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Abstract. In this paper, we study the energy decay for two one-dimensional thermoelastic Bresse-type

systems in a bounded open interval under mixed homogeneous Dirichlet-Neumann boundary conditions

and with two different kinds of dissipation working only on the vertical displacement and given by heat
conduction of types I and III. The two systems are consisting of three wave equations (Bresse-type

system) coupled, in a certain manner, with one heat equation (type I) or with one wave equation (type
III). We prove that, independently of the values of the coefficients, these systems are not exponentially

stable. Moreover, we show the polynomial stability for each system with a decay rate depending on the

smoothness of the initial data. The proof is based on the semigroup theory and a combination of the
energy method and the frequency domain approach. Our results complete our study [10] for the case of

a dissipation generated by an infinite memory.
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1. Introduction

We are interested in this paper in the asymptotic behavior at infinity of the solutions to two coupled
systems related to the Bresse model with two different types of dissipation given by heat conduction and
working only on the vertical displacement (the first equation of Bresse system). The first system is the
Bresse system with thermoelasticity of type I (classical thermoelasticity known also as the Fourier law)

(1.1)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + δθx = 0 in (0, 1)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

ρ3θt − βθxx + δϕxt = 0 in (0, 1)× (0,∞)

along with the initial data

(1.2)



ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) in (0, 1) ,

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) in (0, 1) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0, 1) ,

θ (x, 0) = θ0 (x) in (0, 1)

and the mixed homogeneous Dirichlet-Neumann boundary conditions

(1.3)

{
ϕ (0, t) = ψx (0, t) = wx (0, t) = θx (0, t) = 0 in (0,∞) ,

ϕx (1, t) = ψ (1, t) = w (1, t) = θ (1, t) = 0 in (0,∞) .
1
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The second system is the Bresse system with thermoelasticity of type III

(1.4)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + δθxt = 0 in (0, 1)× (0,∞) ,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0 in (0, 1)× (0,∞) ,

ρ3θtt − βθxx − γθxxt + δϕxt = 0 in (0, 1)× (0,∞)

along with (1.2), (1.3) and

(1.5) θt (x, 0) = θ1 (x) in (0, 1) ,

where ρ1, ρ2, ρ3, b, k, k0, δ, β, γ and l are positive constants, w, ϕ and ψ represent, respectively, the
longitudinal, vertical and shear angle displacements, and θ denotes the temperature.

The Bresse-type system is known as the circular arch problem and is given by the following equations:

ρ1ϕtt = Qx + lN + F1, ρ2ψtt = Mx −Q+ F2 and ρ1wtt = Nx − lQ+ F3,

with

N = k0(wx − lϕ), Q = k(ϕx + lw + ψ) and M = bψx,

where ρ1, ρ2, l, k, k0 and b are positive physical constants, N, Q and M denote, respectively, the axial
force, the shear force and the bending moment, and w, ϕ and ψ represent, respectively, the longitudinal,
vertical and shear angle displacements. Here

ρ1 = ρA, ρ2 = ρI, k0 = EA, k = k′GA, b = EI and l = R−1

such that ρ, E, G, k′, A, I and R are positive constants and denote, respectively, the density, the modulus
of elasticity, the shear modulus, the shear factor, the cross-sectional area, the second moment of area of
the cross-section and the radius of curvature. Finally, F1, F2 and F3 are external forces, which play the
role of controls of the system.

In order to stabilize Bresse-type systems, various choices of controls Fj (linear or nonlinear dampings,
finite or infinite memories, heat conduction of different types, boundary feedbacks, ...) have been used in
the literature and several decay results have been established, where the decay rate of solutions depends
on the controls Fj , the regularity of the initial data and the coefficients ρ1, ρ2, l, k, k0 and b. It is
worthnoting that the system considered by Bresse [3] is obtained by taking

(F1, F2, F3) = (0,−γψt, 0),

with γ > 0. For more details in what concerns mathematical modeling of the thermoelasticity, we refer
the readers to the works [4], [7], [8], [16] and [17].

The well-posedness and stability of Bresse-type systems has attracted the attention of many researchers
in the last few years. Under different types of direct or indirect controls, various stability results have
been obtained, depending on the nature and the number of controls, the regularity of the initial data and
the values of the coefficients. Let us focus our attention on the stability of Bresse system with indirect
controls via the coupling with other parabolic and/or hyperbolic equations, which is the subject of the
present paper.

The authors of [19] considered the damped Bresse system via the coupling with two heat equations

(1.6)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) + lδθ = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δqx = 0,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0,

ρ3θt − θxx + β (wx − lϕ)t = 0,

ρ3qt − qxx + βψxt = 0

on (0, L) × (0,∞), where L > 0, with homogeneous Dirichlet or mixed Dirichlet-Neumann boundary
conditions. They proved the exponential stability of (1.6) if

(1.7) kρ2 − bρ1 = k − k0 = 0.



BRESSE SYSTEM WITH HEAT CONDUCTION OF TYPES I AND III 3

Otherwise, the polynomial stability of (1.6) was proved in [19] with decay rates depending on the regularity
of the initial data.

In [6], the authors considered the coupled Bresse system with only one heat equation

(1.8)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δθx = 0,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0,

ρ3θt − θxx + (βψt)x = 0

on (0, L) × (0,∞) and proved that the exponential stability of (1.8) is equivalent to (1.7), but (1.8) is
polynomially stable in general. The results of [6] were extended in [21] to the local dissipation case; that
is δ and β are functions on x and vanish on some part of (0, L).

The authors of [15] considered the following thermoelastic Bresse system (known as the Cattaneo law):

(1.9)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) + δθx = 0,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) = 0,

ρ3θt + qx + δψxt = 0,

τqt + βq + θx = 0

in (0, 1)× (0,∞) and proved that (1.9) is exponentially stable if

k − k0 =
(ρ1
k
− ρ2

b

)(
1− τkρ3

ρ1

)
− τδ2

b
= 0 and l is small,

and (1.9) is not exponentially stable if

k 6= k0 or
(ρ1
k
− ρ2

b

)(
1− τkρ3

ρ1

)
6= τδ2

b
.

Moreover, when

k − k0 = 0,
(ρ1
k
− ρ2

b

)(
1− τkρ3

ρ1

)
6= τδ2

b
and l is small,

the polynomial stability for (1.9) was also proved in [15].

Recently in [1], it was proved that the exponential stability of

(1.10)



ρ1ϕtt − k (ϕx + ψ + l w)x − lk0 (wx − lϕ) = 0,

ρ2ψtt − bψxx + k (ϕx + ψ + l w) = 0,

ρ1wtt − k0 (wx − lϕ)x + lk (ϕx + ψ + l w) + δθx = 0,

ρ3θt + qx + δwxt = 0,

τqt + βq + θx = 0

in (0, 1)× (0,∞) is equivalent to

(1.11) kρ2 − bρ1 = (k − k0)
(
ρ3 −

ρ1
τk

)
− δ2 = 0

and

(1.12) l2 6= k0ρ2 + bρ1
k0ρ2

(π
2

+mπ
)2

+
kρ1

ρ2 (k + k0)
, ∀m ∈ Z.

Moreover, the polynomial stability of (1.10) in general was also proved in [1]. Very similar results
to the ones of [1] was obtained in [2] and [11], where the dissipation is generated via the longitudinal
displacements (F1 = F2 = 0) by, respectively, a linear frictional damping (F3 = −γwt) and a thermoelastic
effect of type I or type III.
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The author of the present paper studied in [10] the case where the Bresse system is controled only via
its vertical displacement by an infinite memory; that is

F2 = F3 = 0 and F1 = −
∫ ∞
0

g(s)ϕxx(x, t− s)ds,

where g : R+ → R+ is a given funcion converging exponentially to zero at inifinity. The author of [10]
showed that this case is deeply different in the sense that, independently on the coefficients and the kernel
g, the exponential stability does not hold, but the system is still stable at least polynomially, where the
decay rate of solutions depends only on the smoothness of the initial data. For more reading about the
stability of Bresse-type systems with infinite memories, we refer to [5], [9], [12], [13] and the references
therein.

