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INSTABILITIES FOR SUPERCRITICAL SCHRÖDINGER

EQUATIONS IN ANALYTIC MANIFOLDS

by Laurent Thomann

Abstract. — In this paper we consider supercritical nonlinear Schrödinger equations
in an analytic Riemannian manifold (Md, g), where the metric g is analytic. Using
an analytic WKB method, we are able to construct an Ansatz for the semiclassical
equation for times independent of the small parameter. These approximate solutions
will help to show two different types of instabilities. The first is in the energy space,
and the second is an immediate loss of regularity in higher Sobolev norms.

1. Introduction

Let (Md, g) be an analytic Riemannian manifold of dimension d ≥ 3. In all
the paper we assume that the metric g is analytic. Let p an odd integer.
We consider the nonlinear Schrödinger equation

(1.1)

{
i∂tu + ∆gu = ω|u|p−1u, (t, x) ∈ R × Md,

u(0, x) = u0(x),

with either ω = 1 (defocusing equation) or ω = −1 (focusing equation).
Here ∆ = ∆g denotes the Laplace-Beltrami operator defined by ∆ = div∇.
It is known that the mass

(1.2) ‖u(t)‖L2(Md) = ‖u0‖L2(Md),
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and the energy

(1.3) H(u)(t) =

∫

Md

(1

2
|∇u|2 +

ω

p + 1
|u|p+1

)
dx = H(u0, ω),

are conserved by the flow of (1.1), at least formally.
Denote also by

(1.4) H+(u) =

∫

Md

(1

2
|∇u|2 +

1

p + 1
|u|p+1

)
dx.

In the following we will need the definition of uniform well-posedness :

Definition 1.1. — Let X be a Banach space. We say that the Cauchy prob-
lem (1.1) is locally uniformly well-posed in X , if for any bounded subset B ⊂ X ,
there exists T > 0 and a solution u ∈ C

(
[−T, T ]; X

)
of (1.1) and such that the

flow map

u0 ∈ B 7−→ u(t) = Φt(u0) ∈ X,

is uniformly continuous for any −T ≤ t ≤ T .

1.1. Instability in the energy space. —

By the works of J. Ginibre and G. Velo [10], T. Cazenave and F. B. Weissler
[7], we know that (1.1) is locally uniformly well-posed in the energy space
X = H1(Rd) ∩ Lp+1(Rd) = H1(Rd) when p < (d + 2)/(d − 2).
Our first result states that this result does not hold when p > (d + 2)/(d − 2)
is an odd integer.

Theorem 1.2. — Let p > (d + 2)/(d − 2) be an odd integer, ω ∈ {−1, 1},
and let H+ be given by (1.4). Let m ∈ Md. There exist a positive sequence
rn −→ 0, and two sequences un

0 , ũ0
n ∈ C∞

0 (Md) of Cauchy data with support in
the ball

{
|x − m|g ≤ rn

}
, a sequence of times tn −→ 0, and constants c, C > 0

such that

(1.5) H+(un
0 ) ≤ C, H+(ũ0

n
) ≤ C,

(1.6) H+(un
0 − ũ0

n) −→ 0, when n −→ +∞,

and such that the solutions un, ũn of (1.1) satisfy

(1.7) lim sup
n→+∞

∫

Md

∣∣(un − ũn)(tn)
∣∣p+1

dx > c.

Moreover, the sequences un
0 , ũ0

n
can be chosen such that there exist ν0 > 0 and

q0 > p + 1, such that for all 0 ≤ ν < ν0 and p + 1 ≤ q < q0,

(1.8) ‖un
0 − ũ0

n‖H1+ν(Md) + ‖un
0 − ũ0

n‖Lq(Md) −→ 0.
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For k ∈ R, the norm ‖ · ‖Hk(Md) is defined by

‖f‖Hk(Md) = ‖(1 − ∆)k/2f‖L2(Md).

R. Carles [6] obtains a similar result for the defocusing cubic equation in Rd.
An analog of Theorem 1.2 was proved by G. Lebeau [13] for the supercritical
wave equation, but for a nonlinearity of the form up. After a rescaling of (1.1)
to a semiclassical equation, we also have an almost finite speed of propagation
principle. This is one reason why such a result was expected for nonlinear
supercritical Schrödinger equations.

1.2. Ill-posedness in Sobolev spaces. —

Assume here that (Md, g) is the euclidian space with the canonical metric
(Md, g) = (Rd, can). Let T > 0 and let u :] − T, T [×Rd −→ C satisfy (1.1).
Then for all λ ∈ R

uλ : ] − λ−2T, λ−2T [×Rd −→ C

(t, x) 7−→ uλ(t, x) = λ
2

p−1 u(λ2t, λx),

is also a solution of (1.1).
Define the critical index for Sobolev well-posedness

(1.9) σc =
d

2
− 2

p − 1
.

Then, for all f ∈ Ḣσc(Rd) (the homogeneous Sobolev space) and λ ∈ R

λ
2

p−1 ‖f(λ·)‖Ḣσc (Rd) = ‖f‖Ḣσc(Rd).

This scaling notion is relevant, as we have the following results :

• Let σ > σc, then the equation (1.1) is locally uniformly well-posed in X =
Hσ(Rd), [10],[7].

• If 0 < σ < σc, the problem (1.1) is ill-posed in Hσ(Rd), in the sense that
there exist a sequence of initial data un

0 so that

‖un
0‖Hσ(Rd) −→ 0,

and a sequence of times tn −→ 0 such that the solution un of (1.1) satisfies

‖un(tn)‖Hρ(Rd) −→ +∞,

for ρ = σ (see Christ-Colliander-Tao [9]), or even for all ρ ∈]σ/(d
2 − σ), σ] in

the particular case ω = 1 and p = 3, (see Carles [5] and Alazard-Carles [2]).

Here we prove
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Theorem 1.3. — Assume that (Md, g) = (Rd, can). Let p ≥ 3 be an odd
integer, ω ∈ {−1, 1}, and let 0 < σ < d/2 − 2/(p − 1). There exist a sequence
ǔn

0 ∈ C∞(Rd) of Cauchy data and a sequence of times τn −→ 0 such that

(1.10) ‖ǔn
0‖Hσ(Rd) −→ 0, when n −→ +∞,

and such that the solution ǔn of (1.1) satisfies
(1.11)

‖ǔn(τn)‖Hρ(Rd) −→ +∞, when n −→ +∞, for all ρ ∈
] σ

p−1
2 (d

2 − σ)
, σ

]
.

In the general case of an analytic manifold (Md, g) with an analytic metric g,
we obtain the weaker result

Theorem 1.4. — Let p ≥ 3 be an odd integer, ω ∈ {−1, 1}, and let 0 < σ <
d/2 − 2/(p − 1). Let m ∈ Md. There exist a positive sequence rn −→ 0 and a
sequence ǔn

0 ∈ C∞
0 (Md) of Cauchy data with support in the ball

{
|x−m|g ≤ rn

}
,

a sequence of times τn −→ 0 such that

‖ǔn
0‖Hσ(Md) −→ 0, when n −→ +∞,

and such that the solution ǔn of (1.1) satisfies

‖ǔn(τn)‖Hρ(Md) −→ +∞, when n −→ +∞, for all ρ ∈
]
I(σ), σ

]
,

where I(σ) is defined by

I(σ) =

{ σ
2 for 0 < σ ≤ d

2 − 4
p−1 ,

σ
p−1
2 ( d

2−σ)
for d

2 − 4
p−1 ≤ σ < d

2 − 2
p−1 .

In the case p = 3 and ω = 1, Theorem 1.3 was shown by R. Carles [5] using
the convergence of the WKB method for C∞ data (see [11], [12] ). Recently, T.
Alazard and R. Carles [1] have obtained a justification for nonlinear geometric
optics when p > 3 with H∞ data.
Consider now the semiclassical equation

(1.12) ih∂tv + h2∆v = |v|p−1v.

