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ABSTRACT
In this paper, we consider a vibrating system of Timoshenko-type in a
bounded one-dimensional domain under Dirichlet–Dirichlet or Dirichlet–
Neumann boundary conditions with one or two discrete time delays and
one or two internal frictional dampings. First, we show that the system
is well posed in the sens of semigroup theory. Second, we prove the
exponential stability regardless to the speeds of wave propagation of
the system if the weights of the time delays are smaller than the ones of the
corresponding dampings, respectively. However, when the weight of one
time delay is not smaller than the one of the corresponding damping, we
prove the exponential stability in case of equal-speed wave propagation,
and the polynomial stability in the opposite case.
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1. Introduction

In this paper, we consider the following Timoshenko system:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1ϕtt(x, t)− k1(ϕx + ψ)x(x, t)+ λ1ϕt(x, t)+ μ1ϕt(x, t − τ1) = 0,
ρ2ψtt(x, t)− k2ψxx(x, t)+ k1(ϕx + ψ)(x, t)+ λ2ψt(x, t)+ μ2ψt(x, t − τ2) = 0,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),
ϕt(x,−τ1ρ) = f1(x,−τ1ρ), ψt(x,−τ2ρ) = f2(x,−τ2ρ)

(1.1)

under the Dirichlet–Dirichlet boundary conditions

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0 (1.2)

or the Dirichlet–Neumann boundary conditions

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = 0, (1.3)

for x ∈]0, L[, t > 0, ρ ∈ ]0, 1[, μj ∈ R, L, ρj, kj, τj > 0, λj ≥ 0 (j = 1, 2),

(ϕ,ψ) :]0, L[× ]0,+∞[ → R
2
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2 A. GUESMIA AND A. SOUFYANE

is the state of (1.1) with (1.2) or (1.3),

ϕ0, ϕ1, ψ0, ψ1 :]0, L[→ R and fj :]0, L[×] − τj, 0[→ R

(j = 1, 2) are given initial data. A subscript y as well as the notation ∂y denote the derivative with
respect to y. When a function has only one variable, its derivative is noted by ′.

Our aim is the study of the well posedness and asymptotic behavior of the solutions of (1.1) with
(1.2) or (1.3) in case of the equal-speed wave propagation

k1
ρ1

= k2
ρ2

(1.4)

as well as in the opposite case.
The Timoshenko-type systems were introduced in [50] to describe the transverse vibration of a

beam. Since then, the well posedness and stability of this model has attracted the attention of many
researchers using diverse types of dissipative mechanisms. Let us mention here some of these results.

When no time delay is considered (i.e. μ1 = μ2 = 0), investigations showed that the presence
of controls (linear or nonlinear feedbacks and/or finite or infinite memories) on both the rotation
angle ϕ and the transverse displacement ψ guarantees the stability without any restriction on the
constants ρj and kj. However, in the case of only one control, the rate of decay depends heavily on
the relation (1.4) and the regularity of the initial data. We quote in this regard [1–3,7,10–16,20,24–
30,33,40–42,44,45,48,49].

When only one time delay is present (i.e. μ1μ2 = 0 and (μ1,μ2) �= (0, 0)), the questions related
to well posedness and stability/instability of Timoshenko-type systems have attracted considerable
attention in recent years and many researchers have shown that the time delay can destabilize a
system that was asymptotically stable in the absence of time delay. Under smallness conditions on
the weight of the time delay, it was proved that, when the time delay and control are considered on
the same equation, the stability still holds; see [4,8,9,18,19,21,23,43,46].

In [47], the stability of Timoshenko systemswith two internal time delays and two boundary linear
feedbacks was proved under some smallness conditions on L and the weights of the delays.

For the stability of another kind of systems with delay, we refer the reader to [5,6,17,34–38] and
the references therein.

As far as we know, the problem of stability of Timoshenko system with two discrete time delays
and one or two frictional dampings, as well as the case of one time delay and one frictional damping
not considered on the same equation, has never been treated in the literature. Our goal in this paper is
to study the well posedness of (1.1) with (1.2) or (1.3) and investigate the effect of presence of one or
two frictional dampings on the asymptotic behavior of their solutions. When the weight of one time
delay is not smaller than the one of the corresponding damping, the system (1.1) with (1.2) or (1.3) is
not necessarily dissipative with respect to its classical energy, so some new difficulties are generated.

The proof of the well posedness is based on the maximal monotone operators and semigroup
approach. However, the proof of stability estimates is based on the multiplier method. The paper is
organized as follows. Section 2 deals with the well posedness of (1.1) with (1.2) or (1.3). In section 3,
we present our exponential and polynomial stability results. In section 4, we prove the exponential
stability in both cases (1.2) and (1.3), when the weights of the time delays are smaller than the ones of
the corresponding dampings, respectively. After, we consider the case where the weight of one time
delay is not smaller than the one of the corresponding damping and we prove in sections 5 and 6,
respectively, the exponential stability in case (1.4), and the polynomial stability in the opposite case.
Finally, we conclude in Section 7 by some remarks and open questions.
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2. Well posedness

In this section, we prove the existence, uniqueness, and smoothness of the solution of (1.1) with (1.2)
or (1.3). For this purpose, we adopt the technique of [34], (see also [35–38]) to reformulate (1.1)
with (1.2) or (1.3) in the first-order system (2.3) below and prove that the operator A + B defined,
respectively, in (2.4) and (2.6) generates a contraction semigroup on the Hilbert space H given in
(2.7).

Let us consider the following new variables:{
z1
(
x, ρ, t

) := ϕt
(
x, t − τ1ρ

)
, in]0, L[×]0, 1[×]0,+∞[,

z2
(
x, ρ, t

) := ψt
(
x, t − τ2ρ

)
, in]0, L[×]0, 1[×]0,+∞[. (2.1)

Then it is easy to check that{
τjzjt

(
x, ρ, t

) + zjρ
(
x, ρ, t

) = 0, in]0, L[×]0, 1[×]0,+∞[,
z1
(
x, 0, t

) = ϕt(x, t), z2
(
x, 0, t

) = ψt(x, t), in]0, L[×]0,+∞[. (2.2)

Now, we present a short discussion of the formulation of (1.1) with (1.2) or (1.3) in a first-order
system. For this purpose, let

U := (
ϕ,ϕt ,ψ ,ψt , z1, z2

)T and U0 := (
ϕ0,ϕ1,ψ0,ψ1, f1(.,−τ1.), f2(.,−τ2.)

)T ,

then U satisfies the problem {
U ′(t) = (A + B)U (t), t > 0,
U

(
0
) = U0,

(2.3)

where the operators B and A are defined by

B(u1, u2, v1, v2, z1, z2)T =
(
0,
ξ 01
ρ1

u2, 0,
ξ 02
ρ2

v2, 0, 0

)T

, (2.4)

ξ 0j =
{
0 if |μj| ≤ λj,
|μj| if |μj| > λj (2.5)

and

A

⎛
⎜⎜⎜⎜⎜⎜⎝

u1
u2
v1
v2
w1
w2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2
k1
ρ1

(
u1xx + v1x

) − λ1+ξ01
ρ1

u2 − μ1
ρ1
w1(1)

v2
k2
ρ2
v1xx − k1

ρ2

(
u1x + v1

) − λ2+ξ02
ρ2

v2 − μ2
ρ2
w2(1)

−1
τ1
w1ρ

−1
τ2
w2ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.6)

with domains D
(
B
) = H and

D
(
A
) =

{(
u1, u2, v1, v2,w1,w2

)T ∈ H :
(w1ρ ,w2ρ) ∈ L2

(]0, 1[, L2(]0, L[)) × L2
(]0, 1[,V0

)
, (w1(0),w2(0)) = (u2, v2)

}
,
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where

H := (
H2(]0, L[) ∩ H1

0 (]0, L[)) × H1
0 (]0, L[)× (

H2∗(]0, L[) ∩ V1
)

× V1 × L2
(]0, 1[, L2(]0, L[)) × L2

(]0, 1[,V0
)
,

H is the energy space defined by

H := H1
0 (]0, L[)× L2(]0, L[)× V1 × V0 × L2

(]0, 1[, L2(]0, L[)) × L2
(]0, 1[,V0

)
, (2.7)

H2∗(]0, L[) =
{
H2(]0, L[), in case (1.2),{
v ∈ H2(]0, L[), ∂xv(0) = ∂xv(L) = 0

}
, in case (1.3), (2.8)