We mention that (1.6), (1.8), (1.9) and (1.10) are consisting of coupled conservative three hyperbolic
equations and one or two dissipative parabolic equations, so the stability of the overall system is preserved
thanks to the dissipation generated by the parabolic equations. In particular, under some relationship
between the coefficients, the exponential stability of the whole system holds. Moreover, we note that
in (1.6), the three hyperbolic equations are damped by the dissipation from the two heat equations.
However, in (1.8) and (1.9), only the second hyperbolic equation is damped by the dissipation from the
parabolic equation satisfied by θ, and in (1.10), only the third hyperbolic equation is damped by the
dissipation from the fourth one. For our systems (1.1) and (1.4), only the first hyperbolic equation is
damped by the dissipation from one heat equation (type I) or one wave equation (type III).

Contrary to the systems (1.6), (1.8), (1.9) and (1.10), and as in [10], we prove that (1.1) − (1.3) and
(1.2)−(1.5) are not exponentially stable whatever the coefficients are. Moreover, we show the polynomial
stability of (1.1) − (1.3) and (1.2) − (1.5), where the decay rate depends only on the smoothness of the
initial data.

The proof of the well-posedness is based on the semigroup theory. However, the non-exponential and
polynomial stability results are proved using the energy method combining with the frequency domain
approach.

The paper is organized as follows. In section 2, we prove the well-posedness of (1.1) − (1.3) and
(1.2) − (1.5). In section 3, we show that (1.1) − (1.3) and (1.2) − (1.5) are not exponentially stable.
Section 4 will be devoted to the proof of the polynomial stability of (1.1) − (1.3) and (1.2) − (1.5).
Finally, we end our paper by some general comments and related issues in section 5.

2. The semigroup setting

In this section, we give an idea on the proof of the well-posedness of (1.1) − (1.3) and (1.2) − (1.5).
We introduce the spaces 

H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) : f (0) = 0

}
,

∼
H1
∗ (0, 1) =

{
f ∈ H1 (0, 1) : f (1) = 0

}
,

H2
∗ (0, 1) = H2 (0, 1) ∩H1

∗ (0, 1) ,

∼
H2
∗ (0, 1) = H2 (0, 1) ∩

∼
H1
∗ (0, 1)

and the energy space

H =
∼
H×

 L2 (0, 1) in case (1.1),

∼
H1
∗ (0, 1)× L2 (0, 1) in case (1.4),

where
∼
H = H1

∗ (0, 1)× L2 (0, 1)×
∼
H1
∗ (0, 1)× L2 (0, 1)×

∼
H1
∗ (0, 1)× L2 (0, 1) ,

equipped with the inner product

〈Φ1,Φ2〉H = k 〈(ϕ1x + ψ1 + l w1) , (ϕ2x + ψ2 + l w2)〉L2(0,1) + b 〈ψ1x, ψ2x〉L2(0,1)

+k0 〈(w1x − lϕ1) , (w2x − lϕ2)〉L2(0,1) + ρ1 〈ϕ̃1, ϕ̃2〉L2(0,1) + ρ2〈ψ̃1, ψ̃2〉L2(0,1) + ρ1 〈w̃1, w̃2〉L2(0,1)
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+


ρ3 〈θ1, θ2〉L2(0,1) in case (1.1),

β 〈θ1x, θ2x〉L2(0,1) + ρ3

〈
θ̃1, θ̃2

〉
L2(0,1)

in case (1.4),

where

Φj =

{
(ϕj , ϕ̃j , ψj , ψ̃j , wj , w̃j , θj)

T in case (1.1),

(ϕj , ϕ̃j , ψj , ψ̃j , wj , w̃j , θj , θ̃j)
T in case (1.4),

j = 1, 2.

From the definition of H1
∗ (0, 1) and

∼
H1
∗ (0, 1), we notice that, if (ϕ,ψ,w) ∈ H1

∗ (0, 1)×
∼
H1
∗ (0, 1)×

∼
H1
∗ (0, 1)

satisfying

k ‖(ϕx + ψ + l w)‖2L2(0,1) + b ‖ψx‖2L2(0,1) + k0 ‖(wx − lϕ)‖2L2(0,1) = 0,

then ψ = 0,

ϕ(x) = −c sin (lx) and w(x) = c cos (lx),

where c is a constant such that c = 0 or l = π
2 +mπ, for some m ∈ N. So, if

(2.1) l 6= π

2
+mπ, ∀m ∈ N,

then ϕ = w = 0. Here and after we assume that (2.1) is satisfied. Thus, H is a Hilbert space.

We introduce also the vectors

Φ =


(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ

)T
in case (1.1),(

ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, θ̃
)T

in case (1.4)

and

Φ0 =

{
(ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0)

T
in case (1.1),

(ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, θ1)
T

in case (1.4),

where ϕ̃ = ϕt, ψ̃ = ψt, w̃ = wt and θ̃ = θt. Systems (1.1) − (1.3) and (1.2) − (1.5) can be written as a
first order system given by

(2.2)

{
Φt = AΦ in (0,∞) ,

Φ (t = 0) = Φ0,

where A is a linear operator defined by

AΦ =



ϕ̃

k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)− δ

ρ1
θx

ψ̃

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)

w̃

k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w)

β

ρ3
θxx −

δ

ρ3
ϕ̃x


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in case (1.1), and

AΦ =



ϕ̃

k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)− δ

ρ1
θ̃x

ψ̃

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w)

w̃

k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w)

θ̃

β

ρ3
θxx +

γ

ρ3
θ̃xx −

δ

ρ3
ϕ̃x


in case (1.4). The domain of A is given by

D (A) =

 Φ ∈ H | ϕ ∈ H2
∗ (0, 1) ; ψ, w, θ ∈

∼
H2
∗ (0, 1) ; ϕ̃ ∈ H1

∗ (0, 1) ;

ψ̃, w̃ ∈
∼
H1
∗ (0, 1) ; ϕx (1) = ψx (0) = wx (0) = θx (0) = 0


in case (1.1), and

D (A) =

 Φ ∈ H | ϕ ∈ H2
∗ (0, 1) ; ψ, w, βθ + γθ̃ ∈

∼
H2
∗ (0, 1) ; ϕ̃ ∈ H1

∗ (0, 1) ;

ψ̃, w̃, θ̃ ∈
∼
H1
∗ (0, 1) ; ϕx (1) = ψx (0) = wx (0) = θx (0) = 0


in case (1.4).

Now, we prove that the operator A generates a C0 semigroup of contractions onH. A direct calculation
gives

(2.3) 〈AΦ,Φ〉H =


−β ‖θx‖2L2(0,1) in case (1.1),

−γ
∥∥∥θ̃x∥∥∥2

L2(0,1)
in case (1.4).

Hence, A is dissipative in H. On the other hand, we show that 0 ∈ ρ (A); that is, for any F ∈ H, there
exists Z ∈ D (A) satisfying

(2.4) AZ = F.

2.1. Case of system (1.1) − (1.3). Let F = (f1, · · · , f7)T and Z = (z1, · · · , z7)T . The first, third and
fifth equations in (2.4) are equivalent to

(2.5) z2 = f1, z4 = f3 and z6 = f5,

and then, because F ∈ H,

(2.6) z2 ∈ H1
∗ (0, 1) and z4, z6 ∈

∼
H1
∗ (0, 1) .

Second, substitute z2 into the last equation in (2.4), we conclude that the last equation in (2.4) is reduced
to

(2.7) z7xx =
δ

β
f1x +

ρ3
β
f7.

By a direct integration, we see that (2.7) has a unique solution z7 satisfying

(2.8) z7 ∈
∼
H2
∗ (0, 1) and z7x(0) = 0,

this solution is given by

z7(x) =
1

β

∫ x

1

∫ y

0

[δf1x(τ) + ρ3f7(τ)] dτ dy.
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Finally, the second, fourth and sixth equations in (2.4) become

(2.9)


k (z1x + z3 + l z5)x + lk0 (z5x − lz1) = δz7x + ρ1f2,

bz3xx − k (z1x + z3 + l z5) = ρ2f4,

k0 (z5x − lz1)x − lk (z1x + z3 + l z5) = ρ1f6.