In [2], T. Alazard and R. Carles prove that for all non trivial initial condition
v(0, ·) ∈ S(Rd), the solution v of (1.12) oscillates immediately: There exists
τ > 0 so that

lim inf
h→0

‖|h∇|sv(τ)‖L2(Rd) > 0,

for all s ∈]0, 1]. This yields the result of Theorem 1.3 for the defocusing equa-
tion in the euclidien space for any smooth Cauchy condition. Their method
does not apply to the focusing case.
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Denote by σsob the Sobolev exponent so that Ḣσsob(Rd) ⊂ Lp+1(Rd), i.e.

(1.13) σsob =
d

2
− d

p + 1
.

Let p > (d + 2)/(d − 2), then σsob < σc. As pointed out by G. Lebeau and R.
Carles, for σ = σsob, Theorem 1.3 yields

‖ǔn
0‖Hσsob (Rd) −→ 0, ‖ǔn(τn)‖Hρ(Rd) −→ +∞,

for all ρ ∈]1, σsob]. This interval can not be enlarged. Indeed, for all ρ ≤ 1,
the conservation of the quantities (1.2) and (1.3) together with the embedding

Ḣσsob(Rd) ⊂ Lp+1(Rd) yield for all τ > 0

‖ǔn(τ)‖Hρ(Rd) −→ 0.

See also [4].

G. Lebeau [14] obtains a stronger result for the wave equation in (Rd, can),
with the same range for ρ in (1.11), but the loss of derivatives is obtained with
only one one Cauchy condition, instead of a sequence.

Theorem 1.2 can not be deduced from Theorem 1.3. In fact, the sequences
constructed with σ = 1 such that

‖ǔn
0‖H1(Md) −→ 0, ‖ǔn(τn)‖H1(Md) −→ +∞,

satisfy H+(ǔn
0 ) −→ +∞, when n tends to infinity.

The instabilities of Theorems 1.2, 1.3 and 1.4 are not geometrical effects, they
are only caused by the high exponent of the nonlinearity.
We could also consider more general analytic nonlinearities, for instance
±(1 + |u|2)α/2u with α > (d + 2)/(d − 2).
Notice that the focusing case with non analytic Cauchy conditions is more in-
tricate, as other phenomenons are involved, like finite time explosion.

The main ingredient of the proof of our results is the construction of approxi-
mate solutions of (1.1), via analytic nonlinear geometric optics, as done by P.
Gérard in [11]. This work will be adapted to the case (Md, g) = (Rd, can). We
will work in weighted spaces, so that these solutions concentrate in a point of
Rd, and then the construction in (Md, g) will follow directly, as we are able to
work only in one local chart.

The plan of the paper is the following

1. We first construct a formal solution of (1.1).
a) In Section 2 we deal with the case (Md, g) = (Rd, can) : First we reduce

(1.1) to a semiclassical equation as done in [13] and [5], then we adapt the
analytic WKB method given in [11] to Rd.

b) In Section 2.2 we consider the general case of an analytic manifold with
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an analytic metric.
2. We obtain a family of approximate solutions of (1.1). (Section 3)
3. Using two different rates of concentration of this family, we prove the main
results. (Section 4)

Notations 1.5. — In this paper c, C denote constants the value of which may
change from line to line. These constants will always be independent of h. We
use the notations a ∼ b, a . b if 1

C b ≤ a ≤ Cb , a ≤ Cb respectively. We write
a ≪ b if a ≤ Kb for some large constant K which is independent of h.

Acknowledgements. — The author would like to thank N. Burq his adviser
for this interesting subject and his guidance, and P. Gérard for giving his per-
mission to reproduce a part of the work [11] in the appendix. The author is
also grateful to S. Alinhac and T. Alazard for many enriching discussions and
clarifications.

2. Nonlinear geometric optics

2.1. The Euclidian case. —

2.1.1. Reduction to a semiclassical equation. — Following [13], [5], we reduce the
equation (1.1) to a semiclassical equation, and therefore make the following
change of variables and unknown function

(2.1)

{
t = ~

αs, x = ~z, h = ~
β ,

u(~αs, ~z) = ~
γv(s, z, h),

where h ∈]0, 1] is a small parameter, and where β > 0. The value of β will be
given in Section 4, in terms of p and d to prove Theorem 1.2, and in terms of
p, d and σ to prove Theorem 1.3.
If we choose

(2.2) α = β + 2, (p − 1)γ = −2(β + 1),

we are lead to studying the Cauchy problem

(2.3)

{
ih∂sv(s, z) + h2∆v(s, z) = ω|v|p−1v(s, z),

v(0, z) = v0(z).

Following the ideas of nonlinear geometric optics, we can search a solution of
(2.3) for small times (but independent of h) of the form

(2.4) v(s, z, h) = a(s, z, h)eiS(s,z)/h,

where formally
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(2.5) a(s, z, h) =
∑

j≥0

aj(s, z)hj .

Then v is a formal solution of equation (2.3) if the couple (S, a) satisfies the
system

(2.6)





∂sS + (∇S)2 + ω|a0|p−1 = 0,

∂sa + 2∇S · ∇a + a∆S − ih∆a +
iωa

h
(|a|p−1 − |a0|p−1) = 0,

S(0, z) = S0(z), a(0, z, h) = a0(z, h),

where v(0, z, h) = a0(z, h)eiS0(z)/h.
In fact to obtain the system (2.6), plug (2.4) in equation (2.3) and identify
the coefficients in the expansion in powers of h. The first equation of (2.6)
corresponds to the coefficients of h0, and the second to the others, after division
by h. Notice that S will be a real function, if the data S(0, ·) is real.
The WKB method consits now in plugging the developement given by (2.5)
in (2.6). Annihilating the coefficients of hj , for j ≥ 0, yields a cascade of
equations. And if we are able to solve them, this gives an approximate solution
vapp of (2.3)

(2.7) ih∂svapp + h2∆vapp = |vapp|p−1vapp + O(h∞).

Unfortunately, the obtained system is not closed: the equation which gives aj

depends on aj+1.
Moreover, in general, using (2.7), we can show that vapp is close to a solution
of (2.3) only for times s ∈ [0, Ch log 1

h ]. See [11], Corollaire 1.

To obtain an Ansatz for h-independent times, we work in an analytic frame.
Thus in the following we will consider z as a complex variable.

2.1.2. Construction of a formal solution of (2.3). — Here we adapt step by
step the proof of P. Gérard [11] given in the case of the torus Td to the case
Rd.
We need Sjöstrand’s definition [15] of an analytic symbol.

Definition 2.1. — We say that the formal series b(s, z, h) =
∑

j≥0 bj(s, z)hj

is an analytic symbol if there exist positive constants s0, l, A, B > 0 such that
for all j ≥ 0
(2.8)

(s, z) 7→ bj(s, z) is an holomorphic function on {|s| < s0} × {|Im z| < l},
and

(2.9) |bj(s, z)| ≤ ABjj! on {|s| < s0} × {|Im z| < l}.
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Notice that b has to be analytic in both variables, s and z.

To obtain proper estimates in Sobolev norms later, we want to make sure that
the functions are small at infinity in the space variable. Therefore we define
the weight

(2.10) W (z) = e(1+z2)1/2

,

where z2 = z2
1 + · · · + z2

d for any z = (z1, · · · , zd) ∈ Cd. Notice that W is
analytic in the band {|Im z| < 1

2}, thus in the following we fix l < 1
2 .

We introduce the space H(s0, l, B) composed of the analytic symbols
b =

∑
j≥0 bjh

j satisfying: there exist A, B > 0 so that

(2.11) |W (z)bj(s, z)| ≤ ABjj! on {|s| < s0} × {|Im z| < l}, ∀j ≥ 0.