V1 =
{
H1
0 (]0, L[), in case (1.2),{
v ∈ H1(]0, L[), ∫ L

0 v dx = 0
}
, in case (1.3) (2.9)

and

V0 =
{
L2(]0, L[), in case (1.2),{
v ∈ L2(]0, L[), ∫ L

0 v dx = 0
}
, in case (1.3). (2.10)

For U = (
u1, u2, v1, v2,w1,w2

)T , U = (
u1, u2, v1, v2,w1,w2

)T and

ξj =
{
τjλj if 0 < |μj| ≤ λj,
τj|μj| if |μj| > λj or μj = 0, (2.11)

the space L2
(]0, 1[, L2(]0, L[)) × L2

(]0, 1[,V0
)
endowed with the inner product

〈(w1,w2), (w1,w2)〉L2(]0,1[,L2(]0,L[))×L2
(]0,1[,V0

)
=
∫ L

0

∫ 1

0

(
ξ1w1(x, ρ)w1(x, ρ)+ ξ2w2(x, ρ)w2(x, ρ)

)
dρ dx

is a Hilbert space, and we define the inner product in H as follows:

〈
U ,U

〉
H =

∫ L

0

(
ρ1u2u2 + ρ2v2v2 + k1

(
u1x + v1

) (
u1x + v1

) + k2v1xv1x
)
dx

+ 〈(w1,w2), (w1,w2)〉L2(]0,1[,L2(]0,L[))×L2
(]0,1[,V0

) .
Remark 2.1:

(1) If μj = 0, the variable zj is not considered, and therefore, the corresponding components in
the definition of U , U0, B, A , D(A ), H , and H will not appear.

(2) Let c0 be the smallest positive constant depending only on L and satisfying (Poincaré’s
inequality)

∫ L

0
v2 dx ≤ c0

∫ L

0
v2x dx, ∀v ∈ H1∗(]0, L[), (2.12)
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where

H1∗(]0, L[) =
{
v ∈ H1(]0, L[), v(0) = v(L) = 0 or

∫ L

0
v dx = 0

}
.

By applying (2.12) on v1, we see that∫ L

0
(u21x + v21x) dx ≤

∫ L

0

(
2(u1x + v1)2 + 2v21 + v21x

)
dx

≤
∫ L

0

(
2(u1x + v1)2 + (2c0 + 1)v21x

)
dx

≤ max
{
2
k1

,
2c0 + 1

k2

}∫ L

0

(
k1(u1x + v1)2 + k2v21x

)
dx. (2.13)

Because
∫ L
0 u21x dx and

∫ L
0 v21x dx definenorms, foru1 and v1 onH1

0 (]0, L[) andV1, respectively,
then ∫ L

0

(
k1
(
u1x + v1

) (
u1x + v1

) + k2v1xv1x
)
dx

generates a norm on H1
0 (]0, L[) × V1, for (u1, v1), equivalent to the one induced by(

H1(]0, L[))2. Consequently, H is a Hilbert space.
(3) In case of Dirichlet–Neumann boundary conditions (1.3), Poincaré’s inequality (2.12) is not

necessarily applicable for ψ . To overcome this problem, let us consider

g(t) =
∫ L

0
ψ(x, t) dx (for t > 0), g−1(t) =

∫ L

0
f2(x, t − τ2) dx (for t ∈]0, τ2[),

g0−1 =
∫ L

0
ψ0(x) dx and g1−1 =

∫ L

0
ψ1(x) dx.

Using the second equation and initial data (ψ0,ψ1, f2) in (1.1) and the boundary conditions
(1.3), we easily verify that

⎧⎨
⎩
ρ2g ′′(t)+ λ2g ′(t)+ k1g(t)+ μ2g ′(t − τ2) = 0, t > 0,
g ′(t) = ∫ L

0 f2(x, t) dx, t ∈ ] − τ2, 0[,
g(0) = g0−1, g ′(0) = g1−1.

(2.14)

In particular, {
ρ2g ′′(t)+ λ2g ′(t)+ k1g(t)+ μ2g−1(t) = 0, t ∈ ]0, τ2],
g(0) = g0−1, g ′(0) = g1−1.

(2.15)

The characteristic equation ρ2s2 + λ2s + k1 = 0 of the homogeneous equation associated to
(2.15) has the solutions

⎧⎪⎨
⎪⎩
s0 = −λ2

2ρ2 if λ2 = 2
√
k1ρ2,

s1 = −λ2−
√

|λ22−4k1ρ2|
2ρ2 , s2 = −λ2+

√
|λ22−4k1ρ2|
2ρ2 if λ2 > 2

√
k1ρ2,

s0 − (s2 − s0)i, s0 + (s2 − s0)i if λ2 ∈ [0, 2√k1ρ2[
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(here i is the imaginary number satisfying i2 = −1). Then, using classical arguments, we find
that the unique solution g0 of (2.15) is given by g0 = g00 + g10 , where

g00 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

((
g1−1 − s0g0−1

)
t + g0−1

)
es0t if λ2 = 2

√
k1ρ2,

1
s2−s1

(
s2g0−1 − g1−1

)
es1t + 1

s2−s1

(
g1−1 − s1g0−1

)
es2t if λ2 > 2

√
k1ρ2,(

g0−1 cos ((s2 − s0)t)+ 1
s2−s0

(
g1−1 − s0g0−1

)
sin ((s2 − s0)t)

)
es0t if λ2 ∈ [0, 2√k1ρ2[

and

g10 (t)=

⎧⎪⎪⎨
⎪⎪⎩

−μ2es0t
ρ2

∫ t
0
∫ s
0 g−1(τ )e−s0τ dτ ds if λ2 = 2

√
k1ρ2,

−μ2es1t
ρ2

∫ t
0 e

2(s0−s1)s
∫ s
0 g−1(τ )e−(2s0−s1)τ dτ ds if λ2 > 2

√
k1ρ2,

−μ2
ρ2

Re
(
e(s0−i(s2−s0))t

∫ t
0 e

2i(s2−s0)s
∫ s
0 g−1(τ )e−(s0+i(s2−s0))τ dτ ds

)
if λ2 ∈ [0, 2√k1ρ2[,

where Re denotes the real part. Therefore, for any n ∈ N
∗, the unique solution gn of{

ρ2g ′′(t)+ λ2g ′(t)+ k1g(t)+ μ2gn−1(t) = 0, t ∈ ]nτ2, (n + 1)τ2],
g(nτ2) = gn−1(nτ2), g ′(nτ2) = g ′

n−1(nτ2)

is defined as g0 with g−1, g0−1, g
1−1,

∫ t
0 and

∫ s
0 are replaced by gn−1, gn−1(nτ2), g ′

n−1(nτ2),
∫ t
nτ2

and
∫ s
nτ2 , respectively. Consequently, the unique two times differential solution g of (2.14) is

given by⎧⎨
⎩
g(t) = gn(t), t ∈]nτ2, (n + 1)τ2], n ∈ N,
g(nτ2) = gn−1(nτ2), g ′(nτ2) = g ′

n−1(nτ2), n ∈ N
∗,

g(0) = g00 , g ′(0) = g10 .

Now, we put

ψ̃ = ψ − 1
L
g . (2.16)

Then, one can easily check that

∫ L

0
ψ̃ dx = 0, (2.17)

and, hence, Poincaré’s inequality (2.12) is applicable for ψ̃ provided that ψ̃ ∈ H1(]0, L[). In
addition, (ϕ, ψ̃) satisfies (1.1) with (1.3) and initial data

ψ̃0 = ψ0 − 1
L

∫ L

0
ψ0 dx, ψ̃1 = ψ1 − 1

L

∫ L

0
ψ1 dx and f̃2 = f2 − 1

L

∫ L

0
f2 dx

instead of ψ0, ψ1, and f2, respectively. In the sequel, we work with ψ̃ instead of ψ when (1.3)
holds, but, for simplicity of notation, we use always ψ instead of ψ̃ .