To prove that (2.9) admits a solution (z1, z3, z5) satisfying

(2.10) z1 ∈ H2
∗ (0, 1) , z3, z5 ∈

∼
H2
∗ (0, 1) and z1x(1) = z3x(0) = z5x(0) = 0,

we put

H0 = H1
∗ (0, 1)×

∼
H1
∗ (0, 1)×

∼
H1
∗ (0, 1)

and we define the bilinear form on H0 ×H0

a ((v1, v2, v3) , (w1, w2, w3)) = k 〈v1x + v2 + lv3, w1x + w2 + lw3〉L2(0,1)

+b 〈v2x, w2x〉L2(0,1) + k0 〈v3x − lv1, w3x − lw1〉L2(0,1)

and the linear form on H0

l1 (v1, v2, v3) = 〈δz7x + ρ1f2, v1〉L2(0,1) + 〈ρ2f4, v2〉L2(0,1) + 〈ρ1f6, v3〉L2(0,1) .

Thus, the variational formulation of (2.9) is given by

(2.11) a ((z1, z3, z5) , (w1, w2, w3)) = l1 (w1, w2, w3) , ∀ (w1, w2, w3)
T ∈ H0.

From the Lax-Milgram theorem, it follows that (2.11) has a unique solution

(z1, z3, z5) ∈ H0.

Therefore, using classical elliptic regularity arguments, we conclude that (z1, z3, z5) solves (2.9) and
satisfies the regularity and boundary conditions (2.10). This proves that (2.4) has a unique solution
Z ∈ D (A). By the resolvent identity, we have λI−A is surjective, for any λ > 0 (see [20]), where I denotes
the identity operator. Consequently, the Lumer-Phillips theorem implies that A is the infinitesimal
generator of a linear C0 semigroup of contractions on H.

2.2. Case of system (1.2)− (1.5). Let F = (f1, · · · , f8)T and Z = (z1, · · · , z8)T . The first, third, fifth
and seventh equations in (2.4) are equivalent to

(2.12) z2 = f1, z4 = f3, z6 = f5 and z8 = f7,

and then, because F ∈ H,

(2.13) z2 ∈ H1
∗ (0, 1) and z4, z6, z8 ∈

∼
H1
∗ (0, 1) .

Second, substitute z2 and z8 into the last equation in (2.4), we conclude that the last equation in (2.4)
is reduced to

(2.14) (βz7 + γf7)xx = δf1x + ρ3f8.

Because δf1x + ρ3f8 ∈ L2(0, 1) and f7 ∈
∼
H1
∗ (0, 1), then, by classical arguments, we see that (2.14) has a

unique solution z7 satisfying

(2.15) βz7 + γf7 ∈
∼
H2
∗ (0, 1) , z7 ∈

∼
H1
∗ (0, 1) and z7x(0) = 0.

Finally, the second, fourth and sixth equations in (2.4) become

(2.16)


k (z1x + z3 + l z5)x + lk0 (z5x − lz1) = δf7x + ρ1f2,

bz3xx − k (z1x + z3 + l z5) = ρ2f4,

k0 (z5x − lz1)x − lk (z1x + z3 + l z5) = ρ1f6.

To prove that (2.16) admits a solution (z1, z3, z5) satisfying (2.10), we follow the same arguments as in
the previous case by considering the variational formulation of (2.16) given by

a ((z1, z3, z5) , (w1, w2, w3)) = l2 (w1, w2, w3) , ∀ (w1, w2, w3)
T ∈ H0,
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where
l2 (v1, v2, v3) = 〈δf7x + ρ1f2, v1〉L2(0,1) + 〈ρ2f4, v2〉L2(0,1) + 〈ρ1f6, v3〉L2(0,1) .

Consequently, the following well-posedness results for (2.2) hold (see [22]):

Theorem 2.1. Assume that (2.1) holds. Then, for any m ∈ N and Φ0 ∈ D(Am), system (2.2) admits a
unique solution

(2.17) Φ ∈ ∩mj=0C
m−j (R+;D

(
Aj
))
.

In the next two sections, we will show the non-exponential and plynomial stability of (2.2), where the
proof is based on the following theorems:

Theorem 2.2. ([14] and [23]) A C0 semigroup of contractions on a Hilbert space H generated by an
operator A is exponentially stable if and only if

(2.18) iR ⊂ ρ (A) and sup
λ∈R

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞.

Theorem 2.3. ([18]) If a bounded C0 semigroup etA on a Hilbert space H generated by an operator A
satisfies, for some j ∈ N∗,

(2.19) iR ⊂ ρ (A) and sup
|λ|≥1

1

λj

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞.

Then, for any m ∈ N∗, there exists a positive constant cm such that

(2.20)
∥∥etAz0∥∥H ≤ cm ‖z0‖D(Am)

(
ln t

t

)m
j

ln t, ∀z0 ∈ D (Am) , ∀t > 0.

3. Lack of exponential stability

Our objective here is to show that the semigroup associated with (2.2) is not exponentailly stable.

Theorem 3.1. We assume that (2.1) holds. Then, the semigroup associated with (2.2) is not exponen-
tially stable.

Proof. We use Theorem 2.2 by proving that the second condition in (2.18) is not satisfied; that is we
prove that there exists a sequence (λn)n ⊂ R such that

lim
n→∞

∥∥∥(iλnI −A)
−1
∥∥∥
L(H)

=∞,

which is equivalent to prove that there exists a sequence (Fn)n ⊂ H satisfying

(3.1) ‖Fn‖H ≤ 1, ∀n ∈ N
and

(3.2) lim
n→∞

‖ (iλnI −A)
−1
Fn‖H =∞.

For this purpose, let
Φn = (iλnI −A)

−1
Fn, ∀n ∈ N.

Then, we have to prove that (3.1) holds such that

(3.3) lim
n→∞

‖Φn‖H =∞ and iλnΦn −AΦn = Fn, ∀n ∈ N.

Taking

Φn =


(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, θn

)T
in case (1.1),(

ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, θn, θ̃n

)T
in case (1.4)

and

Fn =

{
(f1n, · · · , f7n)

T
in case (1.1),

(f1n, · · · , f8n)
T

in case (1.4).
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Therefore, from the second equality in (3.3), we have the following systems:

(3.4)



iλnϕn − ϕ̃n = f1n,

iρ1λnϕ̃n − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) + δθnx = ρ1f2n,

iλnψn − ψ̃n = f3n,

iρ2λnψ̃n − bψnxx + k (ϕnx + ψn + l wn) = ρ2f4n,

iλnwn − w̃n = f5n,

iρ1λnw̃n − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) = ρ1f6n,

iρ3λnθn − βθnxx + δϕ̃nx = ρ3f7n

in case (1.1), and

(3.5)



iλnϕn − ϕ̃n = f1n,

iρ1λnϕ̃n − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) + δθ̃nx = ρ1f2n,

iλnψn − ψ̃n = f3n,

iρ2λnψ̃n − bψnxx + k (ϕnx + ψn + l wn) = ρ2f4n,

iλnwn − w̃n = f5n,

iρ1λnw̃n − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) = ρ1f6n,

iλnθn − θ̃n = f7n,

iρ3λnθ̃n − βθnxx − γθ̃nxx + δϕ̃nx = ρ3f8n

in case (1.4). Choosing

(3.6)

{
f1n = f3n = f5n = 0 in case (1.1),

f1n = f3n = f5n = f7n = 0 in case (1.4).

Thus, systems (3.4) and (3.5) become, respectively,

(3.7)



ϕ̃n = iλnϕn, ψ̃n = iλnψn, w̃n = iλnwn,

−ρ1λ2nϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) + δθnx = ρ1f2n,

−ρ2λ2nψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2f4n,

−ρ1λ2nwn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) = ρ1f6n,

iρ3λnθn − βθnxx + iδλnϕnx = ρ3f7n

and

(3.8)



ϕ̃n = iλnϕn, ψ̃n = iλnψn, w̃n = iλnwn, θ̃n = iλnθn,

−ρ1λ2nϕn − k (ϕnx + ψn + l wn)x − lk0 (wnx − lϕn) + iδλnθnx = ρ1f2n,

−ρ2λ2nψn − bψnxx + k (ϕnx + ψn + l wn) = ρ2f4n,

−ρ1λ2nwn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + l wn) = ρ1f6n,

−iρ3λ2nθn − βθnxx − iγλnθnxx + iδλnϕnx = ρ3f8n.

To simplify the calculations, we put N = (2n+1)π
2 and consider few cases. Some of the next computations

were given in [1] and will be addapted here to our problems.