(2.12) H(s0, l, B) =

{
b =

∑
j≥0 bjh

j is an analytic symbol on
(
{|s| < s0} × {|Im z| < l}

)
s.t. bj satisfies (2.11)

}
.

Let ε < 1/B. For 0 ≤ θ ≤ 1, we can endow H(s0, l, B) with the norms

‖b‖θ =
∑

j≥0

εj

j!
sup

0<τ<1
sup

|s|<s0(1−τ)

sup
|Im z|<lτ

|W (z)bj(s, z)|
(
1 − τ − |s|

s0

)j+θ

.

Each of these norms makes H(s0, l, B) a complete space.
In the following, fix 0 < ε < 1/B, and let 0 < h < ε. Fix also s0, B > 0 and
l < 1

2 . Denote by

H = H(s0, l, B),

and define

H0 = H(0, l, B),

the restriction to s = 0 of H, endowed with the induced norms. This is the
space of the initial conditions.
We will solve the system (2.6) in (H, ‖ · ‖1) with a fixed point argument. The
choice of the space and norms are inspired by abstract versions of the Cauchy-
Kowaleski theorem [3].

We first give some properties of these norms.

Lemma 2.2. — There exists C > 0 such that for all θ ∈ [0, 1] and b1, b2 ∈ H
(2.13) ‖b1 b2‖θ ≤ C‖b1‖0‖b2‖θ.

Proof. — Set

Ω =
{
(τ, s, z) | 0 < τ < 1, |s| < s0(1 − τ), |Im z| < lτ

}
,
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and denote by
sup
Ω

= sup
0<τ<1

sup
|s|<s0(1−τ)

sup
|Im z|<lτ

.

Let
b1 =

∑

j≥0

b1
j hj, and b2 =

∑

j≥0

b2
j hj ,

be two elements of H, then b1 b2 can be written

(2.14) b1 b2 =

∞∑

j=0

( j∑

k=0

b1
k b2

j−k

)
hj .

It is easy to check that there exists C > 0 so that

(2.15) |W (z)| ≤ C|W (z)|2,
on |Im z| < 1

2 . Therefore by (2.14) and (2.15)

‖b1 b2‖θ =
∞∑

j=0

εj

j!
sup
Ω

∣∣W (z)

j∑

k=0

b1
k b2

j−k(s, z)
∣∣(1 − τ − |s|

s0

)j+θ

≤ C
∞∑

k=0

∞∑

j=k

εk

k!
sup
Ω

|W (z)b1
k(s, z)|

(
1 − τ − |s|

s0

)k

· εj−k

(j − k)!
sup
Ω

|W (z)b2
j−k(s, z)|

(
1 − τ − |s|

s0

)j−k+θ

= ‖b1‖0‖b2‖θ.

For |s| < s0, denote by ∂−1
s the operator defined by

(2.16) ∂−1
s b =

∫ s

0

b(σ)dσ for b ∈ H,

and ∂−2
s = ∂−1

s ◦ ∂−1
s . We then have the following

Lemma 2.3. — i) Let A be one of the operators

b 7→ ∇zb, b 7→ h∆zb, b 7→ 1

h
(b − b0),

then there exists C > 0 such that for all h ∈]0, ε[ and b ∈ H
(2.17) ‖∂−1

s Ab‖1 ≤ Cs0‖b‖1.

ii) For all θ ∈]0, 1], there exists Cθ such that for all h ∈]0, ε[ and b ∈ H
(2.18) ‖∂−1

s b‖θ ≤ Cθs0‖b‖1.

iii) There exists C > 0 such that for all h ∈]0, ε[ and b ∈ H
(2.19) ‖∂−2

s b‖0 ≤ Cs0‖b‖1.
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Proof. — We can assume that ‖b‖1 = 1. Then there exists a nonnegative
sequence d = (dj)j≥0 satisfying

∑
j≥0 dj = 1 so that, for all j ≥ 0, for all

0 < τ < 1, |s| < s0(1 − τ), |Im z| < lτ , we have

(2.20) |W (z) bj(s, z)| ≤ C
j!

εj

dj

(1 − τ − |s|
s0

)j+1
.

Denote by ∇ = ∇z.
Proof of i)
• We prove the inequality ‖∂−1

s ∇b‖1 ≤ Cs0‖b‖1. Let 0 < τ < 1, |s| < s0(1− τ)
and |Im z| < lτ . Let τ < τ ′ < 1. By the Cauchy formula we deduce that for
all |s′| ≤ |s| and |Im z| < lτ

|∇bj(s
′, z)| ≤ C

τ ′ − τ
sup

|Im z′|<lτ ′

|bj(s
′, z′)|.

Thus, as |∇W | ≤ |W |, for all |s′| ≤ |s| and |Im z| < lτ

(2.21) |W (z)∇bj(s
′, z)| ≤ C

τ ′ − τ
sup

|Im z′|<lτ ′

|W (z′) bj(s
′, z′)|.

Then by (2.20) and (2.21) we obtain

∣∣∣W (z)

∫ s

0

∇bj(s
′, z)ds′

∣∣∣ ≤ C
j!

εj
dj

∫ |s|

0

1

τ ′ − τ

d|s′|
(1 − τ ′ − |s′|

s0
)j+1

.

We now make the choice

(2.22) τ ′ − τ = 1 − τ ′ − |s′|
s0

, i.e. τ ′ =
1

2
(1 + τ − |s′|

s0
),

then τ ′ satisfies τ < τ ′ < 1 because 0 < τ < 1 and |s′| < (1 − τ)s0.
Moreover, (2.22) yields

1 − τ ′ − |s′|
s0

=
1

2
(1 − τ − |s′|

s0
),

therefore
∣∣∣W (z)

∫ s

0

∇bj(s
′, z)ds′

∣∣∣ ≤ C
j!

εj
dj

∫ |s|

0

d|s′|
(1 − τ − |s′|

s0
)j+2

≤ Cs0
j!

εj
dj

(
(1 − τ − |s|

s0
)−j−1 − (1 − τ)−j−1

)
.

And thus, as |s| < s0(1 − τ)

εj

j!

∣∣∣W (z)

∫ s

0

∇bj(s
′, z)ds′

∣∣∣
(
1 − τ − |s|

s0

)j+1

≤ Cs0

(
(1 − (1 − |s|

s0(1 − τ)
)j+1

)
dj

≤ Cs0dj .
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Finally, by the previous inequality

‖∂−1
s ∇b‖1 =

∑

j≥0

εj

j!
sup

0<τ<1
sup

|s|<s0(1−τ)

sup
|Im z|<lτ

∣∣W (z)

∫ s

0

∇bj(s
′, z)ds′

∣∣(1 − τ − |s|
s0

)j+1

≤ Cs0

∑

j≥0

dj ≤ Cs0,

which was the claim.

• The inequality h‖∂−1
s ∆b‖1 ≤ Cs0‖b‖1 can be shown by the same manner,

using that h < ε compensates the loss of one more derivative.

• Denote by b′ = (b − b0)/h, then for all j ≥ 0, b′j = bj+1. By (2.20)

∣∣∣W (z)

∫ s

0

bj+1(s
′, z)ds′

∣∣∣ ≤ s0

j + 1

(j + 1)!

εj+1
dj+1

(
(1− τ − |s|

s0
)−j−1 − (1− τ)−j−1

)
,

and therefore, for all 0 < τ < 1, |s| < s0(1 − τ), |Im z| < lτ and j ≥ 0

εj

j!

∣∣∣W (z)

∫ s

0

bj+1(s
′, z)ds′

∣∣∣(1 − τ − |s|
s0

)j+1 ≤ s0

ε

(
1 − (1 − |s|

s0(1 − τ)
)j+1

)
dj+1

≤ Cs0dj+1.

