 iIRCp(A) and sup — H i — A _1H < 00.
(219) p(A) e (Y J
Then, for any m € N*, there exists a positive constant ¢, such that
m
(2.20) HeMz H < em |20 LI Int, Vzgpe D(A™), Vt >0
. 0 H = "m 0 D(Am) t ) 0 ’ .

3. LACK OF EXPONENTIAL STABILITY
Our objective here is to show that the semigroup associated with (2.2) is not exponentailly stable.
Theorem 3.1. We assume that (2.1) holds. Then, the semigroup associated with (2.2) is not exponen-
tially stable.

Proof. We use Theorem 2.2 by proving that the second condition in (2.18) is not satisfied; that is we
prove that there exists a sequence (A,), C R such that

lim H(z‘)\nl - A)‘1H = 0,
n—+oo L(H)
which is equivalent to prove that there exists a sequence (F,),, C H satisfying
(3.1) |[Fully <1, VneN
and
(3.2) lim | (A ] — A)THE g = 0.

For this purpose, let
®, = (i —A)'F,, VneN.
Then, we have to prove that (3.1) holds such that

(3.3) nl;rréo |®n]lg =00 and X, P, — AP, = F,,, Vn € N.
Taking

~ T
(@n,@m%uiﬁmwn,ﬁ)n,%) in case (11),
P, =

~ ~\T
(‘Pna@md’md’mwn,ﬁ)n,9n79n) in case (14)

and

o { (fins -+, fm)" in case(L.1),
n (Fins -+ s fsn)" in case (1.4).
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Therefore, from the second equality in (3.3), we have the following systems:

iAnPn — Pn = fin,

ip1An@n = k (Pna + Yn + Lwn)y — lko (Wne — ln) + 60na = p1 fan,
At = Pn = fan,

(3.4) ip2Anthn — Wnas + k (Ona + Yn + Lwn) = p2.fin,

IAWn — Wy, = f5n,

ip1AnUWn — ko (Wna — lon), + Uk (Pna + ¥n +lwn) = p1fon,
ip3Anbn — BOnze + 0Pna = p3frn

in case (1.1), and
iAnPn — &n = fin,

iP1APn — K (Pna + Un + Lwn), — Uk (Wng — 1) + 60nz = p1 f2n,
At = Pn = fan,

ip2Anthn — Wnas + k (Ona + Un + Lwn) = p2.fan,

AWy, — Wy, = f5p,

P Antn = ko (Wng = lon), + 1k (Pne + Yo +Lwn) = p1fon,

iMbn — On = frn,

ip3/\n9~n — BOnze — 'Yénxac + 595”3: = p3f8n

in case (1.4). Choosing

(3.6) { fin="fan=[on=0 in case (1.1),
fin="fan=Ffon=Ffrn=0 in case (1.4).

Thus, systems (3.4) and (3.5) become, respectively,

Gr = iAPny U = iAg¥p, Wy = iAWy,

—p1N%on =k (@ne + tn + Lwn), — lko (Wna — 1) + 00pe = p1 fon,

(3.7) —p2Aptn — Wnae Ak (Ona + tn +Lwy) = pa fan,

—p1Aswn = ko (Wna — lpn), + Uk (e + ¥n + Lwn) = p1fon,

1p3An0n — BOnzz + 10X Pz = p3fm

and

P = NPns U = iAW, Wy = iNgWn, O = iXy 0y,

—p1 2200 — k (Pnz + n +Lwy), — lko (Wng — lpn) + 10X 0ne = p1.fon,
(3.8) —P2A5 0 = Wnas + K (Pne + n + Lwn) = pafan,

—p1X5wn — ko (Wne — lpn), + 1k (Pne + ¥n + Lwn) = p1fon,

To simplify the calculations, we put N = w and consider few cases. Some of the next computations

were given in [1] and will be addapted here to our problems.

Case 1: i = @ We choose
P2 P1
2
(3.9) fan(x) = —lpﬁD cos (Nz), fon(z)= —lpﬁD cos (Nx)
2 1
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and

(3.10) { fan = frn =0 in case(1.1),

fon = fen =0 in case(1.4),
where D € R. We will look for ®,, € D(.A) such that
On=¢n =0, =0, =0, ¥,(x) = Beos (Nz), ¥,(x) =iB\, cos (Nz),
{ wp(x) = Dcos (Nz) and w,(z) =1iDA,cos (Nz),
where B € R. Systems (3.7) and (3.8) are satisfied if and only if
kB +1(k + ko) D =0,

b k lk Ik
{—A,%JFN?' }B+ —=D=-22D,
(3.11) p2 p2 p2 p2
Ik k I°k 1%k
ZB+ [ A2+ 0N2+} D=--2D.
p1 P1 P1
Taking
k
(3.12) A= Ny 2
p1
bk
Because — = i, we get
P2 P1