Case 1:
b

ρ2
=
k0
ρ1

. We choose

(3.9) f4n(x) = − lk0
ρ2
D cos (Nx) , f6n(x) = − l

2k0
ρ1

D cos (Nx)
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and

(3.10)

{
f2n = f7n = 0 in case (1.1),

f2n = f8n = 0 in case (1.4),

where D ∈ R. We will look for Φn ∈ D(A) such that{
ϕn = ϕ̃n = θn = θ̃n = 0, ψn(x) = B cos (Nx) , ψ̃n(x) = iBλn cos (Nx) ,

wn(x) = D cos (Nx) and w̃n(x) = iDλn cos (Nx) ,

where B ∈ R. Systems (3.7) and (3.8) are satisfied if and only if

(3.11)



kB + l (k + k0)D = 0,[
−λ2n +

b

ρ2
N2 +

k

ρ2

]
B +

lk

ρ2
D = − lk0

ρ2
D,

lk

ρ1
B +

[
−λ2n +

k0
ρ1
N2 +

l2k

ρ1

]
D = − l

2k0
ρ1

D.

Taking

(3.12) λn = N

√
k0
ρ1
.

Because
b

ρ2
=
k0
ρ1

, we get

−λ2n +
b

ρ2
N2 = −λ2n +

k0
ρ1
N2 = 0,

and therefore, the system (3.11) will be reduced to

kB + l (k + k0)D = 0,

which is equivalent to

(3.13) B = −l
(

1 +
k0
k

)
D.

Choosing

D =
ρ1ρ2

lk0
√
ρ21 + l2ρ22

and using (3.6), (3.9) and (3.10), we obtain

‖Fn‖2H = ‖f4n‖2L2(0,1) + ‖f6n‖2L2(0,1) =

(
lk0
ρ2

)2
[

1 +

(
lρ2
ρ1

)2
]
D2

∫ 1

0

cos2 (Nx) dx

≤
(
lk0
ρ2

)2
[

1 +

(
lρ2
ρ1

)2
]
D2 = 1,

so, (3.1) is satisfied. On the other hand, we have

‖Φn‖2H ≥ k0 ‖wnx − lϕn‖
2
L2(0,1) = k0 ‖wnx‖2L2(0,1)

≥ k0
2
D2N2

∫ 1

0

[1− cos (2Nx)] dx =
k0
2
D2N2,

hence, the limit in (3.3) holds.

Case 2:
b

ρ2
6= k0
ρ1

and k 6= k0. We consider (3.6)1 and choose

(3.14) f2n = f4n = f7n = 0, f6n(x) = cos (Nx) ,
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and

(3.15)



ϕn(x) = α1 sin (Nx) , ϕ̃n(x) = iα1λn sin (Nx) ,

ψn(x) = α2 cos (Nx) , ψ̃n(x) = iα2λn cos (Nx) ,

wn(x) = α3 cos (Nx) , w̃n(x) = iα3λn cos (Nx) ,

θn(x) = α4 cos (Nx)

in case (1.1), and (3.6)2, (3.14), (3.15),

(3.16) f8n = 0 and θ̃n(x) = iα4λn cos (Nx)

in case (1.4), where α1, · · · , α4 are constants depending on N . For λn, we consider the choice

(3.17) λn =

√
k0
ρ1
N2 +

l2k

ρ1
.

According to these choices, we see that Φn ∈ D(A), Fn ∈ H and

(3.18) ‖Fn‖2H = ‖f6n‖2L2(0,1) =

∫ 1

0

cos2 (Nx) dx ≤ 1,

which gives (3.1). On the other hand, thanks to the above choices, (3.7) and (3.8) are satisfied if and
only if

α4 = µnN
2α1

and

(3.19)


[
(k − µn)N2 − ρ1λ2n + l2k0

]
α1 + kNα2 + l (k + k0)Nα3 = 0,

kNα1 +
(
bN2 − ρ2λ2n + k

)
α2 + klα3 = 0,

l (k + k0)Nα1 + lkα2 +
(
k0N

2 − ρ1λ2n + l2k
)
α3 = ρ1,

where

(3.20) µn =


−iδ2λn

βN2+iρ3λn
in case (1.1),

δ2λ2
n

iγλnN2+βN2−ρ3λ2
n

in case (1.4).

From the choice (3.17), we remark that the last equation in (3.19) is equivalent to

(3.21) α2 = −k + k0
k

Nα1 +
ρ1
lk
,

so, substituting in the first two equations in (3.19), we entail

(3.22) α3 = a1Nα1 + a2

and

(3.23) α1 =

[
l (k + k0) a2 +

ρ1
l

]
N

[2k0 + µn − l (k + k0) a1]N2 + l2 (k − k0)
,

where 
a1 = k+k0

lk2

(
b− ρ2k0

ρ1

)
N2 +

k0
lk
− lρ2(k + k0)

ρ1k
,

a2 = ρ1
(lk)2

[(
ρ2k0
ρ1
− b
)
N2 +

l2ρ2k

ρ1
− k
]
.

To simplify the computations, we put
a3 =

ρ1 (k + k0)

lk2

(
ρ2k0
ρ1
− b
)
, a4 =

(k + k0)
2

k2

(
ρ2k0
ρ1
− b
)
,

a5 = lρ2(k+k0)
k − k0ρ1

lk
, a6 =

l2ρ2 (k + k0)
2

ρ1k
+
k0 (k − k0)

k
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and 
d0 = k+k0

lk2

(
b− ρ2k0

ρ1

)
, d1 = ρ1

(lk)2

(
ρ2k0
ρ1
− b
)
,

d2 =
k0
lk
− lρ2(k + k0)

ρ1k
, d3 = ρ1

l2k

(
l2ρ2
ρ1
− 1

)
.

It follows that

Nα1 =
a3N

4 + a5N
2

a4N4 + (µn + a6)N2 + l2 (k − k0)

and (notice that d0a3 + d1a4 = 0)

(3.24) α3 =

(
d0N

2 + d2
) (
a3N

4 + a5N
2
)

a4N4 + (µn + a6)N2 + l2 (k − k0)
+ d1N

2 + d3

=
(d0a5 + d2a3 + d3a4 + d1a6 + d1µn)N4 +

(
d2a5 + d3a6 + l2 (k − k0) d1 + d3µn

)
N2 + l2 (k − k0) d3

a4N4 + (µn + a6)N2 + l2 (k − k0)
,

Because
b

ρ2
6= k0

ρ1
and k 6= k0, it appears that a4 6= 0 and

(3.25) d0a5 + d2a3 + d3a4 + d1a6 =
ρ1

(lk)2

(
ρ2k0
ρ1
− b
)

(k0 − k) 6= 0.

On the other hand, we have

(3.26) lim
n→∞

µn = 0,

then, we deduce from (3.24), (3.25) and (3.26) that

(3.27) lim
n→∞

α3 =
d0a5 + d2a3 + d3a4 + d1a6

a4
6= 0,

hence,

(3.28) lim
n→∞

|α3|λn =∞.

Now, we notice that

‖Φn‖2H ≥ ρ1 ‖w̃n‖
2
L2(0,1) = ρ1 (|α3|λn)

2
∫ 1

0

cos2 (Nx) dx

≥ 1

2
ρ1 (|α3|λn)

2
∫ 1

0

[1 + cos (2Nx)] dx =
1

2
ρ1 (|α3|λn)

2
,

thus, by (3.28) we infer that the limit in (3.3).

Case 3:
b

ρ2
6= k0
ρ1

and k = k0. We consider the choices (3.6)1,

(3.29) λn =

√
b

ρ2
N2 +

k

2ρ2
,

(3.30) f2n = f7n = 0, f4n(x) = α2Cn cos (Nx) , f6n(x) = α2Dn cos (Nx) ,

and (3.15) with

(3.31) α1 =

(
ρ1Dn

2lk
− 1

2

)
α2

N
, α3 = 0 and α4 = µnN

2α1

in case (1.1), and (3.6)2, (3.15), (3.16), (3.29), (3.30) and (3.31) in case (1.4), where

Cn =
ρ1

2lρ2
Dn, Dn =

2lk

ρ1

(
1

2
− k

k + l2k
N2 − µn − ρ1λ2

n

N2

)
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and µn is defined in (3.20). According to (3.20) and (3.29), we remark that (3.26) holds, and moreover

lim
n→∞

Dn =
2lk

ρ1

(
1

2
− k

k − ρ1b
ρ2

)
and lim

n→∞
Cn =

k

ρ2

(
1

2
− k

k − ρ1b
ρ2

)

(these limits exist since
b

ρ2
6= k0
ρ1

and k = k0), so, the sequence
(
|Cn|2 + |Dn|2

)
n

is bounded. Then, we

choose

(3.32) α2 =
1√

supn∈N (|Cn|2 + |Dn|2)
.

