
Asymptotic Analysis 22 (2000) 1-13
IOS Press

On the decay estimates for elasticity systems
with some localized dissipations
Aissa Guesmia
lnstitut de Recherche Mathematique Avancee, Universite Louis Pasteur, 7, rue Rene Descartes,
67084 Strasbourg Cedex, France
E-mail: guesmiasismath.u-strasbg.fr

Abstract. We prove some precise decay estimates of the energy for non-isotropic elastodynamic systems with some localized
dissipations. The damping is nonIinear and is effective only in a neighborhood of a suitable subset of the boundary, we study
both degenerate and nondegenerate cases. The method of proof is direct and is based on the multiplier technique and on some
specific integral inequalities.
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1. Introduction and statement of the results

Let fl be a non-empty bounded open set in !Rn(n E N*) having a boundary T of class C2 and let aijkl
be functions in WI,OO(fl) such that

aijkl = aklij = ajikl in fl

(all indices run over the integers 1,2, ... , n), satisfying the ellipticity condition

for some fixed Cl! > 0 and for every symmetric tensor Eij. (We shall use the summation convention for
repeated indices.)

For a given function U = (U 1, ... , Un) : fl X !R+ --t !Rn we shall use the notations

1
Eij = 2(Ui,j + Uj,i),

where Ui,j = oui/OXj and Uj,i = OUj /OXi.
Throughout this paper, we will use the following notations. Fix a point xO = (x?, ... , x~) E !Rn, let

m(x) = x - xO,

and we introduce three real Hilbert spaces H, V and W by setting

Ilvll~ = in ViVi dx,

Ilvll~= in <7i]Cv)Eij(v)dx,
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2 A. Guesmia / On the decay estimates for eLasticity systems

where HJ(J?) {v E HI(D): v = 0 on r} (by the Korn inequality, it is clear that this expression
defines a norm on V), and

In this paper, we are interested in the precise decay property of the solution for elasticity systems with
a localized nonlinear dissipation:

{

u~'- O"ij,j + li(X, u~)= 0 in D x IR+,
Ui = 0 on r x IR+,
Ui(O) = u? and u~(O) = uJ in D,

(PI)

where li(X, uD bi(X)9i(U~), bi E £CXJ(D), are bounded nonnegative functions and 9i: IR -t

non-decreasing continuous functions such that 9i(0) = 0 and satisfying, for a constant cl > 0,
IR are

\9i(S)\ ~ c' (1 + [sl), for all sE R

The well-posedness of problem (PI) can be established by standard nonlinear semigroup theory
exactly as, e.g., Guesmia [3] in the case Mx) = 1 for all x E n, we omit the details here. Let
(uO,ul) E V x Hand u be the unique solution of (PI) in class u E C(IR+; V) n C

I
(IR+;H), then

a simple computation shows that the energy of u defined by the formula

(1.1)

satisfies

(1.2)

hence the energy is non-increasing.
Stabilization of the wave equation using a locally distributed damping was studied by several au-

thors, under different hypotheses. Among these, we can mention Zuazua [9], Nakao [7] and Tcheu oue
Tebou [8]. The semi-group approach or differential inequalities was used by the authors to esta 1

exponential or polynomial decay of the energy.
Zuazua [9] studied the semilinear wave equation where the damping term is linear and effective in an

open nonempty subset of the domain contained the whole boundary r. The author considered only the
nondegenerate case and he obtained exponential decay of the energy. Nakao [7] generalized these results
to the non linear case where the damping p(x,u') behavies like a(x)lu'ITu' with r > -1 and a(x) is
effective onlty in a neighborhood of a subset of the boundary. Nakao [7] considered also the degenerate
case with a linear damping, he proved a polynomial decay of the energy for initial states belonging to

with m E N* and 2m > n.
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The method applied in these two papers is based on the multiplier technique, on some differential
inequalities and on compactness-uniqueness argument to absorb lower-order terms. In the degenerate
case, Nakao [7] used also the fact that the solution belongs to

mn Ck(JR+; Hm+l-k([2) n HJ([2)) n Cm+1 (JR+; L2([2)).
k=O

In the nonlinear case, this property of solution is no longer true in general, and then the question con-
cerning the stabilization in the degenerate case with a non linear damping remains open.