b k
SN2 4 —N?=p2 4 0
P2 p1

—=N?=0,
and therefore, the system (3.11) will be reduced to
kB +1(k+ ko) D =0,

which is equivalent to

(3.13) B= l(l—l—]{;))D
Choosing
P1P2

D=1
lkor/p? + 123

and using (3.6), (3.9) and (3.10), we obtain

lko\ 2 lp !
Il = Ll + WonlEony = (52 [1+(pf) ]D? [ cos? (v a

2
< (lko) [1+<po> ]DQ_l
P2 P1
50, (3.1) is satisfied. On the other hand, we have

2 2 2
1@nl3; = ko [[wne — l@n”m(o,l) = ko Hwnm”L?(o,l)

ko

k 1
> ?OD2N2 / [1—cos (2Nz)] do = D2N2
0

hence, the limit in (3.3) holds.

bk
Case 2: o + 2% and k # ko. We consider (3.6); and choose
2 P1

(314) f2n = f4n = f7n = Oa fﬁn(m) = COs (NJ,‘),
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and

on(x) = aysin (Nz), @n(z) =ia1A,sin (Nz),
(3.15) Yn(z) = agcos (Nz), thy(x) = i, cos (Nz),

wp(z) = agcos (Nx), wy(x)=iagh,cos (Nz),

0, (x) = agcos (Nx)
in case (1.1), and (3.6)2, (3.14), (3.15),
(3.16) fsn =0 and 0,(x) = iag\, cos (Nx)
in case (1.4), where oy, - , a4 are constants depending on N. For \,, we consider the choice
(3.17) Ay = 1 R0 N2 L
P1 ,01

According to these choices, we see that ®,, € D(A), F,, € H and

1
(3.18) VEul2, = fonl 220, :/ cos? (Nz) dz < 1,
0

which gives (3.1). On the other hand, thanks to the above choices, (3.7) and (3.8) are satisfied if and
only if
ay = N 20
and
[(k = pn) N? = p1 A2 4+ 1?ko] on + kNao + 1 (k + ko) Nag = 0,

(3.19) kNay + (bN? — pa)2 + k) ag + klag =0,
l(k + ]ﬂo) Naq + lkas + (/f()]\/v2 — pl)\% + l2k) as = p1,

where
—i5° A,
,3N2+1p3>\
522
YA N2+BN27p3)\2

in case (1.1),

(3.20) =
in case (1.4).

From the choice (3.17), we remark that the last equation in (3.19) is equivalent to

(3.21) a2:—k—;k0N 1+lk
so, substituting in the first two equations in (3.19), we entail
(3.22) as = a1 Nay + as
and

|1k + ko) az + 21

I

3.23 = ,
( ) a [2k0+,un—l(k+ko)a1]N2+12(k—ko)
where ( )

T p2ko N2 ko lpa(k + ko
“ = ( p1 > i pik 7
k 1205k
az = 5 [(”2 0 —b)N2+p2 —k} .
P1 P1

To simplify the computations, we put

:,01(k+ko) pzk‘o_b o — (k + ko)? pzko_b
k2 o1 y 4 L2 o1 ;

Gk Kot Ppa(k ko) ko (k — ko)
k e prk k
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and
_ ktk _ p2ko _ [Pk
dO - lkzﬂ (b o1 )a dl — (lkl)’z ( o1 b>7
ko lp2(k + ko) I”pa
dy =0 2 Ro) g g (BP2 )
2 Ik p1k ) 3 12 1
It follows that
(L3N4 + G5N2
NOél =

aaN* + (pn, + ag) N2 412 (k — ko)
and (notice that dpas + dias = 0)
(d0N2 + dg) (CL3N4 + a5N2)

+diN? +d
aaN* + (i + ag) N2+ 12 (k — ko) " °

(3.24) ag =

(doas + doas + dsag + dyag + dipin) N* + (deas + dag + % (k — ko) di + dapn) N? 4+ 12 (k — ko) d3

agN* + (pn + ag) N2 + 12 (k — ko)

b
Because — # IZ—O and k # ko, it appears that a4 # 0 and
P2 !

k
(325) doas + doasz + dsay + diag = (l/]:}% (pj)lo — b) (k() — k) #0.