According to these choices, it is clear that Φn ∈ D(A), Fn ∈ H and

‖Fn‖2H = ‖f4n‖2L2(0,1) + ‖f6n‖2L2(0,1) =
(
|Cn|2 + |Dn|2

)
α2
2

∫ 1

0

cos2 (Nx) dx

≤
(
|Cn|2 + |Dn|2

)
α2
2 ≤ 1,

hence, (3.1) holds. On the other hand, because k = k0 and α3 = 0, (3.7) and (3.8) are satisfied if and
only if

(3.33)


[
(k − µn)N2 − ρ1λ2n + l2k

]
α1 + kNα2 = 0,

kNα1 +
(
bN2 − ρ2λ2n + k

)
α2 = ρ2α2Cn,

2lkNα1 + lkα2 = ρ1α2Dn.

The first equation in (3.33) is satisfied thanks to the definition of α1 and Dn, the second equation in
(3.33) holds according to the definition of λn, α1 and Cn, and the last equation in (3.33) is valid from
the definition of α1.

Now, we have

‖Φn‖2H ≥ ρ2
∥∥∥ψ̃n∥∥∥2

L2(0,1)
= ρ2 (α2λn)

2
∫ 1

0

cos2 (Nx) dx

≥ 1

2
ρ2 (α2λn)

2
∫ 1

0

[1 + cos (2Nx)] dx =
1

2
ρ2 (α2λn)

2
,

consequently, the limit in (3.3) holds.

Finally, there exist sequences (Fn)n ⊂ H, (Φn)n ⊂ D(A) and (λn)n ⊂ R satisfying (3.1) and (3.3).
Hence, Theorem 2.2 implies that system (2.2) is not exponentially stable. �

4. Polynomial stability

In this section, we use Theorem 2.3 to prove that the semigroup associated to (2.2) is polynomially
stable. Our main result is stated as follow:

Theorem 4.1. Assume that (2.1) holds and

(4.1) l2 6= k0ρ2 − bρ1
k0ρ2

(π
2

+mπ
)2
− kρ1
ρ2 (k + k0)

, ∀m ∈ Z.

Then, for any m ∈ N∗, there exists a constant cm > 0 such that

(4.2) ∀Φ0 ∈ D (Am) , ∀t > 0,
∥∥etAΦ0

∥∥
H ≤ cm ‖Φ0‖D(Am)

(
ln t

t

)m
4

ln t.

Proof. We start by proving that

(4.3) i IR ⊂ ρ (A)



14 BRESSE SYSTEM WITH HEAT CONDUCTION OF TYPES I AND III

is equivalent to (4.1). In section 2, we have proved that 0 ∈ ρ (A). So, let λ ∈ R∗. We prove that iλ is
not an eigenvalue of A by proving that the unique solution

Φ =


(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ

)T
in case (1.1),(

ϕ, ϕ̃, ψ, ψ̃, w, w̃, θ, θ̃
)T

in case (1.4)

in D (A) of the equation

(4.4) AΦ = i λΦ

is Φ = 0. The equation (4.4) means that

(4.5)



ϕ̃ = iλϕ, ψ̃ = iλψ, w̃ = iλw,

k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)− δ

ρ1
θx = iλϕ̃,

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w) = iλψ̃,

k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w) = iλw̃,

β

ρ3
θxx −

δ

ρ3
ϕ̃x = iλθ

in case (1.1), and

(4.6)



ϕ̃ = iλϕ, ψ̃ = iλψ, w̃ = iλw, θ̃ = iλθ,

k

ρ1
(ϕx + ψ + l w)x +

lk0
ρ1

(wx − lϕ)− δ

ρ1
θ̃x = iλϕ̃,

b

ρ2
ψxx −

k

ρ2
(ϕx + ψ + l w) = iλψ̃,

k0
ρ1

(wx − lϕ)x −
lk

ρ1
(ϕx + ψ + l w) = iλw̃,

β

ρ3
θxx +

γ

ρ3
θ̃xx −

δ

ρ3
ϕ̃x = iλθ̃

in case (1.4). Using (2.3), we find

0 = Re iλ ‖Φ‖2H = Re 〈iλΦ,Φ〉H = Re 〈AΦ,Φ〉H =


−β ‖θx‖2L2(0,1) in case (1.1),

−γ
∥∥∥θ̃x∥∥∥2

L2(0,1)
in case (1.4).

Then,

(4.7)

{
θx = 0 in case (1.1),

θ̃x = 0 in case (1.4).

Taking into account that θ, θ̃ ∈
∼
H1
∗ (0, 1) (since Φ ∈ D (A)) and the Poincaré’s inequality and using (4.7)

and the fourth equation in (4.6), we deduce that

(4.8)

{
θ = 0 in case (1.1),

θ = θ̃ = 0 in case (1.4).

By using (4.8) and the last equation in (4.5) and (4.6), we arrive at

(4.9) ϕ̃x = 0.

Therefore, from the first equation in (4.5) and (4.6), we obtain

(4.10) ϕx = 0.
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As ϕ, ϕ̃ ∈ H1
∗ (0, 1) and according to the Poincaré’s inequality, it follows that

(4.11) ϕ = ϕ̃ = 0.

Using (4.8) and (4.11), we see that (4.5) and (4.6) are reduced to

(4.12)



ψ̃ = iλψ, w̃ = iλw,

kψx + l (k + k0)wx = 0,

bψxx − k (ψ + l w) = −ρ2λ2ψ,

k0wxx − lk (ψ + l w) = −ρ1λ2w.

Taking into account that (ψ,w) ∈
( ∼
H1
∗ (0, 1)

)2

and the Poincaré’s inequality and using the third equation

in (4.12), we entail

(4.13) ψ = −l
(

1 +
k0
k

)
w.

Using the last two equations in (4.12), we infer that

(4.14) lbψxx − k0wxx = −ρ2lλ2ψ + ρ1λ
2w.

Then, combining with (4.13), we see that

wxx + α2λ2w = 0,

where

(4.15) α =

√
ρ2l

2 (k + k0) + kρ1
bl2 (k + k0) + kk0

.

This implies that, for c1, c2 ∈ C,

w(x) = c1 cos (αλx) + c2 sin (αλx) .

The boundary condition wx (0) = 0 leads to c2 = 0, and so, using (4.13),

(4.16) ψ(x) = −l
(

1 +
k0
k

)
c1 cos (αλx) and w(x) = c1 cos (αλx) .

Because ψ(1) = w(1) = 0, we have

c1 = 0 or ∃m ∈ Z : αλ =
π

2
+mπ.

If c1 = 0, we get

(4.17) ψ = w = 0.

Using (4.17) and the first two equations in (4.12), we arrive at

ψ̃ = w̃ = 0.

Consequently, Φ = 0 and hence

(4.18) iλ ∈ ρ (A) .

If c1 6= 0, we obtain

(4.19) ∃m ∈ Z : αλ =
π

2
+mπ.

Therefore, using (4.15) and (4.16), it appears that the last two equations in (4.12) are equivalent to

(4.20) (k0ρ2 − bρ1)λ2 =
k0

k + k0

[
bl2 (k + k0) + kk0

]
.

Combining (4.15), (4.19) and (4.20), we entail

(4.21) ∃m ∈ Z :
(π

2
+mπ

)2
=
k0
[
l2ρ2 (k + k0) + kρ1

]
(k + k0) (k0ρ2 − bρ1)

.
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If (4.1) holds, then (4.21) is impossible. Hence, c1 = 0 and so (4.18) holds.