This yields h−1‖∂−1
s (b − b0)‖1 ≤ Cs0‖b‖1 for fixed ε > h.

Proof of ii)
By integration of inequality (2.20), we obtain for all j ≥ 1

∣∣∣W (z)

∫ s

0

bj(s
′, z)ds′

∣∣∣ ≤ Cs0
j!

jεj
dj

(
(1 − τ − |s|

s0
)−j − (1 − τ)−j

)
.

≤ Cs0
j!

εj
dj(1 − τ − |s|

s0
)−j ,

hence

(2.23)
εj

j!

∣∣∣W (z)

∫ s

0

bj(s
′, z)ds′

∣∣∣
(
1 − τ − |s|

s0

)j+θ

≤ Cs0dj .

For j = 0 we obtain
∣∣∣W (z)

∫ s

0

b0(s
′, z)ds′

∣∣∣ ≤ Cs0

(
log (1 − τ) − log (1 − τ − |s|

s0
)
)
,

then

(2.24)
∣∣∣W (z)

∫ s

0

b0(s
′, z)ds′

∣∣∣
(
1 − τ − |s|

s0

)θ

≤ Cs0d0.

By the definition of ‖ · ‖θ, inequalities (2.23) and (2.24) give the result.

The proof of iii) is similar, and is left here.
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Lemma 2.4. — There exists C > 0 such that for all h ∈]0, ε[ and b1, b2 ∈ H
(2.25) ‖(∂−1

s b1) (∂−1
s b2)‖1 ≤ Cs2

0‖b1‖1‖b2‖1.

Proof. — Write

‖(∂−1
s b1) (∂−1

s b2)‖1 =

∞∑

j=0

εj

j!
sup
Ω

∣∣W (z)

j∑

k=0

∂−1
s b1

k ∂−1
s b2

j−k(s, z)
∣∣(1 − τ − |s|

s0

)j+1

≤ C

∞∑

k=0

∞∑

j=k

εk

k!
sup
Ω

|W (z)∂−1
s b1

k(s, z)|
(
1 − τ − |s|

s0

)k+ 1
2

· εj−k

(j − k)!
sup
Ω

|W (z)∂−1
s b2

j−k(s, z)|
(
1 − τ − |s|

s0

)j−k+ 1
2

= C ‖∂−1
s b1‖ 1

2
‖∂−1

s b2‖ 1
2
,

and then by Lemma 2.3 ii) with θ = 1/2, we deduce

‖(∂−1
s b1) (∂−1

s b2)‖1 ≤ Cs2
0‖b1‖1‖b2‖1.

Proposition 2.5. — Let S0 ∈ H0(l, B) be a real analytic function, and let
a0 ∈ H0(l, B) be an analytic symbol. Then there exist s0 > 0, a real analytic
function S ∈ H(s0, l, B), and an analytic symbol a ∈ H(s0, l, B), such that v =

aeiS/h is a formal solution of equation (2.3) with Cauchy data v0 = a0eiS0/h.

Remark 2.6. — By the Cauchy formula, the function v = aeiS/h satisfies for
all k ∈ N

(2.26) sup
|s|<s0

sup
|Im z|<l/2

∣∣(1 − h2∆
)k/2

v
∣∣ . e−|z|,

and

(2.27) sup
|s|<s0

sup
|Im z|<l/2

∣∣(1 − h2∆
)k/2|v|p−1v

∣∣ . e−p|z|.

This will be usefull in the sequel.

Proof. — The proof is based on a fixed point argument in (H, ‖ · ‖1).
Set ϕ = ∇S and differentiate the first equation of (2.6) with respect to the
space variable, then we obtain

(2.28)





∂sϕ = −2ϕ · ∇ϕ − ω∇f(a0)

∂sa = −2ϕ · ∇a − a divϕ + ih∆a − iωa

h

(
f(a) − f(a0)

)
,

where a(s, z) = a(s, z) and f(b) = (b b)
p−1
2

Differentiate the system (2.28) with respect to s and obtain
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(2.29)





∂2
sϕ= − 2∂sϕ · ∇ϕ − 2ϕ · ∇∂sϕ − ω∂s∇f(a0)

∂2
sa= − 2∂sϕ · ∇ − 2ϕ · ∇∂sa − a div∂sϕ − ∂sa divϕ + ih∆∂sa

− iω∂sa

h

(
f(a) − f(a0)

)
− iωa

h
∂s

(
f(a) − f(a0)

)
.

Write

(2.30)

{
∂sϕ = ∂−1

s (∂2
sϕ) + ∂sϕ(0, ·),

∂sa = ∂−1
s (∂2

sa) + ∂sa(0, ·),
and

(2.31)

{
ϕ = ∂−2

s (∂2
sϕ) + s∂sϕ(0, ·) + ϕ(0, ·),

a = ∂−2
s (∂2

sa) + s∂sa(0, ·) + a(0, ·).

Now introduce the new unknown function u = (u1, u2) = (∂2
sϕ, ∂2

sa). Hence
we are lead to solving a system of the form

(2.32) u = F (s, u).

We will show that for 0 < s0 < 1 small enough F is a contraction in a ball in
(H, ‖ · ‖1). Let R > 0 be such that

‖ϕ(0, ·)‖0, ‖∂sϕ(0, ·)‖0, ‖∇ϕ(0, ·)‖0, ‖∇∂sϕ(0, ·)‖0, ‖∆∂sϕ(0, ·)‖0 ≤ R,

and

‖a(0, ·)‖0, ‖∂sa(0, ·)‖0, ‖∇a(0, ·)‖0, ‖∇∂sa(0, ·)‖0, ‖∆∂sa(0, ·)‖0,

‖(a − a0)(0, ·)/h‖0, ‖∂s(a − a0)(0, ·)/h‖0 ≤ R.

• Write

∂sϕ∇ϕ =
(
∂−1

s ∂2
sϕ + ∂sϕ(0, ·)

)
·

(
∂−1

s (∂−1
s ∇)(∂2

sϕ) + s∇∂sϕ(0, ·) + ∇ϕ(0, ·)
)

Then by (2.25) and (2.13)

‖∂sϕ∇ϕ‖1 . s2
0‖∂2

sϕ‖1‖∂−1
s ∇(∂2

sϕ)‖1 + R‖∂−1
s ∂2

sϕ‖1

+R‖∂−1
s (∂−1

s ∇)(∂2
sϕ)‖1 + R2,

and by (2.17) and (2.18)

‖∂sϕ∇ϕ‖1 . s3
0‖∂2

sϕ‖2
1 + s0R‖∂2

sϕ‖1 + R2

. s2
0‖∂2

sϕ‖2
1 + R2.(2.33)

• Similarly we obtain

(2.34) ‖ϕ∇∂sϕ‖1 . s2
0‖∂2

sϕ‖2
1 + R2,
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and
(2.35)

‖∂sϕ∇a‖1, ‖ϕ∇∂sa‖1, ‖a div∂sϕ‖1, ‖∂sa div ϕ‖1 . s2
0‖∂2

sϕ‖1‖∂2
sa‖1 + R2.

• We have

(2.36) ∇∂sf(a0) = ∇∂−1
s ∂2

sf(a0) + ∇∂sf(a0)(0, ·).
By the Leibniz rule and (2.13)

‖∂2
sf(a0)‖1 . ‖∂2

sa0‖1‖a0‖p−2
0 + ‖(∂sa0)

2‖1‖a0‖p−3
0 .

From (2.31) and (2.19)

(2.37) ‖a0‖0 . ‖∂−2
s ∂2

sa0‖0 + R . s0‖∂2
sa0‖1 + R.

Now use (2.30), (2.25) and (2.18)

(2.38) ‖(∂sa0)
2‖1 . s2

0‖∂2
sa0‖2

1 + R2.