Theorem 2.2: For any U0 ∈ H , there exists a unique solution

U ∈ C
(
R

+,H
)

of problem (2.3). Moreover, if U0 ∈ D
(
A
)
, then

U ∈ C
(
R

+,D
(
A
)) ∩ C1 (

R
+,H

)
.
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Proof: In order to prove the result stated in Theorem 2.2, we will use the semigroup approach; that
is, we will show that the operator A + B generates a C0-semigroup in H . In this step, we concern
ourselves to prove that the operatorA is dissipative. Indeed, exploiting (2.2), (2.6) and the definition
of 〈, 〉H , integrating by parts with respect to x and using the boundary conditions (1.2) or (1.3), we
have, for U = (

u1, u2, v1, v2,w1,w2
)T ∈ D

(
A
)
,

〈A U ,U〉H = − (
λ1 + ξ 01

) ∫ L

0
u22 dx − (

λ2 + ξ 02
) ∫ L

0
v22 dx − μ1

∫ L

0
w1

(
x, 1

)
u2 dx

− μ2

∫ L

0
w2

(
x, 1

)
v2 dx − ξ1

τ1

∫ L

0

∫ 1

0
w1

(
x, ρ

)
w1ρ

(
x, ρ

)
dρ dx

− ξ2

τ2

∫ L

0

∫ 1

0
w2

(
x, ρ

)
w2ρ

(
x, ρ

)
dρ dx. (2.18)

Looking now at the last four integrals of the right-hand side of (2.18), we have

− ξ1

τ1

∫ L

0

∫ 1

0
w1

(
x, ρ

)
w1ρ

(
x, ρ

)
dρ dx − ξ2

τ2

∫ L

0

∫ 1

0
w2

(
x, ρ

)
w2ρ

(
x, ρ

)
dρ dx

= −ξ1
τ1

∫ L

0

∫ 1

0

1
2
∂

∂ρ
w2
1
(
x, ρ

)
dρ dx − ξ2

τ2

∫ L

0

∫ 1

0

1
2
∂

∂ρ
w2
2
(
x, ρ

)
dρ dx

= ξ1

2τ1

∫ L

0

(
w2
1
(
x, 0

) − w2
1
(
x, 1

))
dx + ξ2

2τ2

∫ L

0

(
w2
2
(
x, 0

) − w2
2
(
x, 1

))
dx

and, using Young’s inequality,

− μ1

∫ L

0
w1

(
x, 1

)
u2 dx − μ2

∫ L

0
w2

(
x, 1

)
v2 dx ≤ |μ1|

2

∫ L

0

(
u22 + w2

1(x, 1)
)
dx + |μ2|

2∫ L

0

(
v22 + w2

2(x, 1)
)
dx.

Consequently, because w2
1
(
x, 0

) = u22(x) and w2
2
(
x, 0

) = v22(x), (2.18) becomes

〈A U ,U〉H ≤
(
ξ1

2τ1
+ |μ1|

2
− λ1 − ξ 01

)∫ L

0
u22 dx +

(
ξ2

2τ2
+ |μ2|

2
− λ2 − ξ 02

)∫ L

0
v22 dx

+
( |μ1|

2
− ξ1

2τ1

)∫ L

0
w2
1
(
x, 1

)
dx +

( |μ2|
2

− ξ2

2τ2

)∫ L

0
w2
2
(
x, 1

)
dx. (2.19)

Using (2.5) and (2.11), we get

ξj

2τj
+ |μj|

2
− λj − ξ 0j ≤ 0 and

|μj|
2

− ξj

2τj
≤ 0.

Hence, we deduce from (2.19) that 〈A U ,U〉H ≤ 0, and consequently, the operatorA is dissipative.
Now, we show that the operator Id − A is surjective. Indeed, given

U0 = (
φ1,φ2, g1, g2, h1, h2

)T ∈ H ,
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we seek U = (
u1, u2, v1, v2,w1,w2

)T ∈ D
(
A
)
solution of (Id − A )U = U0; that is,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 − u2
u2 − k1

ρ1

(
u1xx + v1x

) + λ1+ξ01
ρ1

u2 + μ1
ρ1
w1(1)

v1 − v2
v2 − k2

ρ2
v1xx + k1

ρ2

(
u1x + v1

) + λ2+ξ02
ρ2

v2 + μ2
ρ2
w2(1)

w1 + 1
τ1
w1ρ

w2 + 1
τ2
w2ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1
φ2
g1
g2
h1
h2

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.20)

Suppose that we have found

(u1, v1) ∈ (
H2(]0, L[) ∩ H1

0 (]0, L[)) × (
H2∗(]0, L[) ∩ V1

)
. (2.21)

Then the first and third equations in (2.20) give
{
u2 = u1 − φ1,
v2 = v1 − g1.

(2.22)

It is clear that (u2, v2) ∈ H1
0 (]0, L[)× V1. Furthermore,

⎧⎪⎨
⎪⎩
w1(x, ρ) = (u1(x)− φ1(x))e−τ1ρ + τ1e−τ1ρ

∫ ρ

0
h1(x, σ)eτ1σ dσ ,

w2(x, ρ) = (v1(x)− g1(x))e−τ2ρ + τ2e−τ2ρ
∫ ρ

0
h2(x, σ)eτ2σ dσ

(2.23)

satisfy the last two equations in (2.20),

(w1,w2), (w1ρ ,w2ρ) ∈ L2
(]0, 1[, L2(]0, L[)) × L2

(]0, 1[,V0
)

and, according to (2.22), (w1(0),w2(0)) = (u2, v2). Puting⎧⎪⎪⎪⎨
⎪⎪⎪⎩
w0
1(x) := −φ1(x)e−τ1 + τ1e−τ1

∫ 1

0
h1(x, σ)eτ1σ dσ ,

w0
2(x) := −g1(x)e−τ2 + τ2e−τ2

∫ 1

0
h2(x, σ)eτ2σ dσ.

(2.24)

We deduce from (2.23) that {
w1(x, 1) = e−τ1u1(x)+ w0

1(x),

w2(x, 1) = e−τ2v1(x)+ w0
2(x).

(2.25)

By using (2.22) and (2.25), the second and fourth equations in (2.20) are equivalent to
⎧⎪⎨
⎪⎩
(
1 + λ1+μ1e−τ1+ξ01

ρ1

)
u1 − k1

ρ1

(
u1xx + v1x

) = φ2 +
(
1 + λ1+ξ01

ρ1

)
φ1 − μ1

ρ1
w0
1,(

1 + λ2+μ2e−τ2+ξ02
ρ2

)
v1 − k2

ρ2
v1xx + k1

ρ2

(
u1x + v1

) = g2 +
(
1 + λ2+ξ02

ρ2

)
g1 − μ2

ρ2
w0
2 .

(2.26)

So, proving that Id−A is surjective is reduced to prove that (2.26) has at least one solution satisfying
(2.21). To do so, multiplying the first and second equations in (2.26) by ρ1l1 and ρ2l2, respectively,
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where (l1, l2) ∈ H1
0 (]0, L[)× V1, and integrating by parts with respect to x, we see that any solution

(2.21) of (2.26) satisfies the variational formulation

R((u1, v1), (l1, l2)) = L (l1, l2), ∀(l1, l2) ∈ H1
0 (]0, L[)× V1, (2.27)

where the bilinear formR : (H1
0
(]0, L[) × V1

)2 → R and the linear formL : H1
0
(]0, L[)×V1 → R

are defined by

R((ϕ,ψ), (w1,w2)) =
∫ L

0

((
ρ1 + λ1 + μ1e−τ1 + ξ 01

)
u1l1 + (

ρ2 + λ2 + μ2e−τ2 + ξ 02
)
v1l2

)
dx

+
∫ L

0

(
k1(u1x + v1)(l1x + l2)+ k2v1xl2x

)
dx

and

L (l1, l2)=
∫ L

0

((
ρ1φ2 + (ρ1 + λ1 + ξ 01 )φ1 − μ1w0

1
)
l1 + (

ρ2g2 + (ρ2 + λ2 + ξ 02 )g1 − μ2w0
2
)
l2
)
dx.

It is easy to verify that R is continuous and coercive, and L is continuous. So applying the
Lax-Milgram theorem, we deduce that problem (2.27) admits a unique solution

(u1, v1) ∈ H1
0
(]0, L[) × V1.

Applying the classical elliptic regularity arguments, it follows that (u1, v1) satisfies (2.21). Therefore,
the operator Id − A is surjective.