On the other hand, we have
(3.26) nhﬁn;o i, =0,
then, we deduce from (3.24), (3.25) and (3.26) that
_doas + daaz + dzaq + diag

(3.27) lim a3 = #0,
n—roo a4
hence,
(3.28) lim |as|A, = occ.
n—oo

Now, we notice that
2 2 2 !
1@alZ > p1 B3 0.0, = o1 (las|An) / cos? (Nz) de

1 ! 1
> §p1 (|a3\)\n)2/ [1+ cos (2Nz)] dx = §p1 (\a3|)\n)2,
0

thus, by (3.28) we infer that the limit in (3.3).

bk
Case 3: — # — and k = ky. We consider the choices (3.6)4,
P2

P1
b k
3.29 A=y —=N2 4 —,
(3.29) p 2
(3.30) fon = frn =0, fan(x) = aaCycos (Nz), fen(x) = @aD, cos (Nx),
and (3.15) with
D, 1
(3.31) o = <p;lk’ — 2) %, as =0 and ay = p,N?o

in case (1.1), and (3.6),, (3.15), (3.16), (3.29), (3.30) and (3.31) in case (1.4), where

C, =L

20k (1 k
=p, D= (- -
P2 P k+ x5 — i — 2~

)
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and iy, is defined in (3.20). According to (3.20) and (3.29), we remark that (3.26) holds, and moreover

hmDn:% E—L and llanZE E_L
n—00 P1 2 kf&b n—00 P2 2 k,&b

P2 P2

bk
(these limits exist since — # 2 and k = ko), so, the sequence (|Cy|? + \Dn|2)n is bounded. Then, we
P2 P1
choose
1
(332) (6%}

~ Vsupnen (1Ca P +[Dal?)’
According to these choices, it is clear that ®,, € D(A), F,, € H and

1
2 2 2
[Enll3y = [l fanllz2 0,1y + I f6nllz2(0,1) = (ICa? + 1Dal?) 04%/0 cos? (Nx) dx

< (ICul* +1Dnf?) 03 < 1,
hence, (3.1) holds. On the other hand, because k = kg and a3 = 0, (3.7) and (3.8) are satisfied if and
only if
[(k — pn) N? — p1 22 + lzk} a1 +kNag =0,
(3.33) kNoq + (bN2 — p2\2 + k) ag = paasCh,
2lkNay + lkas = pragDy,.

The first equation in (3.33) is satisfied thanks to the definition of oy and D, the second equation in
(3.33) holds according to the definition of A,, a; and C,,, and the last equation in (3.33) is valid from
the definition of «;.

Now, we have
2

1
H%II% > P2 ‘ Un = po (azx\n)z/o cos® (Nz) dx

L2(0,1)

1
1
> —po (042)\”)2/ [1+ cos (2Nz)] dx = 3P (a2hn)?
0

DN =

consequently, the limit in (3.3) holds.

Finally, there exist sequences (F},), C H, (®,), C D(A) and (),), C R satisfying (3.1) and (3.3).
Hence, Theorem 2.2 implies that system (2.2) is not exponentially stable. d

4. POLYNOMIAL STABILITY

In this section, we use Theorem 2.3 to prove that the semigroup associated to (2.2) is polynomially
stable. Our main result is stated as follow:

Theorem 4.1. Assume that (2.1) holds and

kopa —bp1 (7 2 kp1
4.1 12 7(7—&—77177) -, VmelZ.
(1) 7 kop2 2 p2 (k + ko)
Then, for any m € N*, there exists a constant ¢, > 0 such that
m
m tA Int Z
(4.2) V&g € D (A™), Yt >0, || Dol|,, < em Dol pegm) —~ ) It

Proof. We start by proving that
(4.3) iR Cp(A)
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is equivalent to (4.1). In section 2, we have proved that 0 € p (A). So, let A € R*. We prove that i\ is
not an eigenvalue of A by proving that the unique solution

(% @, ¥, ¥, w, b, 9)T in case (1.1),
®= T
(907 B, ¥, ¥, w, W, 0, 5) in case (1.4)
in D (A) of the equation
(4.4) AP =i\®
is ® = 0. The equation (4.4) means that

P =1\p, Y=1iX\p, w=1\w,

k Ik, 5
Z(prF o lw), + —2 (wy — lp) — —0, = iAG,
P1 41 1
Ly —ﬁ( + Y+ lw) =i\
(45) P2 zz P2 P )
k 1k
20 (wy — 1p), — — (pp + ¥ + Lw) = i,
P1 P1
15} )

— Oy — — Py = iN0
P3

in case (1.1), and

G=ilg, =i ), =i \w, 60=i)d,

k lk o ~ -
= (o + ¥+ lw), + — (wy — lp) — —0, = i,
P1 P1 P1
b k -
(4.6) gwm - E (pz + 0+ 1lw) =i,
k k
= (wy = lp), — — (i + ¥ + Lw) = M,
P1 P1
P3 P3 P3
in case (1.4). Using (2.3), we find
- ||0x||2LQ(071) in case (1.1),
0 = Rei)||®||3, = Re (iA®, ®),, = Re (AD, ), = o
— (|02 in case (1.4).
L2(0,1)
Then,
6, =0 in case (1.1),
(4.7) .
0, =0 in case (1.4).