Finally, from (2.36), (2.37) and (2.38) we deduce

(2.39) ‖∇∂sf(a0)‖1 . s
p−1
2

0 ‖∂2
sa0‖

p−1
2

1 + R
p−1
2 . s

p−1
2

0 ‖∂2
sa‖

p−1
2

1 + R
p−1
2 .

• Write

h∆∂sa = h∂−1
s ∆∂2

sa + h∆∂sa(0, ·),
therefore by (2.17)

(2.40) ‖h∆∂sa‖1 . s0‖∂2
sa‖1 + R.

• We now estimate the term ∂sa
h

(
f(a) − f(a0)

)
. Observe that

f(a) − f(a0) = (aa)
p−1
2 − (a0a0)

p−1
2

= (aa − a0a0)
(
(aa)

p−3
2 + · · · + (a0a0)

p−3
2

)
,

and

aa − a0a0 = (a − a0)a + (a − a0)a0.

Then by (2.13)

(2.41) ‖∂sa

h

(
f(a) − f(a0)

)
‖1 . ‖∂sa

a − a0

h
‖1‖a‖p−2

0 .

Use (2.30), (2.31) to write

∂sa
a − a0

h
=

(
∂−1

s (∂2
sa) + ∂sa(0, ·)

)

(
∂−1

s ∂−1
s

∂2
s (a − a0)

h
+ s

∂s(a − a0)(0, ·)
h

+
(a − a0)(0, ·)

h

)
,

then by (2.25), (2.13) and (2.18)

(2.42) ‖∂sa
a − a0

h
‖1 .

(
s0‖∂2

sa‖1 + Rs0

)(
‖∂−1

s

∂2
s (a − a0)

h
‖1 + R

)
.
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Moreover from (2.17) we have

(2.43) ‖∂−1
s

∂2
s (a − a0)

h
‖1 . s0‖∂2

sa‖1.

Therefore inequalities (2.41), (2.42) and (2.43) yield

(2.44) ‖∂sa

h

(
f(a) − f(a0)

)
‖1 . sp

0‖∂2
sa‖p

1 + Rp.

• Similar arguments are used to show that

(2.45) ‖a

h
∂s

(
f(a) − f(a0)

)
‖1 . sp

0‖∂2
sa‖p

1 + Rp.

Inequalities (2.33), (2.34), (2.35), (2.39), (2.40), (2.44) and (2.45) show that,
if s0 > 0 is small enough, there exists R1 > R such that F maps the ball of
radius R1

(
in (H, ‖ · ‖1)

)
into itself.

With analogous arguments, we can show that F is a contraction in (H, ‖ · ‖1).
Hence by the fixed point theorem, there exists a unique u = (∂2

sϕ, ∂2
sa) ∈ H×H

which satisfies (2.32).
Let (ϕ0, a0) ∈ H × H, and consider the couple (∂sϕ(0, ·), ∂sa(0, ·)) ∈ H × H
which solves the system (2.28) at s = 0. Let u be the solution of (2.32) with
these initial conditions. Then with the formula (2.31) we recover the couple
(ϕ, a) which is a solution of (2.28). Moreover, (2.31) shows that (ϕ, a) ∈ H×H.

Let S0 ∈ H0 and take ϕ0 = ∇S0. The function ϕ (with Cauchy condition
ϕ(0, ·) = ϕ0) is irrotational, as it satisfies the equation

∂sϕ = −2ϕ · ∇ϕ − ω∇f(a0).

Therefore there exists S so that ϕ = ∇S and which is solution of

∇
(
∂sS + (∇S)2 + ωf(a0)

)
= 0.

Moreover, it is possible to choose S such that

∂sS + (∇S)2 + ωf(a0) = 0.

Now the formula
(2.46)

S(s, z) =

∫ s

0

∂sS(σ, z)dσ + S0(z) = −
∫ s

0

(
ϕ · ϕ + ωf(a0)

)
(σ, z)dσ + S0(z),

shows that S ∈ H.

Finally, we have shown the existence of a solution (S, a) ∈ H×H of the system




∂sS + (∇S)2 + ω|a0|p−1 = 0,

∂sa + 2∇S · ∇a + a∆S − ih∆a +
iωa

h
(|a|p−1 − |a0|p−1) = 0,

S(0, z) = S0(z) ∈ H0, a(0, z, h) = a0(z, h) ∈ H0.



16 LAURENT THOMANN

With a Gronwall inequality, it is straightforward to check that S is real analytic.

Remark 2.7. — The inequality ‖∂−1
s b‖0 ≤ Cs0‖b‖1 fails, and that is the rea-

son why we have to differentiate the system (2.28) with respect to the time
variable, before applying the contraction method.

2.2. The general case of an analytic manifold (Md, g). —
Let (Md, g) an analytic Riemannian manifold of dimension d. We assume
moreover that g is analytic. Let m ∈ Md. Then there exist a neighbourhood
U ⊂ Md of m, a neighbourhood V ⊂ Rd of 0, and an homeomorphism

(2.47) κ : U −→ V .

In the chart (U , κ) the metric g can be written

g =
∑

1≤j,k≤d

gjk(x)dxjdxk,

where G = (gjk) is a positive symmetric matrix and analytic in V .
In these coordinates, we have the explicit formula for the Laplace-Beltrami
operator

∆g = ∆g(x) =
1√

detG
div

(√
detG G−1∇ ·

)

=
1√

detG

∑

1≤j,k≤d

∂

∂xj

(√
detG gjk ∂

∂xk

)
,

where (gjk) = G−1. Every function involved in the former expression is ana-
lytic.
We now make the rescaling (2.1). The function

v(s, z, h) = ~
−γu(~αs, ~z),

satisfies

(2.48) ih∂tv(s, z) + h2∆(~z)v(s, z) = ω|v|p−1v(s, z), (s, z) ∈ R × ~
−1V .

We now adapt the analysis of Section 2 to the equation (2.48), in ~−1V instead
of Rd.
Let r > 0 such that

(2.49) B(0, 2r) ⊂ V .

Notice that on the set
{
(|~z| < r) ∩ (|Im z| < l)

}
, the coefficients of ∆g are

uniformly bounded with respect to ~, as well as their derivatives.
Here again, we want to find a formal solution of (2.48) of the form

v(s, z, h) = a(s, z, h)eiS(s,z)/h =
( ∑

j≥0

aj(s, z)hj
)
eiS(s,z)/h.
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Therefore (S, a) has to satisfy the system

(2.50)





∂sS + (∇gS)2 + ω|a0|p−1 = 0,

∂s a + 2∇gS · ∇g a + a ∆gS − ih∆g a +
iωa

h
(|a|p−1 − |a0|p−1) = 0,

S(0, z) = S0(z), a(0, z, h) = a0(z, h),

with ∇g = ∇g(~z), ∆g = ∆g(~z) and where v(0, z, h) = a0(z, h)eiS0(z)/h.
For ~ > 0 small enough, denote by

D~ = {|s| < s0} ×
{
(|~z| < r) ∩ (|Im z| < l)

}
,

and by H~ = H~(s0, l, r, B) the space of the analytic symbols b(s, z, h) =∑
j≥0 bj(s, z)hj (see Definition 2.1) satisfying

|W (z) bj(s, z)| ≤ ABjj! on D~, ∀j ≥ 0.

Define also H0
~

= H~(0, l, r, B) the space of the initial conditions.
Let ε < 1/B. For 0 ≤ θ ≤ 1, we endow H~(s0, l, r, B) with the norms

‖b‖θ,~ =
∑

j≥0

εj

j!
sup

0<τ<1
sup

|s|<s0(1−τ)

sup
Γτ

|W (z) bj(s, z)|
(
1 − τ − |s|

s0

)j+θ

,

where Γτ =
{
(|~z| < rτ) ∩ (|Im z| < lτ)

}
.