In [8], Tcheugoue Tebou removed the condition 2m > n assumed by Nakao [7] and obtained the same
decay estimates as in Nakao [7] for the linear wave equation assuming the same condition on intial states.
In order to get rid of lower-order terms, Tcheugoue Tebou [8] introduced an auxiliary elliptic problem
whose solution was used as multiplier, instead of the unique continuation property and the compactness
argument used by Zuazua [9] and Nakao [7].

Concerning the stabilization of elasticity systems with localized dissipations, no result is known until
now. In this paper, we consider nonlinear elasticity systems with a local degenerate or nondegenerate
dissipation. Our results generalize and improve some of the results obtained in the papers mentioned
above. We give sufficient hypotheses on the functions 9i so that we can obtain precise decay estimates
of the energy. In the degenerate case, we give a positive answer to the question cited above where we
impose that the initial states belong only to

Additionally, in the linear case and for n ~ 2, we obtain a decay rate sharper than the one obtained in
Nakao [7] and Tcheugoue Tebou [8].

We give now some decay estimates of the energy E(t) as t --+ 00. Let Cl, C2 > 0 and p, r ~ 1 be four
fixed constants such that the functions 9i verify the condition, for all s E JR,

(1.3)

Remark. We have many possibilities to take the functions 9i such that conditions (1.3) is satisfied, for
example,

if [s] :::;; 1,
if Isl ~ 1,

where ai > 0 and we take Cl = minj e.}, C2 = max l c.}.

As similar cases we know the following results:

1. If bi(x) > 0 on [2, then (without assumption (1.3))

E(t) --+ 0, as t --+ 00.

This result can be proved directly by applying the LaSalle's invariance principle.
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2. If r = p and bi(x) ~ C > 0 on J2 (we can take in this case Mx) = 1 for all x E J2 without loss of
generality), then

E(t) ~ cC2/(p-t), t > 0, ifp > 1, (lA)

and

E(t) ~ E(O)et-wot, t > 0, if p = 1, (1.5) _

where c > 0 depends on E(O) and Wo > 0 is independent of the initial data. The estimates (lA)
and (1.5) were proved in Guesmia [3].

Let us consider a more delicate case. For this, we introduce

T'; = {x Er: m(x).v(x) > O},

where t/ denotes the outward unit normal vector to r.We suppose that there exists a neighborhood w of
Ts: (which means that w is the intersection of J2 and a neighborhood of T'; in lRn), such that

Mx) ~ bo > 0 on w, (1.6)

or

(1.7)

for some p' > 0 such that

p'(P-l) > 2 and p'(P-l) ~ n. (1.8)

We impose also on aijkl the following condition: there exists a constant "f > 0 such that

(1.9)

for every symmetric tensor Cij, where Opaijkl = Oaijkz!oxp. We can get condition (1.9) by taking tit;
derivative of aijkl small with respect to aijkl. If aijkl = const, then of course we have T = 2.

Our result read as follows:

Theorem 1.1. Assume (1.9).

1. Under the hypotheses (1.6) and (1.3) with r = p we have,for every (uo, ut) E V x H, the energy
verifies the estimates (104) and (1.5).

2. Under the hypotheses (1.7), (1.8) and (1.3) with r = 1 we have.for every (uo, ut) E W x V, th
energy E verifies the estimate (lA) with a constant c > 0 depending on the solution u.
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Remarks. 1. Assumption (1.3) implies that the functions gi are not bounded. In [3], we have proved
some decay estimates in the case bi(x) = 1 for all x E n even if the functions gi are bounded. These
estimates seem to be proved in the case of (1.6). In order to keep this paper not too long, we only consider
the case of (1.3).

2. The decay estimates will be proved under the restrictive condition (1.9). This condition has been
assumed in Guesmia [2] to obtain the observability inequalities for (PI) with b, == o. The general case
remains open.