Taking into account that 6, § € H} (0,1) (since ® € D (A)) and the Poincaré’s inequality and using (4.7)
and the fourth equation in (4.6), we deduce that

0=0 in case (1.1),
{ 0=0=0 in case (1.4).
By using (4.8) and the last equation in (4.5) and (4.6), we arrive at
(4.9) @y =0.
Therefore, from the first equation in (4.5) and (4.6), we obtain
(4.10) ¢r = 0.

(4.8)
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As ¢, ¢ € H} (0,1) and according to the Poincaré’s inequality, it follows that

(4.11) o =3=0.
Using (4.8) and (4.11), we see that (4.5) and (4.6) are reduced to
Y =i\, W =i\w,
kg 4+ 1(k + ko) wy = 0,
Whes — k(Y + Lw) = —pa X9,
kowze — Uk (¢ +lw) = —p1 A w.

(4.12)

~

2
Taking into account that (1, w) € (H Lo, 1)) and the Poincaré’s inequality and using the third equation
in (4.12), we entail

k
(4.13) W =—I (1 + ;) w
Using the last two equations in (4.12), we infer that
(4.14) gy — koway = —pal\21h 4+ pr\2w.

Then, combining with (4.13), we see that
Wap + AP0 = 0,
where

[ p2l? (K + ko) + kps
(4.15) 4= \/ b2 (k + ko) + kko

This implies that, for ¢1, ¢3 € C,
w(z) = ¢1 cos (aAx) + cosin (alx).
The boundary condition w, (0) = 0 leads to ¢z = 0, and so, using (4.13),
k
(4.16) Y(x) = =1 (1 + ko) crcos (aAxr) and w(z) = ¢ cos (aAz).
Because 9(1) = w(1) = 0, we have
c1=0 or dmeZ: oz)\:g—i—mﬂ'.

If ¢; = 0, we get

(4.17) Y =w=0.
Using (4.17) and the first two equations in (4.12), we arrive at
Y=w=0.
Consequently, ® = 0 and hence
(4.18) ixep(A).
If ¢; # 0, we obtain
(4.19) ImeZ: ar= g—&—mﬂ.
Therefore, using (4.15) and (4.16), it appears that the last two equations in (4.12) are equivalent to
(4.20) (%m—wmyvzkflow2@+k@+kmy

Combining (4.15), (4.19) and (4.20), we entail

2 _ ko [l2p2 (k‘ + ko) + kpl]
(k + ko) (kopa — bp1)

(4.21) HWLEZ:(gAme>
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If (4.1) holds, then (4.21) is impossible. Hence, ¢; = 0 and so (4.18) holds.
1

If (4.1) does not hold, then, for A = — (g + mﬂ) and for any ¢; € C,
et

k k r
O(x) = (O, 0,—! (1 + k?) ¢ cos (adx), —il (1 + k0> c1Acos (aAx), ey cos (aAx) ,ici A cos (aAx) ,0)

and
ko . ko . ’
O(z)=10,0,—1(1+ 7 ) creos (adz),—il [ 1+ - c1Acos (aAx),cq cos (aAx),iciAcos (aAx),0,0

are solutions of (4.4) in cases (1.1) and (1.4), respectively. Hence, i\ ¢ p (A). Finally, (4.3) holds if and
only if (4.1) holds.
Now, we need to show that
L. —1
4.22 sup — H i — A H < 00.
(4.22) Sup N ( )l

Let us establish (4.22) by contradiction. Assume that (4.22) is false, then, there exist sequences (®,,), C
D (A) and ()\,),, C R satisfying

(4.23) | ®nll;;, =1, VneN,
(4.24) nhﬁrrgo [An| = 00

and

(4.25) i AL [[(ida T — A) @ally, = 0.

Our goal is to derive that || ®,||,, — 0 as a contradiction with (4.23). This will be established through
several steps for each system by using different multipliers, where some of them were used in [1].

-~ T
4.1. Case of system (1.1) — (1.3). Let ®, = <¢n,¢n,¢n,¢mwn,ﬂ)n,9n) . The limit (4.25) implies
that
4 (X — &n} 5 0in H(0,1),

M idgthn — TpL] —0in H!(0,1),

(4.26) AL z’pgAnzZn — bpngs + k (Onz + n + lwn)} — 0in L2(0,1),
A [ixnw, — H;n} 5 0in H'(0,1),

N LipiAntin — ko (Wne — ln), + Uk (@na + tn + lwn)] S 0in L2(0,1),

A [ipshnbn — BOnee + 5;;%} S 0in L2(0,1).
Step 1. Taking the inner product of A} (i \, I — A) ®,, with ®, in H and using (2.3), we get
Re <)‘;Lz (Z )‘n I — -A) (I)m (I)">H = Re (Z)\i ||(I)nH3-L + f»‘i ||6n:c||332(0,1)) = 6>‘i ”0an%2(0,1) .