Now it is straightforward to check that the results of Lemma 2.2, Lemma 2.3
and Lemma 2.4 hold when ‖ · ‖θ is replaced with ‖ · ‖θ,~ and that the constants
involved in the estimates do not depend on ~. Notice that the boundedness of
D~ with respect to the variable |~z| is dealt with in exaclty the same way as was
done with the boundedness with respect to |Im z|. This yields the following
analog of Proposition 2.5

Proposition 2.8. — Let S0 ∈ H0
~
(l, r, B) be a real analytic function, and let

a0 ∈ H0
~
(l, r, B) be an analytic symbol. Then there exist s1 > 0 independent

of ~, a real analytic function S ∈ H~(s1, l, r, B), and an analytic symbol a ∈
H~(s1, l, r, B), such that v = aeiS/h is a formal solution of equation (2.3) with

Cauchy data v0 = a0eiS0/h.

Remark 2.9. — Proposition 2.5 is contained in Proposition 2.8: In the case
(Md, g) = (Rd, can), r = +∞ and H~(s1, l, r, B) = H(s1, l, B).

We are now able to construct an approximate solution of the problem (2.48).

Let c0 such that c0/h =: n ∈ N. Define

a(n)(s, z, h) =
∑

j≤n

aj(s, z)hj,
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and

(2.51) vapp(s, z, h) = a(n)(s, z, h)eiS(s,z)/h.

where the aj ’s and S are given by Proposition 2.8. The choice of the initial
condition vapp(0, z, h) will be made in Section 4.

We now show that if c0 is small enough, vapp is a good approximation to the
problem (2.3).

Proposition 2.10. — Let s1 > 0 be given by Proposition 2.8. If c0 ≪ 1,
there exists δ1 > 0 such that the function vapp defined by (2.51) satisfies

(2.52) ih∂svapp + h2∆vapp = ω(vappvapp)
p−1
2 vapp + e−δ1/hg,

with vapp = vapp(s, z) and where g is an analytic function on {|s| < s1} ×{
(|~z| < r) ∩ (|Im z| < l)

}
such that for all k ∈ N, there exists Ck > 0

independent of h so that

(2.53) sup
|s|<s1

sup
|Im z|<l/2

‖(1 − h2∆)k/2g(s, · + iIm z)‖L2(B(0,r/~)) ≤ Ck.

Here we have used the convention that B(0, r/~) = R
d if r = +∞.

Proof. — Denote by f(b) = (b b)
p−1
2 , with b = b(s, z). The function vapp

satisfies the equation

ih∂svapp + h2∆vapp − ωf(vapp)vapp

= −a(n)
(
∂sS + (∇S)2 + ωf(a0)

)
eiS/h

+ih
(
∂sa

(n) + 2∇S · ∇a(n) + a(n)∆S − ih∆a(n)

+
iωa(n)

h

(
f(a(n)) − f(a0)

))
eiS/h.

(2.54)

For m = n, n + 1 write the expansion in h

(2.55)
iωa(m)

h

(
f(a(m)) − f(a0)

)
:=

pm−1∑

j=0

bj,mhj .

By construction the following system is satisfied

(2.56)





∂sS + (∇S)2 + ω(a0a0)
p−1
2 = 0,

∂sa
(n) + 2∇S · ∇a(n) + a(n)∆S − ih∆a(n−1) +

n∑

j=0

bj,n+1h
j = 0.

Notice that

(2.57) bj,n = bj,n+1 for all j ≤ n − 1.

Therefore by (2.57) and (2.56), (2.54) rewrites
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ih∂svapp + h2∆vapp − ω(vappvapp)
p−1
2 vapp

= ih
(
− ihn+1∆an −

n∑

j=0

bj,n+1h
j +

pn−1∑

j=0

bj,nhj
)
eiS/h

=
(
hn+2∆an − ihn+1bn,n+1 + ih

pn−1∑

j=n

bj,nhj
)
eiS/h.(2.58)

We now estimate each term of the r.h.s. of (2.58). By (2.55) we have

hbj,n = iω
( ∑

i1+···+ip=j

ãi1 · · · ãip − (a0a0)
p−1
2 aj

)
,

with ãik
= aik

or ãik
= aik

.

Now by (2.11), |aik
| . Bik(ik)! e−|z|, thus

(2.59) h|bj,n| . Bj
( ∑

i1+···+ip=j

(i1)! · · · (ip)! + j!
)
e−p|z| . Bjj! e−p|z|,

and by the Stirling formula,

(pn)! . n1/2
(pn

e

)pn
,

we deduce from (2.59)

|h
pn−1∑

j=n

bj,nhj| .
( pn−1∑

j=n

Bjj! hj
)
e−p|z|

≤ (p − 1)n(Bh)pn(pn)! e−p|z|

. h− 3
2

(Bc0p

e

)c0p

h e−p|z|,

as we have n = c0/h. Now choose c0 < e/(Bp), then there exists δ > 0 such
that

|h
pn−1∑

j=n

bj,nhj | .

pn−1∑

j=n

h|bj,nhj | . e−δ/he−p|z|.

Similarly, for some δ > 0

|hn+1bn,n+1| . e−δ/he−|z|,

|hn+2∆an| . e−δ/he−|z|.

Finally use that the function φ : (Re z, Im z) 7−→ e−|Re z+iIm z| satisfies

sup
|Im z|<l

‖φ(·, Im z)‖L2(B(0,r/~)) . 1.
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We have therefore proved the estimate (2.53) for k = 0.
To treat the case k ≥ 0, use the Cauchy formula to obtain

sup
|s|<s1

sup
|Im z|<l/2

∣∣(1 − h2∆)k/2aj

∣∣ . sup
|s|<s1

sup
|Im z|<l

|aj | . Bjj! e−|z|,

and

sup
|s|<s1

sup
|Im z|<l/2

∣∣(1 − h2∆)k/2eiS/h
∣∣ . 1,

and we can easily adapt the previous computations.

3. Validity of the Ansatz

Proposition 3.1. — Let vapp be the function defined by (2.51). Let v be the
solution of

(3.1)

{
ih∂sv + h2∆v = ω|v|p−1v, (s, z) ∈ R

1+d,

v(0, z) = vapp(0, z).

Then there exist s2 > 0 and δ2 > 0 such that for all k ∈ N

sup
0<s<s2

‖(1 − h2∆)k/2(v − vapp)(s)‖L2(B(0,r/~)) ≤ Cke
−δ2/h,

with Ck > 0.

Proof. — It is given in [11], but we reproduce it in the appendix.

We are now able to define the Ansatz to the equation (1.1).

In the case (Md, g) = (Rd, can), we consider the function uapp given by (2.51)
and define

(3.2) uapp(t, x) = ~
γvapp(~−αt, ~−1x),

where γ and α satisfy the relations (2.2) and h = ~β . The initial condition will
be given in the next section.
From Proposition 3.1 we deduce

Corollary 3.2. — (The case (Md, g) = (Rd, can)) Let s2 be given by Propo-
sition 3.1, let uapp be given by (3.2), and let u be the solution of

{
i∂tu + ∆u = ω|u|p−1u, (t, x) ∈ R

1+d,

u(0, x) = uapp(0, x).

Then for all k ∈ N

‖u − uapp‖L∞([0,~αs2];Hk(Rd)) −→ 0,

when h −→ 0.
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In the general case of an analytic manifold (Md, g), we have to construct an
approximate solution supported in B(0, r) ⊂ U .
Let χ ∈ C∞

0 (R), χ ≥ 0, such that

(3.3) χ(ξ) =

{
1 for |ξ| ≤ r/2,

0 for |ξ| ≥ r.