SinceA is dissipative and Id−A is surjective,A ismaximalmonotone.Therefore, usingLummer-
Phillips theorem (see [39]), we deduce that A is an infinitesimal generator of a linear contraction
C0-semigroup on H . On the other hand, we see that the linear operator B is Lipschitz continuous.
So, finally, alsoA +B is an infinitesimal generator of a linear contraction C0-semigroup onH (see
[39]: Ch. 3 - Theorem 1.1). Consequently, the well-posedness results of Theorem 2.2 follow from the
Hille-Yosida theorem (see [22] and [39]). �

3. Stability

To announce our stability results, we consider the energy functional associated with (1.1) and the
boundary conditions (1.2) or (1.3) defined by

E(t) : = 1
2
‖U (t)‖2H

= 1
2

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t + k1(ϕx + ψ)2 + k2ψ2

x

)
dx

+ ξ1

2

∫ L

0

∫ 1

0
ϕ2t (x, t − τ1ρ) dρ dx + ξ2

2

∫ L

0

∫ 1

0
ψ2
t (x, t − τ2ρ) dρ dx. (3.1)

Now, independently of (1.4) and in both cases (1.2) and (1.3), we give our first stability result
which concerns the case

|μ1| < λ1 and |μ2| < λ2. (3.2)



10 A. GUESMIA AND A. SOUFYANE

Theorem 3.1: Assume that (3.2) is satisfied and let U0 ∈ H . Then there exist positive constants c1
and c2 for which E satisfies

E(t) ≤ c2e−c1t , ∀t ≥ 0. (3.3)

Our second stability result concerns the case when (1.4) and one of the following situations hold:

|μ1| = λ1 and |μ2| < λ2, (3.4)
|μ1| < λ1 and |μ2| = λ2, (3.5)
|μ1| > λ1 and |μ2| < λ2 (3.6)

and

|μ1| < λ1 and |μ2| > λ2. (3.7)

Theorem 3.2: Assume that (1.4), and (3.4) or (3.6) or [(1.3) and (3.5)] or [(1.3) and (3.7)] are
satisfied, and let U0 ∈ H . Then there exists a positive constant μ0

j independent of μj , where j = 1 in
cases (3.4) and (3.6), and j = 2 in cases (3.5) and (3.7), such that, if

μ2
j + |μj| < μ0

j , (3.8)

the energy E satisfies (3.3).
Our last stability result concerns the case when (1.4) does not hold but (3.4) or (3.5) holds.

Theorem 3.3: Assume that (1.4) does not hold, and (3.4) or [(1.3) and (3.5)] hold, and let U0 ∈
D(A ). Then there exists a positive constant μ0

j independent of μj, where j = 1 in case (3.4), and j = 2
in case (3.5), such that, if (3.8) holds, then there exists a positive constant c1 for which E satisfies

E(t) ≤ c1
t
, ∀t > 0. (3.9)

We will use c (sometimes cδ which depends on some parameter δ), throughout the proof of our
stability results, to denote a generic positive constant which depends continuously on the initial data
and can be different from step to step, but it does not depend neither on λj nor on μj.

By considering suitable multipliers in the next lemmas, we will construct a Lyapunov functional
F satisfying some differential inequalities, for all U0 ∈ D(A ); so all the calculations are justified. By
integrating these differential inequalities, we get the desired decay estimates (3.3) and (3.9). In case of
Theorem 3.1 and Theorem 3.2, by a simple density arguments (D(A ) is dense in H ), (3.3) remains
valid for any U0 ∈ H .

Before starting the proof of our stability results, we give the following identity:
Lemma 3.4: The energy functional satisfies

E′(t) ≤
∫ L

0

(
d1ϕ2t + d2ψ2

t
)
dx, (3.10)

where

dj =
{ −λj+|μj|

2 if 0 < |μj| ≤ λj,
−λj + |μj| if |μj| > λj or μj = 0.

(3.11)
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Proof: By exploiting (2.3), (2.4), and (2.19), we obtain

E′(t) ≤
(
ξ1

2τ1
+ |μ1|

2
− λ1

)∫ L

0
ϕ2t dx +

(
ξ2

2τ2
+ |μ2|

2
− λ2

)∫ L

0
ψ2
t dx

+
( |μ1|

2
− ξ1

2τ1

)∫ L

0
ϕ2t (x, t − τ1) dx +

( |μ2|
2

− ξ2

2τ2

)∫ L

0
ψ2
t (x, t − τ2) dx. (3.12)

Then, using (2.11), we see that, if 0 < |μj| ≤ λj,

ξj

2τj
+ |μj|

2
− λj = |μj|

2
− ξj

2τj
= −λj − |μj|

2
≤ 0.

However, if |μj| > λj or μj = 0, we have

ξj

2τj
+ |μj|

2
− λj = |μj| − λj and

|μj|
2

− ξj

2τj
= 0.

Hence, (3.12) yields (3.10). �
Remark 3.5: When (3.2) or (3.4) or [(1.3) and (3.5)] hold, E′ ≤ 0, and then (1.1) is dissipative.
However, when (3.6) or [(1.3) and (3.7)] hold, the sign of E′ is not determined from (3.10), and
therefore, (1.1) is not necessarily dissipative with respect to E at this stage.

4. Proof of Theorem 3.1

Assume that (3.2) holds and let U0 ∈ D(A ).
Lemma 4.1: The functional

J(t) :=
∫ L

0

(
ρ1ϕϕt + ρ2ψψt + λ1

2
ϕ2 + λ2

2
ψ2

)
dx (4.1)

satisfies, for any δ > 0,

J ′(t) ≤ −k1
∫ L

0
(ϕx + ψ)2 dx − k2

∫ L

0
ψ2
x dx +

∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t
)
dx

+ δ

∫ L

0

(
ϕ2x + ψ2

x
)
dx + cδ

∫ L

0

(
μ2
1ϕ

2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx. (4.2)

Proof: By differentiating J , and using the first two equations in (1.1) and boundary conditions (1.2)
or (1.3), we have

J ′(t) =
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t
)
dx −

∫ L

0

(
k1(ϕx + ψ)2 + k2ψ2

x
)
dx

−
∫ L

0

(
μ1ϕϕt(x, t − τ1)+ μ2ψψt(x, t − τ2)

)
dx.

Consequently, applying Young’s inequality, for the terms of the last integral of the above equality,
and using Poincaré’s inequality (2.12), for ϕ and ψ , we find (4.2). �
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Lemma 4.2: The functionals

{
I1(t) = ξ1

∫ L
0
∫ 1
0 e−2τ1ρϕ2t (x, t − τ1ρ) dρ dx,

I2(t) = ξ2
∫ L
0
∫ 1
0 e−2τ2ρψ2

t (x, t − τ2ρ) dρ dx
(4.3)

satisfy

I ′1(t) ≤ −2ξ1e−2τ1
∫ L

0

∫ 1

0
ϕ2t (x, t − τ1ρ) dρ dx + ξ1

τ1

∫ L

0
ϕ2t dx (4.4)

− ξ1e−2τ1

τ1

∫ L

0
ϕ2t (x, t − τ1) dx (4.5)

and

I ′2(t) ≤ −2ξ2e−2τ2
∫ L

0

∫ 1

0
ψ2
t (x, t − τ2ρ) dρ dx + ξ2

τ2

∫ L

0
ψ2
t dx

− ξ2e−2τ2

τ2

∫ L

0
ψ2
t (x, t − τ2) dx. (4.6)

Proof: Using (2.1) and (2.2), the derivative of I1 entails

I ′1(t) = 2ξ1
∫ L

0

∫ 1

0
e−2τ1ρϕtt(x, t − τ1ρ)ϕt(x, t − τ1ρ) dρ dx

= −2ξ1
τ1

∫ L

0

∫ 1

0
e−2τ1ρϕtρ(x, t − τ1ρ)ϕt(x, t − τ1ρ) dρ dx

= −ξ1
τ1

∫ L

0

∫ 1

0
e−2τ1ρ∂ρϕ

2
t (x, t − τ1ρ) dρ dx.

Then, using an integrating by parts, the above formula can be rewritten as

I ′1(t) = −2ξ1
∫ L

0

∫ 1

0
e−2τ1ρϕ2t (x, t − τ1ρ) dρ dx + ξ1

τ1

∫ L

0
ϕ2t dx − ξ1e−2τ1

τ1

∫ L

0
ϕ2t (x, t − τ1) dx,

which gives (4.4), since −e−2τ1ρ ≤ −e−2τ1 , for any ρ ∈]0, 1[. Similarily, (4.6) can be proved. �
Now, let N1, N2 > 0 and

F = N1E + N2(I1 + I2)+ J . (4.7)
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By combining (4.2), (4.4), and (4.6), we obtain

F ′(t) ≤ N1E′(t)− k1
∫ L

0
(ϕx + ψ)2 dx − k2

∫ L

0
ψ2
x dx + δ

∫ L

0
(ϕ2x + ψ2

x ) dx

+
∫ L

0

((
ρ1 + ξ1N2

τ1

)
ϕ2t +

(
ρ2 + ξ2N2

τ2

)
ψ2
t

)
dx

+
(
cδμ2

1 − ξ1N2e−2τ1

τ1

)∫ L

0
ϕ2t (x, t − τ1) dx

+
(
cδμ2

2 − ξ2N2e−2τ2

τ2

)∫ L

0
ψ2
t (x, t − τ2) dx

− 2N2

∫ L

0

∫ 1

0

(
ξ1e−2τ1ϕ2t (x, t − τ1ρ)+ ξ2e−2τ2ψ2

t (x, t − τ2ρ)
)
dρ dx. (4.8)

At this point, we choose δ > 0 small enough and N2 > 0 large enough so that (c0 is defined in (2.12))

δmax
{
2
k1

,
2c0 + 1

k2

}
≤ 1

2
and min{ξ1, ξ2}N2 ≥ cδ max

{
τ1e2τ1μ2

1, τ2e
2τ2μ2

2
}

(notice that, thanks to (2.11), ξj = 0 implies μj = 0; so N2 exists). Therefore, using (2.13), for (ϕ,ψ)
instead of (u1, v1), and the definition of E, we find that (4.8) implies that

F ′(t) ≤ N1E′(t)− cE(t)+ c̃
∫ L

0
(ϕ2t + ψ2

t ) dx,

for some positive constant c̃ depending on λj and μj. Hence, according to (3.2) and (3.10), we have
(notice that max {d1, d2} < 0)

∫ L

0

(
ϕ2t + ψ2

t
)
dx ≤ 1

max {d1, d2}E
′(t).