So, (4.23) and (4.25) lead that
(4.27) A0, — 0in L?(0,1).

~

Because 6,, in H! (0,1) and thanks to Poincaré’s inequality, we deduce that

(4.28) A0, — 0in L*(0,1).
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Step 2. Multiplying (4.26),, (4.26), and (4.26); by and using (4.23) and (4.24), we obtain

(0,1),
(4.29) t, — 0in L%(0,1),
0,1).

1
Ea

on — 0in L?

wy, — 0in L?
1
Step 3. Multiplying (4.26), by v and using (4.24), we find

o~ k Ik 1) .
1P1Pn — )\7 (@n;c + Yy + lwn)m - )\70 (wn;c - l‘pn) + )\707190 — 0in L? (07 1) .

Using (4.23), (4.24) and (4.27), we conclude that

1
(4.30) ()\SO"M> is bounded in L?(0,1).

3

Step 4. Taking the inner product of (4.26), with )\%g@m in L? (0,1) and using (4.23) and (4.24), we

entail
p3 <>\20n7 CP"I>L2(O,1) - ﬁ <)\n0nzx; i@nz>L2 (0,1)

75<>\n (An nr*N )a‘ nz>
Pnpnz = P ) P ) o0

then, integrating by parts and using the boundary conditions, we arrive at

1
(431) pS <)\$L9’ﬂ? QO’”/13>L2(071) + 6 <)\72'L9’I’LI; Angonww>

2
+ 6A$L ||90mﬁ||L2(0,1) — 0,

L2(0,1)
. ~ . 2 2
_5 <An (ZAn(pna: - @nx) ’Z@nw>L2(0,l) + 6)‘71 ||<107L.'L'||L2(0}1) — 0

Combining (4.23), (4.24), (4.26),, (4.27), (4.28), (4.30) and (4.31), it follows that

(4.32) An@nz — 0in L2(0,1).

Moreover, again by (4.26),, we see that

(4.33) Pne — 0in L2(0,1),

and, as ¢, <,N0n € H!(0,1) and thanks to Poincaré’s inequality, we remark also
(4.34) Anon — 0in L?(0,1)

and

(4.35) ©, — 0in L*(0,1).

1
Step 5. Multiplying (4.26), and (4.26). by A and using (4.23) and (4.24), we have
(4.36) (Antn),, and (A\,wy,),, are bounded in L? (0,1).

Step 6. Taking the inner product of (4.26), with )\%azn in L?(0,1), integrating by parts and using
n

the boundary conditions, we get
2

£2(0,1)
ko (Antn, 3, ) ko (Anprs i) 6 (Ml i)
+iko Wn, WPny £2(0,1) + 0 P, 1Pn £2(0,1) + 1Pn
So, using (4.23), (4.24), (4.27), (4.32), (4.33), (4.34) and (4.36), we deduce that
(4.38) A, — 0in L?(0,1),

12(0,1)

L2(0,1)
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and by (4.24) and (4.26),, we find
(4.39) X, — 0in L?(0,1).

1
Step 7. Multiplying (4.26), and (4.26)4 by e and using (4.24), we obtain

n

~ b k
Z‘/)21/)71 - rwnmﬁ + — (‘pnm + ¢ + lwn) — 0 in L? (07 1) )

An
~ k Lk lk
ip1Wy — )\—Ownm + /\—Ogom, + o (Pne + Pn +lwy,) — 0in L2(0,1).
Exploiting (4.23) and (4.24), it appears that
1 1

(4.40) (/\wnwgC) and ()\wnm) are bounded in L? (0,1).

1
Step 8. Taking the inner product of (4.26), with " (ke + 1 (k + ko) wne] in L2 (0,1), we arrive at

n

(4.41) o1 (A ot + L (K + o) wm}>L2(O 1~ Ko Wtbne + L (K + ko) wnel) o,

- kanz +1 (k + kO) wnw||i2(0’1) + l2k0 <<Pna [k"/)nx +1 (k + k‘o) wnw]>L2(O’1)
+5 <9nm7 [kwnz +1 (k + kO) wn$]>L2(0,1) — 0.

Again, integrating by parts and using the boundary conditions, we see that

k L(k+k
(442) <90nacac7 [kn/}nﬂc + l (k + kO) wnwDLQ(O,l) = - <>\n§0nac7 |:>\1/}nxz + ()\O)wnxx:| > .
n n L2(0,1)

Then, using (4.32), (4.40) and (4.42), we deduce that

(443) <<anm7 [k"/}nz +1 (k + ]{70) wnz]>L2(O,1) — 0,
so, exploiting (4.23), (4.24), (4.27), (4.29), (4.38), (4.41) and (4.43), we entail
(4.44) Etne + 1 (k + ko) wpe — 0in L2 (0,1) .