If (4.1) does not hold, then, for λ =
1

α

(π
2

+mπ
)

and for any c1 ∈ C,

Φ(x) =

(
0, 0,−l

(
1 +

k0
k

)
c1 cos (αλx) ,−il

(
1 +

k0
k

)
c1λ cos (αλx) , c1 cos (αλx) , ic1λ cos (αλx) , 0

)T
and

Φ(x) =

(
0, 0,−l

(
1 +

k0
k

)
c1 cos (αλx) ,−il

(
1 +

k0
k

)
c1λ cos (αλx) , c1 cos (αλx) , ic1λ cos (αλx) , 0, 0

)T
are solutions of (4.4) in cases (1.1) and (1.4), respectively. Hence, iλ /∈ ρ (A). Finally, (4.3) holds if and
only if (4.1) holds.

Now, we need to show that

(4.22) sup
|λ| ≥ 1

1

λ4

∥∥∥(iλI −A)
−1
∥∥∥
H
<∞.

Let us establish (4.22) by contradiction. Assume that (4.22) is false, then, there exist sequences (Φn)n ⊂
D (A) and (λn)n ⊂ R satisfying

(4.23) ‖Φn‖H = 1, ∀n ∈ N,

(4.24) lim
n→∞

|λn| =∞

and

(4.25) lim
n→∞

λ4n ‖(iλn I − A) Φn‖H = 0.

Our goal is to derive that ‖Φn‖H → 0 as a contradiction with (4.23). This will be established through
several steps for each system by using different multipliers, where some of them were used in [1].

4.1. Case of system (1.1) − (1.3). Let Φn =

(
ϕn,

∼
ϕn, ψn,

∼
ψn, wn,

∼
wn, θn

)T
. The limit (4.25) implies

that

(4.26)



λ4n

[
iλnϕn −

∼
ϕn

]
→ 0 in H1

∗ (0, 1) ,

λ4n

[
iρ1λn

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) + δθnx

]
→ 0 in L2 (0, 1) ,

λ4n

[
iλnψn −

∼
ψn

]
→ 0 in

∼
H1
∗ (0, 1) ,

λ4n

[
iρ2λn

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) ,

λ4n

[
iλnwn −

∼
wn

]
→ 0 in

∼
H1
∗ (0, 1) ,

λ4n

[
iρ1λn

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) ,

λ4n

[
iρ3λnθn − βθnxx + δ

∼
ϕnx

]
→ 0 in L2 (0, 1) .

Step 1. Taking the inner product of λ4n (i λn I − A) Φn with Φn in H and using (2.3), we get

Re
〈
λ4n (i λn I − A) Φn,Φn

〉
H = Re

(
iλ5n ‖Φn‖

2
H + βλ4n ‖θnx‖

2
L2(0,1)

)
= βλ4n ‖θnx‖

2
L2(0,1) .

So, (4.23) and (4.25) lead that

(4.27) λ2nθnx −→ 0 in L2 (0, 1) .

Because θn in
∼
H1
∗ (0, 1) and thanks to Poincaré’s inequality, we deduce that

(4.28) λ2nθn −→ 0 in L2 (0, 1) .
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Step 2. Multiplying (4.26)1, (4.26)3 and (4.26)5 by
1

λ5n
, and using (4.23) and (4.24), we obtain

(4.29)


ϕn −→ 0 in L2 (0, 1) ,

ψn −→ 0 in L2 (0, 1) ,

wn −→ 0 in L2 (0, 1) .

Step 3. Multiplying (4.26)2 by
1

λ5n
and using (4.24), we find

iρ1
∼
ϕn −

k

λn
(ϕnx + ψn + lwn)x −

lk0
λn

(wnx − lϕn) +
δ

λn
θnx −→ 0 in L2 (0, 1) .

Using (4.23), (4.24) and (4.27), we conclude that

(4.30)

(
1

λn
ϕnxx

)
n

is bounded in L2 (0, 1) .

Step 4. Taking the inner product of (4.26)7 with
i

λ3n
ϕnx in L2 (0, 1) and using (4.23) and (4.24), we

entail

ρ3
〈
λ2nθn, ϕnx

〉
L2(0,1)

− β 〈λnθnxx, iϕnx〉L2(0,1)

−δ
〈
λn

(
iλnϕnx −

∼
ϕnx

)
, iϕnx

〉
L2(0,1)

+ δλ2n ‖ϕnx‖
2
L2(0,1) −→ 0,

then, integrating by parts and using the boundary conditions, we arrive at

(4.31) ρ3
〈
λ2nθn, ϕnx

〉
L2(0,1)

+ β

〈
λ2nθnx,

i

λn
ϕnxx

〉
L2(0,1)

−δ
〈
λn

(
iλnϕnx −

∼
ϕnx

)
, iϕnx

〉
L2(0,1)

+ δλ2n ‖ϕnx‖
2
L2(0,1) −→ 0.

Combining (4.23), (4.24), (4.26)1, (4.27), (4.28), (4.30) and (4.31), it follows that

(4.32) λnϕnx −→ 0 in L2 (0, 1) .

Moreover, again by (4.26)1, we see that

(4.33)
∼
ϕnx → 0 in L2 (0, 1) ,

and, as ϕn,
∼
ϕn ∈ H1

∗ (0, 1) and thanks to Poincaré’s inequality, we remark also

(4.34) λnϕn −→ 0 in L2 (0, 1)

and

(4.35)
∼
ϕn −→ 0 in L2 (0, 1) .

Step 5. Multiplying (4.26)3 and (4.26)5 by
1

λ4n
, and using (4.23) and (4.24), we have

(4.36) (λnψn)n and (λnwn)n are bounded in L2 (0, 1) .

Step 6. Taking the inner product of (4.26)2 with
i

λ3n

∼
ϕn in L2 (0, 1), integrating by parts and using

the boundary conditions, we get

(4.37) ρ1

∥∥∥λn∼ϕn∥∥∥2
L2(0,1)

+ k
〈
λn (ϕnx + ψn + lwn) , i

∼
ϕnx

〉
L2(0,1)

+lk0

〈
λnwn, i

∼
ϕnx

〉
L2(0,1)

+ l2k0

〈
λnϕn, i

∼
ϕn

〉
L2(0,1)

+ δ
〈
λnθnx, i

∼
ϕn

〉
L2(0,1)

→ 0.

So, using (4.23), (4.24), (4.27), (4.32), (4.33), (4.34) and (4.36), we deduce that

(4.38) λn
∼
ϕn −→ 0 in L2 (0, 1) ,
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and by (4.24) and (4.26)1, we find

(4.39) λ2nϕn −→ 0 in L2 (0, 1) .

Step 7. Multiplying (4.26)4 and (4.26)6 by
1

λ5n
and using (4.24), we obtain

iρ2
∼
ψn −

b

λn
ψnxx +

k

λn
(ϕnx + ψn + lwn)→ 0 in L2 (0, 1) ,

iρ1
∼
wn −

k0
λn
wnxx +

lk0
λn

ϕnx +
lk

λn
(ϕnx + ψn + lwn)→ 0 in L2 (0, 1) .

Exploiting (4.23) and (4.24), it appears that

(4.40)

(
1

λn
ψnxx

)
n

and

(
1

λn
wnxx

)
n

are bounded in L2 (0, 1) .

Step 8. Taking the inner product of (4.26)2 with
1

λ4n
[kψnx + l (k + k0)wnx] in L2 (0, 1), we arrive at

(4.41) ρ1

〈
iλn
∼
ϕn, [kψnx + l (k + k0)wnx]

〉
L2(0,1)

− k 〈ϕnxx, [kψnx + l (k + k0)wnx]〉L2(0,1)

−‖kψnx + l (k + k0)wnx‖2L2(0,1) + l2k0 〈ϕn, [kψnx + l (k + k0)wnx]〉L2(0,1)

+δ 〈θnx, [kψnx + l (k + k0)wnx]〉L2(0,1) → 0.

Again, integrating by parts and using the boundary conditions, we see that

(4.42) 〈ϕnxx, [kψnx + l (k + k0)wnx]〉L2(0,1) = −
〈
λnϕnx,

[
k

λn
ψnxx +

l (k + k0)

λn
wnxx

]〉
L2(0,1)

.

Then, using (4.32), (4.40) and (4.42), we deduce that

(4.43) 〈ϕnxx, [kψnx + l (k + k0)wnx]〉L2(0,1) → 0,

so, exploiting (4.23), (4.24), (4.27), (4.29), (4.38), (4.41) and (4.43), we entail

(4.44) kψnx + l (k + k0)wnx → 0 in L2 (0, 1) .