Let 0 < η < 1, let vapp be given by (2.51) and consider

(3.4) uapp(t, x) = ~
γχ(~−η|x|)vapp(~−αt, ~−1x),

where γ and α are given by the relations (2.2), and h = ~β .
We have

supp uapp ⊂ {(t, x) ∈ R
1+d : |x| ≤ r~

η},
which concentrates in x = 0.
Hence if ~ is small enough, uapp is supported in V , and we can transport this
function to U by the chart κ (see (2.47)).We therefore define the approximate
solution uM

app of (1.1) by

(3.5) uM
app = uapp ◦ κ.

In the following we write uM
app = uapp.

Then, as uapp is compactly supported, it can not be analytic. We now consider
all the functions only with real variables.
Up to now, we did not use the rate of decrease of the weight W−1 introduced
in (2.11), but it is needed now because of the truncation. However, because of
the error e−c/~ induced from this cutoff, we obtain the following weaker result

Corollary 3.3. — (The general case) Let s2 be given by Proposition 3.1, let
uapp be given by (3.4), and let u be the solution of

(3.6)

{
i∂tu + ∆u = ω|u|p−1u, (t, x) ∈ R × Md,

u(0, x) = uapp(0, x).

Let κ ≥ 0 such that β + η − κ < 1. Then for all k ∈ N

‖u − uapp‖L∞([0,~α+κs2];Hk(Md)) −→ 0,

when h −→ 0.

Proof. — Let k > d/2 an integer, and set

‖f‖Hk
~

= ‖
(
1 − ~

2(β+1)∆
)k/2

f‖L2(Md).

With the Leibniz rule and interpolation we check that for all f ∈ Hk(Md) and
g ∈ W k,∞(Md)

(3.7) ‖f g‖Hk
~

. ‖f‖Hk
~

‖g‖L∞(Md) + ‖f‖L2(Md)‖
(
1 − ~

2(β+1)∆
)k/2

g‖L∞(Md).
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Moreover, as k > d/2, for all f1, f2 ∈ Hk(Md)

(3.8) ‖f1 f2‖Hk
~

. ~
−(β+1)k‖f1‖Hk

~

‖f2‖Hk
~

The function uapp satisfies

i∂tuapp + ∆uapp = ω|uapp|p−1uapp + e−c/~
1−η

q,

with

‖q‖Hk
~

. 1.

Let u be the solution of (3.6) and define w = u − uapp. Then w satisfies
(3.9){

i∂tw + ∆w = ω
(
|w + uapp|p−1(w + uapp) − |uapp|p−1uapp

)
+ e−c/~

1−η

q

w(0, x) = 0.

We expand the r.h.s. of (3.9), apply the operator
(
1 − ~2(β+1)∆

)k/2
to the

equation, and take the L2- scalar product with
(
1 − ~2(β+1)∆

)k/2
w. Then we

obtain

(3.10)
d

dt
‖w‖Hk

h
.

p∑

j=1

‖wj up−j
app ‖Hk

h
+ e−c/~

1−η

.

We now have to estimate the terms ‖wj up−j
app ‖Hk

h
, for 1 ≤ j ≤ p. From (3.7)

we deduce

‖wj up−j
app ‖Hk

h
. ‖wj‖Hk

h
‖up−j

app ‖L∞(Md)

+‖wj‖L2(Md)‖
(
1 − ~

2(β+1)∆
)k/2

up−j
app ‖L∞(Md).(3.11)

By (3.8), and as we have

(3.12) ‖up−j
app ‖L∞(Md) . ~

γ(p−j), ‖
(
1−~

2(β+1)∆
)k/2

up−j
app ‖L∞(Md) . ~

γ(p−j),

thus inequality (3.11) yields

‖wj up−j
app ‖Hk

h
. ~

γ(p−j)
~
−(β+1)(j−1)k‖w‖j

Hk
h

.

Therefore, from (3.10) we have

d

dt
‖w‖Hk

h
. ~

γ(p−1)‖w‖Hk
h

+ ~
−(β+1)(p−1)k‖w‖p

Hk
h

+ e−c/~
1−η

.

Observe that ‖w(0)‖Hk
h

= 0. Now, for times t so that

(3.13) ‖w‖Hk
h

. ~
γ+(β+1)k,

we can remove the nonlinear term in (3.11), and by the Gronwall Lemma,

(3.14) ‖w‖Hk
h

. e−c/~
1−η

eC~
γ(p−1)t.
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By (2.2), α = 2 + β and γ(p − 1) = −2(β + 1), thus for all 0 ≤ t ≤ s2~α+κ,

~
γ(p−1)t ≤ s2~

−β+κ,

and if β + η − κ < 1, the r.h.s. in (3.14) tends to 0. Then the inequality (3.13)
is satisfied for all 0 ≤ t ≤ s2~α+κ, and with a continuity argument, we infer
that (3.14) holds for 0 ≤ t ≤ s2~α+κ.
Finally,

‖w(t)‖Hk(Md) . ~
−(β+1)k‖w(t)‖Hk

h
−→ 0,

for 0 ≤ t ≤ s2~α+κ, when ~ −→ 0, what we wanted to prove.

4. The instability argument

We have now the tools to show our main results.
We consider Cauchy conditions v0 = a0eiS0/h of (2.3) which do not oscillate,
i.e. such that S0 = 0. We have seen in the previous section, that for some
analytic amplitudes a0, the solution writes v = aeiS/h and therefore oscillates
immediately with magnitude ∼ 1

h .

Let χ be given by (3.3) and a0 ∈ H0(l, B) nontrivial (for instance a0(y) = e−y2

).
Now set

(4.1) uh
0(x) = ~

γχ(~−η|κ(x)|)a0(~−1κ(x)),

as initial data for (1.1).
Then we have the Ansatz (2.51), (3.4), (3.5)

(4.2) uapp(t, x) = ~
γχ(~−η|κ(x)|)a(~−αt, ~−1κ(x))eiS(~−αt,~−1κ(x))/h,

with uapp(0, ·) = uh
0 .

For 0 < c0 ≪ 1 satisfying Proposition 2.10, set

h = ~
β =

c0

n

with n ∈ N, and this induces the sequences in the statements of our main
results. In particular

supp uh
0 ⊂ {(t, x) ∈ R × Md : |κ(x)| ≤ r~

η},

and hence we can choose

rn = max
|x|≤r~η

|κ−1(x)|g −→ 0,

in Theorems 1.2 and 1.3. Here we have assumed m = 0, reduction which is
always possible.
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4.1. Proof of Theorem 1.2. —

Let 0 < ε < 1 and define

(4.3) δh = ~
εβ log

1

~
=

1

β
hε log

1

h
,

which tends to 0 with h. This choice will become clear later. Consider

(4.4) ũ0
h = (1 + δh)uh

0 ,

and the associate function ũapp.

In all this subsection we take

γ = − d

p + 1
.

This is the right parameter γ so that uapp and ũapp are normalized in Lp+1(Md)
uniformly for h ∈]0, ε[.

Lemma 4.1. — Let p ≥ (d + 2)/(d − 2) be an odd integer, and let uh
0 , ũ0

h be
defined by (4.1), (4.4). Then

H+(uh
0 ) . 1, H+(ũ0

h) . 1.

There exist ν0 > 0 and q0 > p+1, such that for all 0 < ν < ν0 and p+1 ≤ q < q0

(4.5) ‖uh
0 − ũ0

h‖H1+ν(Md), ‖uh
0 − ũ0

h‖Lq(Md) −→ 0,

when h −→ 0.