1
Step 9. Taking the inner product of (4.26), with /\71/)71 in L2 (0,1), using (4.23) and (4.24), integrating

by parts and using the boundary conditions, we obtain

—pP2 </l/)n7 <ZA7I¢7L - ¢n)> — P2
L2(0,1)

+0b ||7/}nm|ﬁ:2(0,1) +k <(Sﬁnr + thn + lwn) ’ ¢n>L2(O,1) =0,
then, using (4.23), (4.24), (4.26), and (4.29), we find

2

v

£2(0,1)

2

~

Y

(4.45) bl|tmzll72(0,1) — P2 — 0.

L2(0,1)
On the other hand, taking the inner product of (4.26), with /\i%wn in L2 (0,1), using (4.23) and (4.24),
integrating by parts and using the boundary conditions, we observe that
—~ <77}"7 (i)\nwn - 17)“)>L2(0,1) e Hﬂ;n
—lko (n, Wna) r2(0,1) + 1k ((Pna + Un +lwn) ,wn) 20 1) — 0
By (4.23), (4.24), (4.26); and (4.29), it follows that

2

2
peo, +Eo [0, (4:46)

2

— 0.
L2(0,1)

2 ~
(446) kO ||wnw||L2(071) —P1 Hwn
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1 1
Step 10. Taking the inner product of (4.26), with i Wn and of (4.26), with )\—41/171, and using (4.23)

n

and (4.24), we infer that

< |:i)\np2'l7)n - bwnTT +k (@nm + 'll)n + lwn):| awn> — 0,
L2(0,1)

<[i)\np1lNUn — ko (wpe — l‘Pn)gg + 1k (Pnz + Pn + lw”)} ’¢”>L2(071) —0.

Integrating by parts and using the boundary conditions, it appears that

—pP2 <¢na (Z)\nwn - ajn)> — P2 <wn7 17)71>
L2(0,1) L2(0,1)

+b <¢na:; wnw>L2(0,1) +k <(‘P7u + wn + lwn) s wn>L2(0’1) — 0

L2(0,1) L2(0,1)

+ko ((Wna — lon) »wnm>L2(o,1) + Uk ((Pna + n + lwp) 7wn>L2(0,1) -0,
then, using (4.23), (4.24), (4.26),, (4.26), and (4.29), we obtain

and

—pP2 <¢m171n> + b<wnw7wnx>L2(0,1) — 0,
L2(0,1)

! <1/Jm a7n> + ko <1/]n96’ wmﬁ>L2(0,1) =0,
L2(0,1)

which implies that

(4.47) <p2 — pl) <1an17)n> =0
b ko L2(0,1)

and
b ko

(448) <p2 - p1> <wnm,wnI>L2(0,1) — 0.

Step 11. At this stage, we will consider two cases.

Case 1: b # @. From (4.47) and (4.48), we see that
P2 p1

(4.49) <wn,171n> — 0 and (z/)nw,wngg)p(o,l) — 0.
L2(0,1)

Therefore, taking the inner product of (4.44), first, with ¢,,,, and second, with w,,, we remark that
(4.50) Yne — 0 and  wp, — 0in L?(0,1),
and then, by (4.45), (4.46) and (4.50),

(4.51) ¢, 0 and W, —0in L2(0,1).
Finally, combining (4.28), (4.29), (4.32), (4.35), (4.50) and (4.51), we get
(4.52) [@nllyy — 0,

which is a contradiction with (4.23), so (4.22) holds. Consequentely, (4.2) is satisfied.
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bk
Case 2: — = —2. Multiplying (4.26), and (4.26)4 by ﬁ, and using (4.26),, (4.26), and (4.24), we

P2 P1
obtain
k
A3 {_?)\%% — VYpwe + 3 (Pnz + Yn + lwn)] —0in L2(0,1),
(4.53) "
A3 {?)\%wn = (wng = lpn), + 1= (Pne + 0 + lwn)] —0 in L?(0,1).
0

1
Multiplying (4.53), and (4.53), with SR and using (4.24), (4.29) and (4.32), we find

%Agu}n + s — 0 in L2(0,1),

P2
b

Multiplying (4.54), by k and (4.54), by l(k+ ko) and adding the obtained limits, and multiplying (4.54),
by k and (4.54), by —I(k + ko) and adding the limits, we entail

P2

b
P2
b
Taking the inner product of (4.55), and (4.55), with [k, + [(k + ko)wy], integrating by parts and using
the boundary conditions, we infer that

(4.54)
A2 Wy, + Whee — 0 in L2 (0,1).