By combining the above two inequalities, we get

F ′(t) ≤
(
N1 + c̃

max {d1, d2}
)
E′(t)− cE(t). (4.9)

On the other hand, using again (2.13) (for (ϕ,ψ) instead of (u1, v1)) and the definition of J , I1 and
I2, we can find that there exists a positive constant β (not depending on N1) such that

|N2(I1 + I2)+ J| ≤ βE,

which implies that

(N1 − β)E ≤ F ≤ (N1 + β)E. (4.10)

Thus, choosing N1 large enough so that

N1 + c̃
max{d1, d2} ≥ 0 and N1 > β ,
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and using the fact that E′ ≤ 0 (see Remark (3.5)), we deduce from (4.9) and (4.10) that, for some
positive constant c1,

F ′ ≤ −c1F. (4.11)

Then, by integrating (4.11) over [0, t] and using again (4.10), we get (3.3).

5. Proof of Theorem 3.2

Assume that (1.4) is satisfied, (3.4) or (3.5) or (3.6) or (3.7) holds and letU0 ∈ D(A ). We distinguish
two cases.

Case 1: the boundary conditions (1.2) or (1.3) hold,

|μ1| ≥ λ1 and |μ2| < λ2. (5.1)

Lemma 5.1: The functional

I(t) = −
∫ L

0

(
ρ1ϕϕt + ρ2ψψt + λ1

2
ϕ2 + λ2

2
ψ2

)
dx

satisfies

I ′(t) ≤ −
∫ L

0

(
ρ1ϕ

2
t + ρ2ψ

2
t
)
dx +

∫ L

0

(
k1(ϕx + ψ)2 + k2ψ2

x
)
dx

+ δ

∫ L

0

(
ϕ2x + ψ2

x
)
dx + cδ

∫ L

0

(
μ2
1ϕ

2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx. (5.2)

Proof: The proof of (5.2) is identical to the one of (4.2). �
Similarly to [3], we consider the following lemma:

Lemma 5.2: The functional

I3(t) = ρ2

∫ L

0
ψt(ϕx + ψ) dx + k2ρ1

k1

∫ L

0
ψxϕt dx

satisfies, for any ε, δ > 0,

I ′3(t) ≤ k22
2ε

(
ψ2
x (L, t)+ ψ2

x (0, t)
) + ε

2
(
ϕ2x(L, t)+ ϕ2x(0, t)

) + ρ2

∫ L

0
ψ2
t dx

− (k1 − δ)

∫ L

0
(ϕx + ψ)2 dx + δ

∫ L

0
ψ2
x dx +

(
k2ρ1
k1

− ρ2

)∫ L

0
ϕtψxt dx

+ cδ
∫ L

0

(
λ21ϕ

2
t + λ22ψ

2
t + μ2

1ϕ
2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx (5.3)
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in case (1.2), and

I ′3(t) ≤ ρ2

∫ L

0
ψ2
t dx − (k1 − δ)

∫ L

0
(ϕx + ψ)2 dx

+ δ

∫ L

0
ψ2
x dx +

(
k2ρ1
k1

− ρ2

)∫ L

0
ϕtψxt dx

+ cδ
∫ L

0

(
λ21ϕ

2
t + λ22ψ

2
t + μ2

1ϕ
2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx (5.4)

in case (1.3).
Proof: Using equations in (1.1) and the boundary conditions (1.2), and arguing as before, we have

I ′3(t) = −k1
∫ L

0
(ϕx + ψ)2 dx + ρ2

∫ L

0
ψ2
t dx +

(
k2ρ1
k1

− ρ2

)∫ L

0
ϕtψxt dx

+ k2
(
ϕx(L, t)ψx(L, t)− ϕx(0, t)ψx(0, t)

) −
∫ L

0
(ϕx + ψ)

(
λ2ψt + μ2ψt(x, t − τ2)

)
dx

− k2
k1

∫ L

0
ψx

(
λ1ϕt + μ1ϕt(x, t − τ1)

)
dx.

Using Young’s inequality (for the last three terms of this equality), (5.3) is established. Similarly, in
case (1.3), we get

I ′3(t) = −k1
∫ L

0
(ϕx + ψ)2 dx + ρ2

∫ L

0
ψ2
t dx +

(
k2ρ1
k1

− ρ2

)∫ L

0
ϕtψxt dx

−
∫ L

0
(ϕx + ψ)

(
λ2ψt + μ2ψt(x, t − τ2)

)
dx − k2

k1

∫ L

0
ψx

(
λ1ϕt + μ1ϕt(x, t − τ1)

)
dx,

which, using Young’s inequality (for the last two terms of this equality), implies (5.27). �
To estimate the boundary terms in (5.3), we proceed as in [3].

Lemma 5.3: Let m(x) = 2 − 4
Lx. Then, for any ε > 0, the functionals

I4 = ρ2k2
∫ L

0
m(x)ψtψx dx and I5 = ρ1

∫ L

0
m(x)ϕtϕx dx

satisfy

I ′4(t) ≤ −k22
(
ψ2
x (L, t)+ ψ2

x (0, t)
) + εk1

∫ L

0
(ϕx + ψ)2 dx + c

∫ L

0
ψ2
t dx

+ c
(
1 + 1

ε

)∫ L

0
ψ2
x dx + c

∫ L

0

(
λ22ψ

2
t + μ2

2ψ
2
t (x, t − τ2)

)
dx (5.5)

and

I ′5(t) ≤ −k1
(
ϕ2x(L, t)+ ϕ2x(0, t)

) + c
∫ L

0

(
ϕ2t + ϕ2x + ψ2

x
)
dx

+ c
∫ L

0

(
λ21ϕ

2
t + μ2

1ϕ
2
t (x, t − τ1)

)
dx. (5.6)
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Proof: Exploiting the second equation in (1.1) and using the boundary conditions (1.2), we get

I ′4(t) = 2ρ2k2
L

∫ L

0
ψ2
t dx + 2k22

L

∫ L

0
ψ2
x dx − k22

(
ψ2
x (L, t)+ ψ2

x (0, t)
)

− k2
∫ L

0
mψx

(
k1(ϕx + ψ)+ λ2ψt + μ2ψt(x, t − τ2)

)
dx.

Using Young’s inequality, for the terms of the last integral of the above equality, (5.5) is established.
Similarly, exploiting the first equation in (1.1) and using the boundary conditions (1.2), we find

I ′5(t) = 2ρ1
L

∫ L

0
ϕ2t dx + 2k1

L

∫ L

0
ϕ2x dx − k1

(
ϕ2x(L, t)+ ϕ2x(0, t)

)
+ k1

∫ L

0
mϕxψx dx −

∫ L

0
mϕx

(
λ1ϕt + μ1ϕt(x, t − τ1)

)
dx.