Step 9. Taking the inner product of (4.26)4 with
1

λ4n
ψn in L2 (0, 1), using (4.23) and (4.24), integrating

by parts and using the boundary conditions, we obtain

−ρ2
〈
∼
ψn,

(
iλnψn −

∼
ψn

)〉
L2(0,1)

− ρ2
∥∥∥∥∼ψn∥∥∥∥2

L2(0,1)

+b ‖ψnx‖2L2(0,1) + k 〈(ϕnx + ψn + lwn) , ψn〉L2(0,1) → 0,

then, using (4.23), (4.24), (4.26)3 and (4.29), we find

(4.45) b ‖ψnx‖2L2(0,1) − ρ2
∥∥∥∥∼ψn∥∥∥∥2

L2(0,1)

→ 0.

On the other hand, taking the inner product of (4.26)6 with
1

λ4n
wn in L2 (0, 1), using (4.23) and (4.24),

integrating by parts and using the boundary conditions, we observe that

−ρ1
〈
∼
wn,

(
iλnwn −

∼
wn

)〉
L2(0,1)

− ρ1
∥∥∥∼wn∥∥∥2

L2(0,1)
+ k0 ‖wnx‖2L2(0,1) (4.46)

−lk0 〈ϕn, wnx〉L2(0,1) + lk 〈(ϕnx + ψn + lwn) , wn〉L2(0,1) → 0.

By (4.23), (4.24), (4.26)5 and (4.29), it follows that

(4.46) k0 ‖wnx‖2L2(0,1) − ρ1
∥∥∥∼wn∥∥∥2

L2(0,1)
→ 0.
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Step 10. Taking the inner product of (4.26)4 with
1

λ4n
wn and of (4.26)6 with

1

λ4n
ψn, and using (4.23)

and (4.24), we infer that
〈[
iλnρ2

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]
, wn

〉
L2(0,1)

→ 0,〈[
iλnρ1

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn)

]
, ψn

〉
L2(0,1)

→ 0.

Integrating by parts and using the boundary conditions, it appears that

−ρ2
〈
∼
ψn,

(
iλnwn −

∼
wn

)〉
L2(0,1)

− ρ2
〈
∼
ψn,

∼
wn

〉
L2(0,1)

+b 〈ψnx, wnx〉L2(0,1) + k 〈(ϕnx + ψn + lwn) , wn〉L2(0,1) → 0

and

−ρ1
〈
∼
wn,

(
iλnψn −

∼
ψn

)〉
L2(0,1)

− ρ1
〈
∼
wn,

∼
ψn

〉
L2(0,1)

+k0 〈(wnx − lϕn) , ψnx〉L2(0,1) + lk 〈(ϕnx + ψn + lwn) , ψn〉L2(0,1) → 0,

then, using (4.23), (4.24), (4.26)3, (4.26)5 and (4.29), we obtain
−ρ2

〈
∼
ψn,

∼
wn

〉
L2(0,1)

+ b 〈ψnx, wnx〉L2(0,1) → 0,

−ρ1
〈
∼
ψn,

∼
wn

〉
L2(0,1)

+ k0 〈ψnx, wnx〉L2(0,1) → 0,

which implies that

(4.47)

(
ρ2
b
− ρ1
k0

)〈
∼
ψn,

∼
wn

〉
L2(0,1)

→ 0

and

(4.48)

(
b

ρ2
− k0
ρ1

)
〈ψnx, wnx〉L2(0,1) → 0.

Step 11. At this stage, we will consider two cases.

Case 1:
b

ρ2
6= k0
ρ1

. From (4.47) and (4.48), we see that

(4.49)

〈
∼
ψn,

∼
wn

〉
L2(0,1)

→ 0 and 〈ψnx, wnx〉L2(0,1) → 0.

Therefore, taking the inner product of (4.44), first, with ψnx, and second, with wnx, we remark that

(4.50) ψnx → 0 and wnx → 0 in L2 (0, 1) ,

and then, by (4.45), (4.46) and (4.50),

(4.51)
∼
ψn → 0 and

∼
wn → 0 in L2 (0, 1) .

Finally, combining (4.28), (4.29), (4.32), (4.35), (4.50) and (4.51), we get

(4.52) ‖Φn‖H −→ 0,

which is a contradiction with (4.23), so (4.22) holds. Consequentely, (4.2) is satisfied.
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Case 2:
b

ρ2
=
k0
ρ1

. Multiplying (4.26)4 and (4.26)6 by 1
λn

, and using (4.26)3, (4.26)5 and (4.24), we

obtain

(4.53)


λ3n

[
−ρ2
b
λ2nψn − ψnxx +

k

b
(ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) ,

λ3n

[
−ρ2
b
λ2nwn − (wnx − lϕn)x +

lk

k0
(ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) .

Multiplying (4.53)1 and (4.53)2 with
1

λ3n
, and using (4.24), (4.29) and (4.32), we find

(4.54)


ρ2
b
λ2nψn + ψnxx → 0 in L2 (0, 1) ,

ρ2
b
λ2nwn + wnxx → 0 in L2 (0, 1) .

Multiplying (4.54)1 by k and (4.54)2 by l(k+k0) and adding the obtained limits, and multiplying (4.54)1
by k and (4.54)2 by −l(k + k0) and adding the limits, we entail

(4.55)


ρ2
b
λ2n [kψn + l(k + k0)wn] + [kψnxx + l(k + k0)wnxx]→ 0 in L2 (0, 1) ,

ρ2
b
λ2n [kψn − l(k + k0)wn] + [kψnxx − l(k + k0)wnxx]→ 0 in L2 (0, 1) .

Taking the inner product of (4.55)1 and (4.55)2 with [kψn + l(k + k0)wn], integrating by parts and using
the boundary conditions, we infer that

ρ2
b
‖kλnψn + l(k + k0)λnwn‖2L2(0,1) − ‖kψnx + l(k + k0)wnx‖2L2(0,1) → 0

and
ρ2
b

〈
λ2n [kψn − l(k + k0)wn] , [kψn + l(k + k0)wn]

〉
L2(0,1)

−〈[kψnx − l(k + k0)wnx] , [kψnx + l(k + k0)wnx]〉L2(0,1) → 0,

so, using (4.23) and (4.44), it follows that

(4.56)

{
kλnψn + l(k + k0)λnwn → 0 in L2 (0, 1) ,

k2 ‖λnψn‖2L2(0,1) − l2(k + k0)2 ‖λnwn‖2L2(0,1) → 0.

Taking the inner product of (4.53)1 with
1

λn
wn and (4.53)2 with

1

λn
ψn, using (4.23) and (4.24), integrating

by parts and using the boundary conditions, we arrive at

(4.57) −ρ2
b
λ4n 〈ψn, wn〉L2(0,1) + λ2n 〈ψnx, wnx〉L2(0,1) −

k

b

〈
λ2nϕn, wnx

〉
L2(0,1)

+
k

b
〈λnψn, λnwn〉L2(0,1) +

lk

b
‖λnwn‖2L2(0,1) → 0

and

(4.58) −ρ2
b
λ4n 〈ψn, wn〉L2(0,1) + λ2n 〈ψnx, wnx〉L2(0,1) − l

(
1 +

k

k0

)〈
ψnx, λ

2
nϕn

〉
L2(0,1)

+
lk

k0
‖λnψn‖2L2(0,1) +

l2k

k0
〈λnψn, λnwn〉L2(0,1) → 0,

therefore, multiplying (4.57) by
bk0
k

, and (4.58) by −bk0
k

, adding the obtained limits and using (4.23)

and (4.39), it appears that

(4.59) lk0 ‖λnwn‖2L2(0,1) − lb ‖λnψn‖
2
L2(0,1) +

(
k0 − l2b

)
〈λnψn, λnwn〉L2(0,1) → 0.
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By taking the inner product of (4.56)1 with λnψn, combining (4.56)2 and (4.59), and using (4.36), we
have

(4.60)


k ‖λnψn‖2L2(0,1) + l(k + k0) 〈λnwn, λnψn〉L2(0,1) → 0,

1

l(k + k0)2
[
k0k

2 − bl2(k + k0)2
]
‖λnψn‖2L2(0,1) +

(
k0 − l2b

)
〈λnwn, λnψn〉L2(0,1) → 0,

so, multiplying (4.60)1 by
(k + k0)

(
k0 − l2b

)
k0

, and (4.60)2 by − l (k + k0)
2

k0
and adding the obtained limits,

we get

[
kk0 + bl2(k + k0)

]
‖λnψn‖2L2(0,1) → 0.