A2 [kt + Lk + ko)wn] + [kthnze + L(k + ko)wnae] — 0 in L2 (0,1),
(4.55)
A2 [ktpn — L(k + ko)wn] + [knze — L(k 4 ko)wnae] = 0 in L2(0,1).

%2 [EAnton + 1(k + ko))‘nwnHQL?(o,n — ke + 1(k + ko)wm||2L2(o,1) — 0
and
P2 (N2 [k — 10+ o)l et + 10K+ Fo)wn]) g
— ([ktone — Uk + Ko)wnz] s [Kna + Uk + ko)wnal) 120 1) = O,
so, using (4.23) and (4.44), it follows that
{ EXntbn + 1k + ko) Apw, — 0in L% (0,1),

(456) 2 2 2 2 2
k H)\nwnHLZ(O,l) —1*(k + ko) HAnwnHL%O,l) — 0.

1 1
Taking the inner product of (4.53); with N Wn and (4.53), with )\—1/1,“ using (4.23) and (4.24), integrating
by parts and using the boundary conditio%s, we arrive at "

P2 k
(457) —?)\f}l <’l/)n, wn>L2(071) + )\31 <wn:l;7 wn(L‘>L2(0’1) - g <)\37,<)0na wn.’L‘>L2(0}1)
k lk

+E (Anthn, /\nwn>L2(o,1) + D ”)‘nwnHi?(O,l) —0

and
p k

(458) —fAi <w7l7 wn>L2(0,1) + A,,Q,L <wnz, wn1>L2(0’1) - l (1 + ]{)0) <'¢nw7 /\%@n>L2(0’1)

lk 2 1%k

+k70 ||)\711/)n||L2(0,1) + ?O <Anwn7 Anwn>L2(O,1) — 07

bk bk
therefore, multiplying (4.57) by 70, and (4.58) by _TO’ adding the obtained limits and using (4.23)
and (4.39), it appears that

(459) lkO H)\nwnHi?(o,l) —1b ||)\n1/)n||i2(071) + (kO - ZQb) <>\nwn7 Anwn>L2(O,1) — 0.
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By taking the inner product of (4.56); with A\,%,, combining (4.56), and (4.59), and using (4.36), we
have

k H)\nwnHi?(O,l) + l(k + k‘o) <)\nwn7 )\n’(/)n>L2(O,1) - O’

o0 W [k0k2 - blz(k + kO)Q} ||)‘n7/’n||2L2(0,1) + (kO - l2b) Anwn, )‘nl[’n>L2(0,1) -0,
so, multiplying (4.60), by (k + kO)leO ) , and (4.60), by —l<k+0k0)2 and adding the obtained limits,
we get
[kko + 0% (k + ko)] [[Antbnl72(0.1) = 0.
Thus,
(4.61) Aptb, — 0in L2 (0,1)

and, using (4.56),,
(4.62) Apwy, — 0in L2 (0,1).

Using (4.24), (4.26),, (4.26), (4.61) and (4.62), we deduce that

b = 0in L2(0,1),
(4.63) ¥ in L7(0.1)

w, — 0in L?(0,1).

Taking the inner product of (4.54); with 1, and (4.54), with w,, integrating by parts and using the
boundary conditions, we entail

P2 2 2
n [Antnllz20,1) = 1¥nall20,1) — 0

P2 2 2
0 [Anwnllz20,1) = lwnallz2(0,1) = 05

then, from (4.61) and (4.62), we find

(464) { Yz — 0in L2 (0,1),

Wy — 0in L2(0,1).

Finally, (4.28), (4.29), (4.32), (4.35), (4.63) and (4.64) imply (4.52), which is a contradiction with (4.23).

Consequentely, in both cases p— =+ p—o and p— = p—o, (4.22) holds, and hence, (4.2) in case of system
2 1 2 1

(1.1) — (1.3) is satisfied.
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~ -~ T
4.2. Case of system (1.2) —(1.5). Let ®,, = (%,&n,%,zpn,wn,&n,on,9n> . The limit (4.25) implies
that
X [iAnpn &n} 5 0in H'(0,1),

M ip1 @ — K (@na + W + lwn), — Uk (W — lpn) + 557”] S 0in L2(0,1),

4 i At — 1714 S 0in H (0,1),
b ipgx\,ﬂzn — Wnze + k (One + n + lwn)] —01in L2(0,1),
(4.65) .

A [idwn — {Ijn} 5 0in H'(0,1),

/\% _ipl)\na]n — ko (wnx - l‘pn)w + 1k (‘an + wn + lwn):| —0in L? (07 1) 5

A [idnb, — 5,1} 5 0in H(0,1),

A ipsdnbn — BOnze — 10nas + 5&4 — 0in L?(0,1).