3. In the nondegenerate case (1.6), stabilization results can be obtained without any growth condition
on the functions gi at the origin; that is, we consider condition (1.3) only for s E IR such that [s] ~ 1,
by using microlocal estimates as was done in [5] for the wave equations. Unlike our results, due to an
indirect compactness-uniqueness argument, the decay rates will not be explicit in this case; they are
usually described by a non linear dissipative ordinary equation. Similarly, applying a method developed
in [6], we can remove condition (1.3) for s E IR such that [s] < 1 and we obtain a decay rate of this form:

where G(s) = sg(s) for all s E IR and c is a positive constant. To do so we need additional conditions
like: the fuctions gi are of class CI and they are Lipschitz or they are odd.

On the other hand, these two methods mentioned above seem to be not applicable in the degenerate
case (1.7) due to the degenerescence of b.. In order to make the paper not too long we do not study these
questions here.

2. Proof of Theorem 1.1

The proof of the decay estimates is given by combining the ideas in Guesmia [2,3], Tcheugoue Tebou
[8] and Zuazua [9]. We are going to prove that the energy satisfies the estimate

(2.1)

for all 0 :::;;S < +00. Here and in the sequel we shall denote by c diverse positive constants. We recall
that if a nonnegative and nonincreasing function E: IR+ -+ IR+ satisfies the estimate (2.1), then it also
satisfies (1.4) and (l.5) (see Guesmia [3, Proposition 3.7]). Then Theorem l.3 will be proved if we
establish inequality (2.1).

Remark. All computations that follow will be justified for strong solution; that is (uo, u I) E W x V
(see Guesmia [3, Theorem 1.2]). Since the constants c and Wo in (1.4) and (1.5), respectively, will not
depend on u in the nondegenerate case (l.6), once the estimates (l.4) and (1.5) will be estabilished
for strong solutions, they will be also satisfied for all weak solutions by an easy density argument. In
the degenerate case (1.7), this is not possible because the constant c in (l.4) will depend on u; more
precisely, c = c(llu'IILoo(IR+;V»' hence in this case, the estimate (l.4) is proved only for strong solutions.
Concerning the weak solutions, the estimate (l.4) seems to be not true in general because they do not
have the property (2.20) below.
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We start this section by giving an explicit formula satisfied by energy. Integrating the estimate (1.2)

over [S, T], where 0 ~ S < T < 00, we obtain easily that

1: 1n biU~9i(U~) dxdt = E(S) - E(T)::;; E(S).
(2.2)

In order to prove (2.1) we proceed in several steps.
Step 1. We multiply Eq. (P1) by 2E(P-I)/2(t)hmUi,m with a vector field hE (WI,oo(S:m

n
. We easily

obtain the identity (as in the proof of identity (2.4) in Guesmia [2])

(T E(P-I)/2(t) {(2h '0" 'U· + (div h) (UlU
l

- O'oOEoO))dxdtJs Jn m,J tJ t,m t t tJ tJ

~ J: E",-I)/2(t) J/h.v)a'jE'j dr dt + fsT E"'- 1)/2(t) L,hm(3m"'jkl)EklE,j dz dt

_ 2 fsT E"'- 1)/2( t) L,»;"'.mb,g, (u;) dx dt + [21>"- 1)/2(t) fa hmU'.mu; dx1:
+ (p _ 1) 1s

T
E(p-3)/2(t)E'(t) 1n hmUi,mU~ dx dt. (2.3)

Using the definition of energy and the Holder and Kom inequalities, we find that

and

Using the nonincreasing of energy, we deduce that the last two terms of (2.3) can be easily majorized
by cE(p+I)/2(S). Then, applying identity (2.3) with h = m and using (1.9) and the definition of T'i., we

conclude the estimate

1s
T E(p-I)/2(t) 1n (,- n)O'ijEij + nu~uD dxdt

::;; -21sT E(p-I)/2(t) 1nmkui,kbi9i(uD dxdt + CE(p+I)/2(S)

+ R (T E(P-I)/2(t) { O'ijEij dr dt.
Js lr;