Thus,

(4.61) λnψn → 0 in L2 (0, 1)

and, using (4.56)1,

(4.62) λnwn → 0 in L2 (0, 1) .

Using (4.24), (4.26)3, (4.26)5, (4.61) and (4.62), we deduce that

(4.63)


∼
ψn → 0 in L2 (0, 1) ,

∼
wn → 0 in L2 (0, 1) .

Taking the inner product of (4.54)1 with ψn, and (4.54)2 with wn, integrating by parts and using the
boundary conditions, we entail


ρ2
b
‖λnψn‖2L2(0,1) − ‖ψnx‖

2
L2(0,1) → 0,

ρ2
b
‖λnwn‖2L2(0,1) − ‖wnx‖

2
L2(0,1) → 0,

then, from (4.61) and (4.62), we find

(4.64)

{
ψnx → 0 in L2 (0, 1) ,

wnx → 0 in L2 (0, 1) .

Finally, (4.28), (4.29), (4.32), (4.35), (4.63) and (4.64) imply (4.52), which is a contradiction with (4.23).

Consequentely, in both cases
b

ρ2
6= k0
ρ1

and
b

ρ2
=
k0
ρ1

, (4.22) holds, and hence, (4.2) in case of system

(1.1)− (1.3) is satisfied.
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4.2. Case of system (1.2)−(1.5). Let Φn =

(
ϕn,

∼
ϕn, ψn,

∼
ψn, wn,

∼
wn, θn,

∼
θn

)T
. The limit (4.25) implies

that

(4.65)



λ4n

[
iλnϕn −

∼
ϕn

]
→ 0 in H1

∗ (0, 1) ,

λ4n

[
iρ1λn

∼
ϕn − k (ϕnx + ψn + lwn)x − lk0 (wnx − lϕn) + δ

∼
θnx

]
→ 0 in L2 (0, 1) ,

λ4n

[
iλnψn −

∼
ψn

]
→ 0 in

∼
H1
∗ (0, 1) ,

λ4n

[
iρ2λn

∼
ψn − bψnxx + k (ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) ,

λ4n

[
iλnwn −

∼
wn

]
→ 0 in

∼
H1
∗ (0, 1) ,

λ4n

[
iρ1λn

∼
wn − k0 (wnx − lϕn)x + lk (ϕnx + ψn + lwn)

]
→ 0 in L2 (0, 1) ,

λ4n

[
iλnθn −

∼
θn

]
→ 0 in H1

∗ (0, 1) ,

λ4n

[
iρ3λnθn − βθnxx − γ

∼
θnxx + δ

∼
ϕnx

]
→ 0 in L2 (0, 1) .

Step 1. Taking the inner product of λ4n (i λn I − A) Φn with Φn in H and using (2.3), we get

Re
〈
λ4n (i λn I − A) Φn,Φn

〉
H = Re

(
iλ5n ‖Φn‖

2
H + γλ4n

∥∥∥∥∼θnx∥∥∥∥2
L2(0,1)

)
= γλ4n

∥∥∥∥∼θnx∥∥∥∥2
L2(0,1)

.

So, (4.23) and (4.25) lead to

(4.66) λ2n
∼
θnx −→ 0 in L2 (0, 1) .

Because
∼
θn ∈

∼
H1
∗ (0, 1) and thanks to Poincaré’s inequality, we deduce that

(4.67) λ2n
∼
θn −→ 0 in L2 (0, 1) .

Multiplying (4.65)7 by
1

λ2n
, and using (4.23), (4.24), (4.66) and (4.67), we find

(4.68) λ3nθnx −→ 0 in L2 (0, 1)

and

(4.69) λ3nθn −→ 0 in L2 (0, 1) .

Step 2. Multiplying (4.65)1, (4.65)3 and (4.65)5 by
1

λ5n
, and using (4.23) and (4.24), we obtain (4.29).

Step 3. Multiplying (4.65)2 by
1

λ5n
and using (4.24), we entail

iρ1
∼
ϕn −

k

λn
(ϕnx + ψn + lwn)x −

lk0
λn

(wnx − lϕn) +
δ

λn

∼
θnx −→ 0 in L2 (0, 1) .

Using (4.23), (4.24) and (4.66), (4.30) follows.

Step 4. Taking the inner product of (4.65)8 with
i

λ3n
ϕnx in L2 (0, 1) and using (4.23) and (4.24), we

infer that 〈
λn

(
iρ3λnθn − βθnxx − γ

∼
θnxx + δ

∼
ϕnx

)
, iϕnx

〉
L2(0,1)

−→ 0,
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therefore, integrating by parts and using the boundary conditions, we arrive at

(4.70) ρ3
〈
λ2nθn, ϕnx

〉
L2(0,1)

+

〈
λ2n

(
βθnx + γ

∼
θnx

)
,
i

λn
ϕnxx

〉
L2(0,1)

−δ
〈
λn

(
iλnϕnx −

∼
ϕnx

)
, iϕnx

〉
L2(0,1)

+ δλ2n ‖ϕnx‖
2
L2(0,1) −→ 0.

Hence, from (4.23), (4.24), (4.30), (4.65)1, (4.66), (4.68), (4.69) and (4.70), we conclude (4.32). Moreover,

by (4.65)1, we find (4.33). As ϕn,
∼
ϕ ∈ H1

∗ (0, 1), we have also (4.34) and (4.35).

Step 5. Multiplying (4.65)3 and (4.26)5 by
1

λ4n
, and using (4.23) and (4.24), we find (4.36).

Step 6. Taking the inner product of (4.65)2 with
i

λ3n

∼
ϕn in L2 (0, 1), integrating by parts and using

the boundary conditions, we get

(4.71) ρ1

∥∥∥λn∼ϕn∥∥∥2
L2(0,1)

+ k
〈
λn (ϕnx + ψn + lwn) , i

∼
ϕnx

〉
L2(0,1)

+lk0

〈
λnwn, i

∼
ϕnx

〉
L2(0,1)

+ l2k0

〈
λnϕn, i

∼
ϕn

〉
L2(0,1)

+ δ

〈
λn
∼
θnx, i

∼
ϕn

〉
L2(0,1)

→ 0.

So, using (4.23), (4.32), (4.33), (4.34), (4.36), (4.66) and (4.71), we deduce (4.38). And by (4.23), (4.24)
and (4.65)1, we obtain (4.39).

Step 7. Exactely as in the case of system (1.1) − (1.3), step 7, using (4.65)4 and (4.65)6, we entail
(4.40).

Step 8. As in the case of system (1.1) − (1.3), step 8, considering the inner product of (4.65)2 with
1

λ4n
[kψnx + l (k + k0)wnx] in L2 (0, 1), integrating by parts and using the boundary conditions and (4.66)

(instead of (4.27)), we get (4.44).

Step 9. The end of the proof of (4.2) in case of system (1.2) − (1.5) is the same as for system
(1.1)− (1.3), step 9 - step 11. Hence, the proof of our Theorem 4.1 is completed. �

5. General comments and issues

1. In this paper, we proved the well-posedness as well as the polynomial stability and the lack of
exponential stability for (1.1)− (1.3) and (1.2)− (1.5), and we obtained the polynomial decay rate of the
solutions. The natural question that we can ask is whether the obtained decay rate (4.2) is optimal.

2. The second question is the extension of our results to the case of other boundary conditions than
(1.3), specially the proof of the lack of exponential stability.

3. The last interesting question we note here is proving the tability of (1.1) and (1.4) in the whole
space R (instead of (0, 1)).

4. When the Bresse system is controled at least via the shear angle or the longitudinal displacements
(that is F2 6= 0 or F3 6= 0), the exponential stability holds true under some restrictions on the coefficients;
see, for example, [1], [2], [5], [9], [11], [12] and [13]. A comparaison of these results with the ones of the
present paper and [10] indicates that the dissipation is better propagated to the whole system from the
second or third equation of the Bresse system than from the first one. This fact can be explained by
the weakness of the role played by the first equation, caused by the coupling term (ϕx + ψ + lw)x, in
comparaison with the one played by the other two equations.

Acknowledgment. The author would like to express his gratitude to the anonymous referee for very
careful reading and punctual suggestions.
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