Then (5.6) can be proved by applying Young’s inequality, for the terms of the last two integrals of the
above equality. �
Lemma 5.4: For any ε ∈]0, 1[ and δ > 0, the functional

I6 =
{
I3 + 1

2ε I4 + ε
2k1 I5, in case (1.2),

I3, in case (1.3)
(5.7)

satisfies

I ′6(t) ≤ −
(
k1
2

− δ − cε
)∫ L

0
(ϕx + ψ)2 dx + c

ε

∫ L

0
ψ2
t dx

+
(
δ + c

ε2

) ∫ L

0
ψ2
x dx + cε

∫ L

0
ϕ2t dx +

(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx

+ (cε + cδ)
∫ L

0

(
λ21ϕ

2
t + λ22ψ

2
t + μ2

1ϕ
2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx. (5.8)

Proof: Using Poincaré’s inequality (2.12), for ψ , we obtain

∫ L

0
ϕ2x dx ≤ 2

∫ L

0
(ϕx + ψ)2 dx + 2

∫ L

0
ψ2 dx

≤ 2
∫ L

0
(ϕx + ψ)2 dx + c

∫ L

0
ψ2
x dx. (5.9)

Then (5.3)–(5.6) imply (5.8). �
Lemma 5.5: The functional I7 = I6 + 1

8 I satisfies

I ′7(t) ≤ −k1
4

∫ L

0
(ϕx + ψ)2 dx − ρ1

16

∫ L

0
ϕ2t dx + c

∫ L

0

(
ψ2
t + ψ2

x
)
dx

+ δc
∫ L

0

(
(ϕx + ψ)2 + ψ2

x
)
dx +

(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx

+ cδ
∫ L

0

(
λ21ϕ

2
t + λ22ψ

2
t + μ2

1ϕ
2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx. (5.10)

Proof: Using (5.9), inequalities (5.2) and (5.8) (with ε ∈]0, 1[ small enough) imply (5.10). �
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Now, as in [3], we use a function w to get a crucial estimate.
Lemma 5.6: The function

w(x, t) = −
∫ x

0
ψ(y, t) dy + 1

L

(∫ L

0
ψ(y, t) dy

)
x (5.11)

satisfies the estimates

∫ L

0
w2
x dx ≤ c

∫ L

0
ψ2 dx, ∀t ≥ 0 (5.12)

and

∫ L

0
w2
t dx ≤ c

∫ L

0
ψ2
t dx, ∀t ≥ 0. (5.13)

Proof: We just have to calculate wx and use Hölder’s inequality to get (5.12). Applying (5.12) to wt ,
we get

∫ L

0
w2
xt dx ≤ c

∫ L

0
ψ2
t dx, ∀t ≥ 0.

Then, using Poincaré’s inequality (2.12), for wt (note that wt(0, t) = wt(L, t) = 0), we arrive at
(5.13). �
Lemma 5.7: For any ε ∈]0, 1[ and δ > 0, the functional

I8(t) =
∫ L

0

(
ρ2ψψt + ρ1wϕt + λ2

2
ψ2

)
dx

satisfies

I ′8(t) ≤ −k2
∫ L

0
ψ2
x dx + c

ε

∫ L

0
ψ2
t dx + ε

∫ L

0
ϕ2t dx + δ

∫ L

0
ψ2
x dx

+ cδ
∫ L

0

(
λ21ϕ

2
t + μ2

1ϕ
2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx. (5.14)

Proof: Exploiting the first two equations in (1.1), integrating by parts and using the boundary
conditions (1.2) or (1.3), we get

I ′8(t) =
∫ L

0

(
ρ2ψ

2
t − k2ψ2

x
)
dx − k1

∫ L

0
(ϕx + ψ)(ψ + wx) dx

+ ρ1

∫ L

0
wtϕt dx − μ2

∫ L

0
ψψt(x, t − τ2) dx

−
∫ L

0
w
(
λ1ϕt + μ1ϕt(x, t − τ1)

)
dx. (5.15)
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Notice that

−k1
∫ L

0
(ϕx + ψ)(ψ + wx) dx = −k1

∫ L

0
(ϕx + ψ)

(
1
L

∫ L

0
ψ(y, t) dy

)
dx

= −k1
L

(∫ L

0
ψ(y, t) dy

)2

≤ 0.

Then, by applying Young’s inequality, for the terms of the last three integrals of (5.29), and using
(5.12) and (5.13), (5.14) is established. �

Now, for N1, N2, N3 > 0, let

F = N1E + N2(I1 + I2)+ N3I8 + I7. (5.16)

By combining (4.4), (4.6), (5.10) and (5.14), we obtain

F ′(t) ≤ − (
k2N3 − c − δ(N3 + c)

) ∫ L

0
ψ2
x dx −

(ρ1
16

− εN3

) ∫ L

0
ϕ2t dx

+ N1E′(t)+
(
cN3

ε
+ c + ξ2N2

τ2

)∫ L

0
ψ2
t dx −

(
k1
4

− δc
)∫ L

0
(ϕx + ψ)2 dx

− 2N2

∫ L

0

∫ 1

0

(
ξ1e−2τ1ϕ2t (x, t − τ1p)+ ξ2e−2τ2ψ2

t (x, t − τ2p)
)
dp dx

+ ξ1N2

τ1

∫ L

0
ϕ2t dx +

(
cδμ2

1(N3 + 1)− ξ1e−2τ1

τ1
N2

)∫ L

0
ϕ2t (x, t − τ1) dx

+
(
cδμ2

2(N3 + 1)− ξ2e−2τ2

τ2
N2

)∫ L

0
ψ2
t (x, t − τ2) dx

+ cδ
∫ L

0

(
λ21(N3 + 1)ϕ2t + λ22ψ

2
t
)
dx +

(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx. (5.17)

At this point, we choose N3 > 0 large enough so that

k2N3 − c > 0,

then ε ∈ ]0, 1[ and δ > 0 small enough so that

ρ1

16
− εN3 > 0, δ(N3 + c) < k2N3 − c and δc <

k1
4
.

Next, we pick N2 > 0 large enough so that

cδμ2
1(N3 + 1)− ξ1e−2τ1

τ1
N2 ≤ 0 and cδμ2

2(N3 + 1)− ξ2e−2τ2

τ2
N2 ≤ 0.

Notice that, according to (2.11), if μj = 0, then ξj = 0. Otherwise, in virtue of (2.11) and (5.1),
ξ1 = τ1|μ1| and ξ2 = τ2λ2. So N2 exists and can be taken in the form

N2 = c(|μ1| + λ2). (5.18)
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From the choice (5.18), the definition of E and the fact that λ1 ≤ |μ1|, we deduce from (5.17) that

F ′(t) ≤ −cmin{1, |μ1| + λ2}E(t)+ N1E′(t)+ c
(
μ2
1 + λ2|μ1|

) ∫ L

0
ϕ2t dx

+ c
(
λ22 + λ2|μ1| + 1

) ∫ L

0
ψ2
t dx +

(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx. (5.19)

Hence, according to (3.10) and (5.1), we have

E′(t) ≤
∫ L

0

(
(|μ1| − λ1)ϕ

2
t + |μ2| − λ2

2
ψ2
t

)
dx. (5.20)

By combining (5.31) and (5.35), we get (min{1, |μ1| + λ2} ≥ min{1, λ2})

F ′(t) ≤ −cmin{1, λ2}E(t)+
(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx

+ (
c(μ2

1 + λ2|μ1|)+ N1(|μ1| − λ1)
) ∫ L

0
ϕ2t dx

+
(
c(λ22 + λ2|μ1| + 1)+ N1

2
(|μ2| − λ2)

)∫ L

0
ψ2
t dx. (5.21)

On the other hand, by definition of the functionals I , I1 − I8 and E (notice that λ1 ≤ |μ1|), we have

|N2(I1 + I2)+ N3I8 + I7| ≤ c(|μ1| + λ2 + 1)E,

which implies that

(N1 − c(|μ1| + λ2 + 1))E ≤ F ≤ (N1 + c(|μ1| + λ2 + 1))E.

Then we choose N1 large enough such that

c(λ22 + λ2|μ1| + 1)+ N1

2
(|μ2| − λ2) ≤ 0 and N1 > c(|μ1| + λ2 + 1).

Because |μ2| < λ2, then N1 exists and can be taken in the form

N1 = c

(
λ22 + λ2|μ1| + 1
λ2 − |μ2| + |μ1| + λ2 + 1

)
, (5.22)

so the last term in (5.31) is non-positive and F ∼ E. In addition, using the definition of E, we deduce
from (5.31) and (5.22) that

F ′(t) ≤ −cmin{1, λ2}E(t)+ c̃(μ2
1 + |μ1|)E(t)+

(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx, (5.23)

where c̃ is a positive constant which depends on λ2 and μ2 but it does not depend neither on λ1 nor
on μ1. Therefore, we assume that |μ1| is small enough so that

c̃(μ2
1 + |μ1|) < cmin{1, λ2}. (5.24)

Because λ2 > 0 (according to (5.1)), the set of μ1 satisfying (5.37) is not empty and it is reduced to
the one defined by a smallness condition of the form (3.8), for j = 1 and μ0

1 = c
c̃ min{1, λ2}. Then
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(5.34) and F ∼ E imply that, for some positive constant c1,

F ′(t) ≤ −c1F(t)+
(
ρ1k2
k1

− ρ2

)∫ L

0
ϕtψxt dx. (5.25)

Because the last term of (5.25) vanishes (thanks to (1.4)), than (5.25) leads to (4.11), and then (3.3) is
deduced as in the previous section.