We take now in (2.3) a function h E (WI,OO(n»n such that

h.v ~ 0 on T and h = 0 on C:l,

(2.4)
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where w is another neighborhood of T'; strictly contained in w (see Zuazua [9] and the references cited
there for the construction of this vector field), we deduce

rT E(p-I)/2(t) r O"ijCij dr dtis ir+
= rT

E(P-I)/2(t) r (h.V)O"ijCij dr dt ~ rT
E(P-I)/2(t) r (h.V)O"ijCij dr dtis lr; is ir

~ c fsT E(p-I)/2(t) fw (O"ijCij + u~uD dx dt + cE(p+I)/2(S)

+ 2 fsT E(P-I)/2(t) fw hmUi,mbi9i(uD dxdt. (2.5)

On the other hand, we have, for any C > ° (note that bi is bounded),

12 fsT E(P-I)/2(t) in mkui,kbi9i(U~) dXdtl

~ ~ fsT E(p+I)/2(t)dt + c fsT E(P-I)/2(t) in bi9;(uD dxdt,

12 1sT
E(P-I)/2(t) 1hmUi,mbi9i(uD dXdtl

~ 2~ fsT E(p+I)/2(t)dt + c fsT E(P-I)/2(t) in bi9;(U~) dxdt.

Combining the above inequalities for C E ]0, I [ with (2.4) and (2.5) we deduce

fsT E(P-I)/2(t) in (,- n)O"ijCij + nu~u~) dxdt

~ cE(P+I)/2(S) + c fsT E(P-I)/2(t) in bi9;(uD dxdt + C fsT E(p+I)/2(t)dt

+ c fsT E(P-I)/2(t) 1(O"ijCij + u~uD dx dt. (2.6)

Step 2. We now estimate the quantity JJ E(P-I)/2(t) Jz;;O"ijCij dx dt. We multiply Eq. (PI) by
E(P-I)/2(t)r,(X)Ui with 1] E WI,OO(ft). Integrating by parts we obtain the following identity:

fsT E(P-I)/2(t) in 1] (O"ijCij - u~uD dx dt + fsT E(p-I)/2(t) in (Oj1])O"ijUi dx dt

= - fsT E(p-I)/2(t) in 1]bi9i (UDUi dx dt + [E(P-I)/2(t) in 1]UiU~dX]:

+ p - I rT
E(P-3)/2(t)E' (t) r 1]UiU~dx dt.

2 is in (2.7)
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Using the defintion of energy, the last two terms of this identity can be easily majorized by cE(P+ 1)/2(S).
Then, applying identity (2.7) with T/ = n - 'Y /2 we get

fsT E(p-I)/2(t) in (n - ~) ((JijCij - u~u~) dxdt

~ cE(p+I)/2(S) - (n -~) fsT E(P-I)/2(t) in bi9i(U~)Uidxdt.

We take now in (2.7) a function T/ E WI,OO(n) such that

T/ = 1 in w, o ~ T/ ~ 1 in nand T/ = 0 in WC

(see Zuazua [9] and the references cited there for the construction of this function), we deduce

fsT E(P-I)/2(t) fw (JijCij dx dt ~ fsT E(p-I)/2(t) in T/(JijCij dx dt

~ cE(p+l)/2(S) - fsT E(P-I)/2(t) L(OjT/)(JijUidxdt

+ fsT E(p-I)/2(t) L (u~u~ + biI9i(uDuil) dxdt.

We have

fsT E(P-1)/2(t) L bil9i(uDuil dxdt ~ c fsT E(p-I)/2(t) L (UiUi + bi9l(uD) dxdt,

I fsT E(p-I)/2(t) L (OjT/)(JijUi dx - ~ C fsT E(p+I)/2(t) dt + c fsT E(p-I)/2(t) L UiUi dx dt

and

I ( n - ~) fsT E(p-I)/2(t) in bi9i (UDUi dx dtl

~ C fsT E(p+l)/2(t)dt + c fsT E(p-I)/2(t) in bi9l(uD dxdt

for any C > O. Combining the above inequalities with (2.6), (2.8) and (2.9) where C is taken small enough,
we deduce (note that w c w)

fsT E(P+1)/2(t)dt ~ cE(p+I)/2(S) + c fsT E(P-I)/2(t) in bi9l(uD dxdt

+c fsT E(P-I)/2(t) L u~u~dxdt+c fsT E(p-I)/2(t) L UiUidxdt. (2.10)