Step 1. Taking the inner product of A} (i \, I — A) ®,, with ®, in H and using (2.3), we get

2 2
=yAr
L2(0,1)

~

gnm

~

Re (M2 (idg I — A) ®,,@,), = Re (mn @l + AL 0

L2(0,1)
So, (4.23) and (4.25) lead to

(4.66) A20,, — 0in L2(0,1).

Because 5n € H!(0,1) and thanks to Poincaré’s inequality, we deduce that

(4.67) A28, —0in L2(0,1).

1
Multiplying (4.65), by 2 and using (4.23), (4.24), (4.66) and (4.67), we find

n

(4.68) A0, — 0in L?(0,1)
and
(4.69) A0, — 0in L?(0,1).

1
Step 2. Multiplying (4.65),, (4.65), and (4.65); by PR and using (4.23) and (4.24), we obtain (4.29).

n

1
Step 3. Multiplying (4.65), by v and using (4.24), we entail

n

~ k Ik o~
ip1p, — o (Pna + Un + lwy,), — )\—0 (Wne — lon) + )\fﬁm — 0in L?(0,1).

Using (4.23), (4.24) and (4.66), (4.30) follows.
Step 4. Taking the inner product of (4.65)g with )\%apm in L2 (0,1) and using (4.23) and (4.24), we
infer that

<>\n (iPBAnen - Bonxx - 7071:6:5 + 5<;m> 7i<;0nx> — 07
L2(0,1)
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therefore, integrating by parts and using the boundary conditions, we arrive at
~ i
’ An 12(0,1)

. ~ . 2
-0 <>\n (Z/\Momc - @nm) aZ‘Pmc>L2(O’1) + E»‘i ||§0mc||L2(0,1) — 0.

Hence, from (4.23), (4.24), (4.30), (4.65),, (4.66), (4.68), (4.69) and (4.70), we conclude (4.32). Moreover,
by (4.65),, we find (4.33). As ¢, p € H!(0,1), we have also (4.34) and (4.35).

1
Step 5. Multiplying (4.65), and (4.26), by N and using (4.23) and (4.24), we find (4.36).

in L? (0,1), integrating by parts and using

n

Step 6. Taking the inner product of (4.65), with )\%(,No
the boundary conditions, we get

2
P g 0 e .
(4.71) PLAnPnl| 0 T (fre + Yot fn) i6n L2(0.1)
o (Anttn, i) Pl (Ao i) Pl P !
+lko ( ApWn, 10, (o) + 1"k ( An¥n, 1, L2(0.1) + nUna, 10, o) —

So, using (4.23), (4.32), (4.33), (4.34), (4.36), (4.66) and (4.71), we deduce (4.38). And by (4.23), (4.24)
and (4.65),, we obtain (4.39).

Step 7. Exactely as in the case of system (1.1) — (1.3), step 7, using (4.65), and (4.65),, we entail
(4.40).

Step 8. As in the case of system (1.1) — (1.3), step 8, considering the inner product of (4.65), with
5
(iﬁstead of (4.27)), we get (4.44).

Step 9. The end of the proof of (4.2) in case of system (1.2) — (1.5) is the same as for system
(1.1) — (1.3), step 9 - step 11. Hence, the proof of our Theorem 4.1 is completed. O

(ke + 1 (k + ko) wye] in L? (0,1), integrating by parts and using the boundary conditions and (4.66)

5. GENERAL COMMENTS AND ISSUES

1. In this paper, we proved the well-posedness as well as the polynomial stability and the lack of
exponential stability for (1.1) — (1.3) and (1.2) — (1.5), and we obtained the polynomial decay rate of the
solutions. The natural question that we can ask is whether the obtained decay rate (4.2) is optimal.

2. The second question is the extension of our results to the case of other boundary conditions than
(1.3), specially the proof of the lack of exponential stability.

3. The last interesting question we note here is proving the tability of (1.1) and (1.4) in the whole
space R (instead of (0,1)).

4. When the Bresse system is controled at least via the shear angle or the longitudinal displacements
(that is Fy # 0 or F3 # 0), the exponential stability holds true under some restrictions on the coefficients;
see, for example, [1], [2], [5], [9], [11], [12] and [13]. A comparaison of these results with the ones of the
present paper and [10] indicates that the dissipation is better propagated to the whole system from the
second or third equation of the Bresse system than from the first one. This fact can be explained by
the weakness of the role played by the first equation, caused by the coupling term (¢, + ¢ + lw),, in
comparaison with the one played by the other two equations.

Acknowledgment. The author would like to express his gratitude to the anonymous referee for very
careful reading and punctual suggestions.
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