Case 2: the boundary conditions (1.3) hold,

|μ1| < λ1 and |μ2| ≥ λ2. (5.26)

Similarly to [3], we consider the following lemma:
Lemma 5.8: The functional

J1(t) = −ρ2
∫ L

0
ψt(ϕx + ψ) dx − k2ρ1

k1

∫ L

0
ψxϕt dx

satisfies, for any δ > 0,

J ′1(t) ≤ (k1 + δ)

∫ L

0
(ϕx + ψ)2 dx − ρ2

∫ L

0
ψ2
t dx + δ

∫ L

0
ψ2
x dx +

(
ρ2 − k2ρ1

k1

)∫ L

0
ϕtψxt dx

+ cδ
∫ L

0

(
λ21ϕ

2
t + λ22ψ

2
t + μ2

1ϕ
2
t (x, t − τ1)+ μ2

2ψ
2
t (x, t − τ2)

)
dx. (5.27)

Proof: Using equations in (1.1) and the boundary conditions (1.3), we have

J ′1(t) = k1
∫ L

0
(ϕx + ψ)2 dx − ρ2

∫ L

0
ψ2
t dx +

(
ρ2 − k2ρ1

k1

)∫ L

0
ϕtψxt dx

+
∫ L

0
(ϕx + ψ)

(
λ2ψt + μ2ψt(x, t − τ2)

)
dx + k2

k1

∫ L

0
ψx

(
λ1ϕt + μ1ϕt(x, t − τ1)

)
dx.

Arguing as for (5.27), we get (5.27). �
Lemma 5.9: Let consider the functionals

w(x, t) =
∫ x

0
ψ(y, t) dy

and

J2(t) =
∫ L

0

(
ρ1ϕϕt + ρ1wϕt + λ1

2
ϕ2
)

dx. (5.28)

Then, for any ε, δ > 0,

J ′2(t) ≤ −k1
∫ L

0
(ϕx + ψ)2 dx +

(
ρ1 + c

ε

) ∫ L

0
ϕ2t dx + ε

∫ L

0
ψ2
t dx

+ δ

∫ L

0
(ϕ2x + ψ2

x ) dx + cδ
∫ L

0

(
λ21ϕ

2
t + μ2

1ϕ
2
t (x, t − τ1)

)
dx. (5.29)

Proof: First, we have w(0, t) = w(L, t) = 0 thanks to (2.17) (remeber that, in case (1.3),ψ plays the
role of ψ̃). Then (5.12) and (5.13) hold (as for (5.11)). Exploiting the first equation in (1.1), integrating
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by parts, using (5.12), (5.13), and the boundary conditions (1.3), and arguing as for (5.14), we find
(5.29). �

Now, for N1, N2, N3, N4 > 0, let

F = N1E + N2(I1 + I2)+ N3J + N4J2 + J1. (5.30)

By combining (4.2), (4.4), (4.6), (5.27), and (5.29), and using (5.9), we obtain

F ′(t) ≤ − (
k2N3 − δ(cN3 + cN4 + 1)

) ∫ L

0
ψ2
x dx − (

(1 − N3)ρ2 − εN4
) ∫ L

0
ψ2
t dx

+ N1E′(t)+
(
N3ρ1 + N4

(
ρ1 + c

ε

)
+ ξ1N2

τ1

)∫ L

0
ϕ2t dx

− (
(N3 + N4 − 1)k1 − δ(2N3 + 2N4 + 1)

) ∫ L

0
(ϕx + ψ)2 dx

− 2N2

∫ L

0

∫ 1

0

(
ξ1e−2τ1ϕ2t (x, t − τ1p)+ ξ2e−2τ2ψ2

t (x, t − τ2p)
)
dp dx

+ ξ2N2

τ2

∫ L

0
ψ2
t dx +

(
cδμ2

1(N3 + N4 + 1)− ξ1e−2τ1

τ1
N2

)∫ L

0
ϕ2t (x, t − τ1) dx

+
(
cδμ2

2(N3 + 1)− ξ2e−2τ2

τ2
N2

)∫ L

0
ψ2
t (x, t − τ2) dx

+ cδ
∫ L

0

(
λ21(N4 + 1)ϕ2t + λ22ψ

2
t
)
dx +

(
ρ2 − ρ1k2

k1

)∫ L

0
ϕtψxt dx. (5.31)

At this point, we choose

N3 = 1
2
, N4 = 1 + 1

ρ1
and ε = 1

N2
4
,

then δ > 0 small enough so that

δ < min
{

k2N3

cN3 + cN4 + 1
,
(N3 + N4 − 1)k1
2N3 + 2N4 + 1

}
.

Next, we pick N2 > 0 large enough so that

cδμ2
1(N3 + N4 + 1)− ξ1e−2τ1

τ1
N2 ≤ 0 and cδμ2

2(N3 + 1)− ξ2e−2τ2

τ2
N2 ≤ 0.

Notice that, according to (2.11), if μj = 0, then ξj = 0. Otherwise, in virtue of (2.11) and (5.26),
ξ1 = τ1λ1 and ξ2 = τ2|μ2|. So N2 exists and can be taken in the form

N2 = c(|μ2| + λ1). (5.32)

From the choice (5.32), the definition of E and the fact that λ2 ≤ |μ2|, we deduce from (5.31) that

F ′(t) ≤ −cmin{1, |μ2| + λ1}E(t)+ N1E′(t)+ c
(
μ2
2 + λ1|μ2|

) ∫ L

0
ψ2
t dx

+ c
(
λ21 + λ1|μ2| + 1

) ∫ L

0
ϕ2t dx +

(
ρ2 − ρ1k2

k1

)∫ L

0
ϕtψxt dx. (5.33)
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Hence, according to (3.10) and (5.26), we have

E′(t) ≤
∫ L

0

( |μ1| − λ1

2
ϕ2t + (|μ2| − λ2)ψ

2
t

)
dx. (5.34)

By combining (5.35) and (5.34), we get (min{1, λ1} ≤ min{1, |μ2| + λ1})

F ′(t) ≤ −cmin{1, λ1}E(t)+
(
ρ2 − ρ1k2

k1

)∫ L

0
ϕtψxt dx

+ (
c(μ2

2 + λ1|μ2|)+ N1(|μ2| − λ2)
) ∫ L

0
ψ2
t dx

+
(
c(λ21 + λ1|μ2| + 1)+ N1

2
(|μ1| − λ1)

)∫ L

0
ϕ2t dx. (5.35)

On the other hand, by definition of the functionals J , I1, I2, J1, J2 and E (notice that λ2 ≤ |μ2|), we
have

|N2(I1 + I2)+ N3J + N4J2 + J1| ≤ c(|μ2| + λ1 + 1)E,

which implies that

(N1 − c(|μ2| + λ1 + 1))E ≤ F ≤ (N1 + c(|μ2| + λ1 + 1))E.

Then we choose N1 large enough such that

c(λ21 + λ1|μ2| + 1)+ N1

2
(|μ1| − λ1) ≤ 0 and N1 > c(|μ2| + λ1 + 1).

Because |μ1| < λ1, then N1 exists and can be taken in the form

N1 = c

(
λ21 + λ1|μ2| + 1
λ1 − |μ1| + |μ2| + λ1 + 1

)
, (5.36)

so the last term in (5.35) is non-positive and F ∼ E. In addition, using the definition of E, we deduce
from (5.35) and (5.36) that

F ′(t) ≤ −cmin{1, λ1}E(t)+ c̃(μ2
2 + |μ2|)E(t)+

(
ρ2 − ρ1k2

k1

)∫ L

0
ϕtψxt dx, (5.37)

where c̃ is a positive constant which depends on λ1 and μ1 but it does not depend neither on λ2 nor
on μ2. Therefore, we assume that |μ2| is small enough so that

c̃(μ2
2 + |μ2|) < cmin{1, λ1}. (5.38)

Because λ1 > 0 (according to (5.26)), the set of μ2 satisfying (5.39) is not empty and it is reduced to
the one defined by a smallness condition of the form (3.8), for j = 2 and μ0

2 = c
c̃ min{1, λ1}. Then

(5.37) and F ∼ E imply that, for some positive constant c1,

F ′(t) ≤ −c1F(t)+
(
ρ2 − ρ1k2

k1

)∫ L

0
ϕtψxt dx. (5.39)

The end of the proof is the same as in the Case 1.
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6. Proof of Theorem 3.3

Assume that (1.4) does not hold, (3.4) or (3.5) holds and let U0 ∈ D(A ). As in Theorem 3.2, we
distinguish two cases.