Step 3. To absorb the last integral of (2.10), we adapt to our system, the method given by Tcheugoue
Tebou [8] in the study of the linear wave equation. We prove then the following lemma:

-

I

(2.8)

(2.9)
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Lemma 2.1. For any given E > 0, we have

fsT E(p-l)/2(t) L UiUidxdt ~ EfsT E(p+l)/2(t)dt

+ cE(p+l)/~(S) + c fsT E(P-l)/2(t)( L u~u~dx + in bi9f(u~) dX) dt. (2.11)

Proof. For every t E IR+ let us denote by z(t) the solution of the problem

{
-aij,j(z) = X(W)Ui in a,
z, = ° on F,

where X(w) is the characteristic function of w. Then we have

Since

(2.12)

(the constant c is not depending on u). Applying (2.12) with u' instead of U we also obtain

Ilz'lI~ ~ cL u~u~dx. (2.13)

Let us also observe that

(2.14)

Multiplying Eq. (PI) by ZiE(P-l)/2(t), integrating by parts and using (2.14) we get

fsT E(p-l)/2(t) 1UiUi dx dt = fsT E(p-l)/2(t) in (z~u~ - Zibi9i (u~)) dx dt

+ [E(P-l)/2(t) in ZiU~dX]; + p; 1 fsT E(p-3)/2(t)E' (t) in ZiU~dx dt. (2.15)

Using (2.12), the last two terms of (2.15) can be majorized by cE(p+l)/2(S). On the other hand, using
(2.12), (2.13) and the Young inequality,

fsT E(p-l)/2(t) in Z~U~dx dt ~ E' fsT E(p-l)/2(t) in U~U~dx dt + c fsT E(p-l)/2(t) in z~z~dx dt

~ E' fsT E(p-l)/2(t) in u~u~dx dt + c fsT E(p-l)/2(t) L u~u~dx dt,
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l' T-Is E(p-ll/'(t) J" ",bigi (uD dx dt ,;; Is E(P-ll/2(t)«' in ZiZi dx dt + c in bigf(uD dX) dt

,;; e' i: E(P- I)12 (t) LUiUi dx dt + c IsT
e»: 1)/2( t) in bigf( uD dx dt

for c' E]O, 1(. Substituting these two inequalities into (2.15) and taking c = 2c' j(l-c') we derive (2.11).
Now, we take c > 0 small enough, it follows from (2.10) and (2.11) that

Step 4. To estimate the last integral of (2.16), using assumptions (1.6)-(1.8) and (1.3), we prove the

following lemma:

Lemma 2.2. We have, for all t E lR+,
(2.17)

and
(2.18)L u~u~dx ~ -cE'(t) + c(-E'(t»)2/(P+I).

Proof. Fix t ~ 0 arbitrarily and set (as in Guesmia (3])

D; = {x E.o: \u~(x)\ ~ I}, D:={xED: \u~(x)\>l}.

Using the growth assumption (1.3) and the Holder inequality, we have (note that bi is bounded)
2/(p+l)

inc big;( u~) dx ,;; c inc (biU~9i (uDJ 2/(P+ I) dx ,;; c(inc b,U~gi(uD dX)

" '2/(p+l)~ c( In biu~gi(uD dX) ~ c(_E'(t»)2/(p+l)

(we applied (1.2) in the last step) and

Taking their sum we obtain (2.17).
To prove (2.18), we use (1.6) or (1.7) and (1.8).
Assume (1.6). Then (note that, in this case, we have assumed that r = p)
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hence, using assumption (1.3), we may prove in the same way the estimate (2.18).
Assume (1.7) and (1.8). We have (r = 1)

Cl/X/ ~ /9i(X)/, for all X E JR. (2.19)

Because the initial states (uO,ul) E W x V, then the solution u of (PI) satisfies (see Guesmia [3,
Theorem 1.2])