Case 1: the boundary conditions (1.2) or (1.3) hold,

|μ1| = λ1 and |μ2| < λ2.

Wewill estimate the last term in (5.25) using the system (6) resulting from differentiating (1.1), (1.2),
and (1.3) with respect to time; that is

{
ρ1ϕttt(x, t)− k1(ϕxt + ψt)x(x, t)+ λ1ϕtt(x, t)+ μ1ϕtt(x, t − τ1) = 0,
ρ2ψttt(x, t)− k2ψxxt(x, t)+ k1(ϕxt + ψt)(x, t)+ λ2ψtt(x, t)+ μ2ψtt(x, t − τ2) = 0

with Dirichlet–Dirichlet boundary conditions

ϕt(0, t) = ϕt(L, t) = ψt(0, t) = ψt(L, t) = 0

or Dirichlet–Neumann boundary conditions

ϕt(0, t) = ϕt(L, t) = ψxt(0, t) = ψxt(L, t) = 0.

System (6) with (6) or (6) is well posed for initial data U0 ∈ D(A ) (see Theorem 2.2). Let E2 be the
second-order energy (the energy of (6)) defined by E2(t) = E(Ut(t)), where E(U (t)) = E(t) and E
is defined by (3.1)). As for (3.10) and according to (6), a simple calculation implies that

E′
2(t) ≤ d2

∫ L

0
ψ2
tt dx,

so, as E, also E2 is non-increasing.
Lemma 6.1: For any ε > 0, there exists a positive constant αε such that

(
ρ1k2
k1

− ρ2

)∫ T

S

∫ L

0
ϕxtψt dx dt ≤ ε

∫ T

S
E(t) dt + αε

(
E(S)+ E2(S)

)
, ∀T ≥ S ≥ 0.

Proof: By integration with respect to t, we get

∫ T

S

∫ L

0
ϕxtψt dx dt =

[∫ L

0
ϕxψt dx

]T
S

−
∫ T

S

∫ L

0
ϕxψtt dx dt.

Moreover, using the definition of E and its non-increasingness, we find

∣∣∣∣
(
ρ1k2
k1

− ρ2

)∫ L

0
ϕxψt dx

∣∣∣∣ ≤ cE(t) ≤ cE(S), ∀0 ≤ S ≤ t.

Thus, from (6) we have

(
ρ1k2
k1

− ρ2

)∫ T

S

∫ L

0
ϕxtψt dx dt ≤ cE(S)+ c

∫ T

S

∫ L

0
|ϕx||ψtt | dx dt, ∀T ≥ S ≥ 0.
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On the other hand, because d2 < 0, (6) leads to
∫ L

0
ψ2
tt dx ≤ 1

d2
E′
2(t).

Then, using Young’s inequality, we estimate the last integral in (6) as follows:

c
∫ T

S

∫ L

0
|ϕx||ψtt | dx dt ≤ ε

∫ T

S
E(t) dt − cε

d2

∫ T

S
E′
2(t) dt

≤ ε

∫ T

S
E(t) dt + cε

d2
E2(S), ∀T ≥ S ≥ 0.

Inserting this inequality into (6), we get (6.1) with αε = max{c, cεd2 }. �
Now, exploiting (5.25) and (6.1), using the property F ∼ E, and choosing ε > 0 small enough, we

get, for some positive constants α1 and α2,∫ T

S
F ′(t) dt ≤ −α1

∫ T

S
E(t) dt + α2

(
E(S)+ E2(S)

)
, ∀T ≥ S ≥ 0.

By combining (6) and the property F ∼ E, we deduce that, for some positive constant α3,∫ T

S
E(t) dt ≤ α3

(
E(S)+ E2(S)

)
, ∀T ≥ S ≥ 0.

Choosing S = 0 in (6) and using the fact that E is non-increasing, we get

E(T)T ≤
∫ T

0
E(t) dt ≤ α3

(
E(0)+ E2(0)

) := c1, ∀T ≥ 0,

which gives (3.9).

Case 2: the boundary conditions (1.3) hold,

|μ1| < λ1 and |μ2| = λ2.

According to (6), a simple calculation implies that, as for (6),

E′
2(t) ≤ d1

∫ L

0
ϕ2tt dx.

Lemma 6.2: For any ε > 0, there exists a positive constant αε such that, for all T ≥ S ≥ 0,

(
ρ2 − ρ1k2

k1

)∫ T

S

∫ L

0
ϕxtψt dx dt ≤ ε

∫ T

S
E(t) dt + αε

(
E(S)+ E2(S)

)
.

Proof: By integration with respect to x and t, and using the boundary condition (1.3), we get

∫ T

S

∫ L

0
ϕxtψt dx dt = −

∫ T

S

∫ L

0
ϕtψxt dx dt = −

[∫ L

0
ϕtψx dx

]T
S

+
∫ T

S

∫ L

0
ϕttψx dx dt.

Using (6), the proof of (6.2) can be finished as for (6.1). �
Exploiting (5.39) and (6.2), the proof of (3.9) can be ended as in the Case 1.
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7. Concluding remarks

In this section, we concludewith some remarks and list some open questions for the interested reader.
Remark 7.1: When (3.6) or [(1.3) and (3.7)] hold, we can take [λ1 = 0 and μ1μ2 �= 0] or [λ2 = 0
and μ1μ2 �= 0] or [λ1 = μ2 = 0 and λ2μ1 �= 0] or [λ2 = μ1 = 0 and λ1μ2 �= 0]. These cases
show that, provided that (1.4) is satisfied, the exponential stability (3.3) of (1.1) holds also under one
internal frictional damping and two discrete time delays or under one internal frictional damping
and one discrete time delay not considered on the same equation.
Remark 7.2: Our results remain true if we consider Timoshenko-type systems with variables
coeffiecients λj(x) and μj(x) satisfying some smoothness and smallness conditions by modifying
the operators and Lyapunov functionals considered in our proof (see [9] in case λ2 = μ2 = 0).
Remark 7.3: We can consider distributed time delays

∫ +∞

O
h1(s)ϕt(x, t − s) ds and

∫ +∞

O
h2(s)ψt(x, t − s) ds

instead of the discrete ones μ1ϕt(x, t − τ1) and μ2ψt(x, t − τ2), respectively, in both first two
equations in (1.1) or in one of them, where h1, h2 : R

+ → R are some given functions (see [8] in
case λ1 = μ1 = 0).
Remark 7.4: The estimate (3.9) can be generalized by proving that, for any n ∈ N

∗ and U0 ∈
D(A n), there exists a positive constant cn > 0 such that

E(t) ≤ cn
tn
, ∀t > 0

(see [9] in case λ2 = μ2 = 0).
Remark 7.5: Our stability results can be generalized to the case where, for some given functions
φ1, φ2 : R → R, the linear frictional dampings λ1ϕt and λ2ψt are replaced by the nonlinear ones
φ1(ϕt) and φ2(ψt), respectively.
Remark 7.6: We do not know if (1.1) is stable when (1.4) does not hold, and (3.6) or (3.7) holds.
Similarly, we do not know if (1.1) is stable when [(1.2) and (3.5)] or [(1.2) and (3.7)] hold. On the
other hand, the stability of (1.1) is an open question when (3.4) or (3.5) or (3.6) or (3.7) holds but
|μj| is not small enough.
Remark 7.7: The stability of (1.1) with (1.2) or (1.3) when

|μ1| ≥ λ1 and |μ2| ≥ λ2

seems not being satisfied. It was proved in [34] that the stability of the wave equation with internal
frictional damping and discrete time delay does not hold (even for small time delay) when the weight
of the delay is bigger than the one of the damping.
Remark 7.8: It will be interesting to extend our results to the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1ϕtt(x, t)− k1(ϕx + ψ)x(x, t)+ μ1ϕt(x, t − τ1) = 0,
ρ2ψtt(x, t)− k2ψxx(x, t)+ k1(ϕx + ψ)(x, t)+ μ2ψt(x, t − τ2) = 0,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),
ϕt(x,−τ1ρ) = f1(x,−τ1ρ), ψt(x,−τ2ρ) = f2(x,−τ2ρ)
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under the following boundary conditions:⎧⎨
⎩
(ϕx + ψ)(L, t)+ λ1ϕt(L, t) = 0,
ψx(L, t)+ λ2ψt(L, t) = 0,
ϕ(0, t) = ψ(0, t) = 0.
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