(2.20)

Put q = 1 + 4/(P'(P - 1) - 2) (note that q E [1, oo[ and (n - 2)q ~ n + 2). Then, applying the Holder
inequality and using (2.19), (2.20) and the injection V C (Lq+I(D»n, we get

l' 'd -11 '12(P-I)/(P+I)1 '14/(P+I)d
Ui Ui x - Ui Ui X

w w
2(p-l) 1 2(p-l)

~ c(L lu~lq+1 dX) (q+I)(p+l) (L lu~l(p+I)(:~0~2(P-I) dX) -(p+I)(q+l)

1 2(p-l)

~ cllu' (t)II~P-I)/(p+l) (L b~P'/(P'+I)bf' /(p'+I) lu~1(P+1)(:~0~2(P-1)dX) - (p+I)(q+l)

I/(P'+I) 4( +1) p'/(p'+I) 1- 2(p-l)
~ c[ (L b~P' dX) (L bilu~I(P'+I)/P' (P+I)(q';I)-2(P-I) dX) ] (p+I)(q+l)

2/(p+l)~ c( in biu~gi (u~) dx ) ~ c(- E' (t) )2/(P+ I);

property (1.2) is used in the last step and note that

p' + 1 4(q + 1) = 2
p' (P + l)(q + 1) - 2(p - 1) ,

p' ( 2(p - 1») 2
p' + 1 1 - (P + 1)(q + 1) = p + 1 .

Then (2.18) follows.
Substituting the estimates (2.17) and (2.18) into the right-hand side of (2.16), we obtain that

1sT E(t)(P+1)/2 dt ~ cE(S/p+I)/2 + c fsT (-E(t)(P-I)/2 E'(t) + E(t/P-I)/2 (-E'(t»)2/(P+I») dt

~ cE(S)(p+I)/2 + c fsT E(t)(P-I)/2(-E'(t»)2/(P+I) dt.

Using the Young inequality, for any fixed c > 0 we have

E(t)(P-I)/2(-E'(t»)2/(P+I) ~ cE(t)(p+I)/2 + cc(l-P)/2(-E'(t»).
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Therefore, using the nonincreasing of energy,

(l - E) fsT E(t)(P+I)/2 dt ~ cE(S)CP+I)/2 + CECI-p)/2 fsT (-E'(t)) dt

~ c(1 + ECI-p)/2) (1 + E(S)CP-I)/2)E(S) ~ c(1 + ECI-p)/2) (1 + E(0/p-I)/2)E(S);

choosing ° < E < 1 and letting T go to infinity, the desired estimate (2.1) follows.

Remarks. 1. If the functions 9i are linear, that is, 9i(S) = dis for all sE IR.with d; > 0, then condition
(1.3) is satisfied for all pE [1,00[. Then we obtain an exponential decay in the nondegenerate case (1.6).
And in the degenerate case (1.7) we obtain, taking p = nip' + 1 if n ~ 3 and p = 2(1 + E)lp' + 1 if
n = 1,2 with E E JO, 1[ (then (1.8) is satisfied),

E(t) ~ cC2p'/n, t > 0, if n ~ 3, (2.21)

and

E(t) ~ ct-p'/C1+c), i:'> 0, ifn = 1,2. (2.22)

For n ~ 2, (2.21) and (2.22) give a decay rate sharper than the one obtained by Nakao [7J and Tcheugoue
Tebou [8J for the linear wave equation. Additionally, no conditions are required to be imposed on the
degenerescence of bi unlike the restrictions assumed in [8].

2. We consider the non-isotropic elastodynamic system with potential of type

{
«; - (Tij,j + qiUi + li(X, u~) = ° in n x IR.+,
Ui = ° on r x IR.+ ,
Ui(O) = u? and u~(O) = ul in n,

(P2)

where qi E U'O(n) are bounded nonnegative functions. If m.axi{llqi 11 LOOCf2)} is small enough, then results
analogous to Theoerem 1.1 can be obtained using the method developed above where the energy of (P2)
is given by

tEIR.+.
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