Proof. — We make the change of variables y = ~−1κ(x), then

‖∇uh
0‖2

L2(Md) ∼ ~
2γ+d−2

∫

|y|≤r~−1+η

∣∣∇
(
χ(~1−ηy)a0(y)

)∣∣2dy

∼ ~
2γ+d−2

∫ ∣∣∇a0(y)
∣∣2dy,

as 0 < η < 1.
As 2γ + d − 2 = −2d/(p + 1) + d − 2 > 0 when p > 2d/(d − 2) − 1, it follows
that

‖∇uh
0‖L2(Md) −→ 0 for h −→ 0.

Compute

‖uh
0‖p+1

Lp+1(Md)
∼ ~

(p+1)γ+d

∫
|a0(y)|p+1dy ∼ ~

(p+1)γ+d.

By definition (p + 1)γ + d = 0, hence ‖uh
0‖Lp+1(Md) remains bounded when h

tends to 0, as well as H+(uh
0).

Similarly, H+(ũ0
h
) . 1.

By the definition (4.3) of δh we also have for all σ ≥ 0

(4.6) ‖uh
0 − ũ0

h‖2
Hσ(Md) ∼ ~

2γ+d−2σδ2
h ∼ ~

2γ+d−2σ+2εβ
(
log

1

~

)2
.
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The terms in (4.6) tend to 0 if

σ < γ +
d

2
+ εβ.

But, by (2.2) and as p > (d + 2)/(d − 2),

γ +
d

2
> 1,

hence we can choose ν0 = εβ in the statement.
The proof of the other part is similar.

Proof of Theorem 1.2. — The statements (1.5), (1.6) and (1.8) have already
been proved in Lemma 4.1.
Let 0 < ε < 1 which appears in (4.3), and set sh = h1−ε = ~β(1−ε) and
th = ~

αsh = ~
α+β(1−ε). Denote by S = S(~−αth, ~−1κ(x)) and by b =

χ(~−η|κ(x)|)a(~−αth, ~−1κ(x)). Then we have

‖(uapp − ũapp)(th)‖Lp+1(Md) = ~
γ‖b eiS/h − b̃ ei eS/h‖Lp+1(U)

≥ ~
γ‖b (ei(eS−S)/h − 1)‖Lp+1(U) − ~

γ‖b − b̃‖Lp+1(U).(4.7)

We now estimate the l.h.s. terms of (4.7).
First compute

~
γ‖(b − b̃)(~−αth, ~−1κ(·))‖Lp+1(U) ∼ ~

γ+d/(p+1)‖(b − b̃)(sh, ·)‖Lp+1(V).

From the well-posedness of (2.6), we deduce

‖(b − b̃)(sh, ·)‖Lp+1(~−1V) −→ 0,

where s2 is given by Proposition 3.1.
Hence

(4.8) ~
γ‖(b − b̃)(~−αth, ~−1κ(·))‖Lp+1(U) −→ 0, h −→ 0.

Secondly, a Taylor expansion near s = 0 shows that

(4.9) (S̃ − S)(sh, y) ∼ −ω(p− 1)δhsh

(
χ(~−1−η|y|)a0(y)

)p−1
.

Now observe that
δhsh

h
∼ log

1

h
−→ +∞.

We then deduce from (4.9) that for all |y| ≤ 1,

lim sup
h→0

∣∣ei(eS−S)/h) − 1
∣∣ = 2,

and as ~γ‖b(sh, ~−1κ(x))‖Lp+1(U) ∼ 1, we obtain

(4.10) lim sup
h→0

~
γ‖b (ei(eS−S)/h − 1)‖Lp+1(U) ≥ c.
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Thus, according to (4.8) and (4.10)

(4.11) lim sup
h→0

‖(uapp − ũapp)(th)‖Lp+1(Md) ≥ c.

Finally, if we denote by Lp+1 = Lp+1(Md),

‖(u − ũ)(th)‖Lp+1 ≥ ‖(uapp − ũapp)(th)‖Lp+1 − ‖(u − uapp)(th)‖Lp+1

−‖(ũ − ũapp)(th)‖Lp+1.(4.12)

If ε > 0 is chosen small enough, we can apply Corollary 3.3, with κ = (1− ε)β,
with yields ‖(u − uapp)(th)‖Lp+1, ‖(ũ − ũapp)(th)‖Lp+1 −→ 0 with h, and thus
from (4.10) and (4.12)

lim sup
h→0

‖(u − ũ)(th)‖Lp+1 ≥ lim sup
h→0

‖(uapp − ũapp)(th)‖Lp+1 > c,

which concludes the proof.

4.2. Proof of Theorem 1.3. —

Here we deal with the case (Md, g) = (Rd, can).
Let β > 0 and γ(p − 1) = −2(β + 1) as prescribed by (2.2). Let 0 < σ <
d/2 − 2/(p− 1) and

σ
p−1
2 (d

2 − σ)
< ρ ≤ σ.

Consider uapp defined by (4.2) and let s2 > 0 be given by Proposition 3.1.
Then, according to Corollary 3.2, the solution u of (1.1) with initial condition
u(0) = uapp(0) satisfies for all k ∈ R

‖(u − uapp)(th)‖Hk(Rd) −→ 0, h −→ 0,

with th = ~αs2. To prove that u satisfies (1.10) and (1.11) we only have to
check that

‖uapp(0)‖Hσ(Rd) → 0 and ‖uapp(th)‖Hρ(Rd) → +∞.

To begin with,

(4.13) ‖uapp(0)‖Hσ(Rd) ∼ ~
γ−σ+d/2.

Then, use the equations (2.6) to observe that a∇S(s2, ·) 6≡ 0. Hence

(4.14) ‖uapp(th)‖Hσ(Rd) ∼ ~
γ−(β+1)ρ+d/2.

By (4.13) and (4.14), we only have to show that we can choose β > 0 so that

γ − σ + d/2 > 0,(4.15)

γ − (β + 1)ρ + d/2 < 0.(4.16)
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Let ε > 0 such that

σ < d/2 − 2/(p− 1) − ε,(4.17)

ρ >
σ + ε

p−1
2 (d

2 − σ − ε)
,(4.18)

and take

(4.19) γ = σ − d/2 + ε.

Therefore by (4.17) and (4.19) we obtain

(4.20) β = −p − 1

2
γ − 1 = −p − 1

2
(σ − d/2 + ε) − 1 > 0.

Moreover, with the choice (4.19), inequality (4.15) is satisfied.
Finally, using the relations (4.19) and (4.20), we deduce that (4.16) is equivalent
to

ρ >
1

β + 1
(γ + d/2) =

σ + ε
p−1
2 (d

2 − σ − ε)
,

which is satisfied by (4.18).

4.3. Proof of Theorem 1.4. —

Assume here that (Md, g) is an analytic riemannian manifold with an analytic
metric g.
Consider the function uapp defined by (4.2) and let s2 > 0 be given by Propo-
sition 3.1.
Let κ ≥ 0 such that β + η − κ < 1. Denote by th = ~α+κs2, then by Corollary
3.3, the solution u of (1.1) with initial condition u(0) = uapp(0) satisfies for all
k ∈ R

(4.21) ‖(u − uapp)(th)‖Hk(Md) −→ 0, h −→ 0.

• Let

(4.22)
d

2
− 4

p − 1
< σ <

d

2
− 2

p − 1
.

Choose ε > 0 so that

(4.23) σ <
d

2
− 2

p − 1
− ε,

and define

γ = σ − d/2 + ε,

thus

β = −p − 1

2
γ − 1 = −p− 1

2
(σ − d/2 + ε) − 1.
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Then by (4.22) and (4.23), 0 < β < 1. Choose now η > 0 so small that
0 < β + η < 1. The convergence (4.21) then follows with th = ~αs2.
Finally

‖uapp(th)‖Hσ(Rd) ∼ ~
γ−(β+1)ρ+d/2 −→ +∞,

for

ρ >
1

β + 1
(γ + d/2) =

σ + ε
p−1
2 (d

2 − σ − ε)
,

which was to prove.

• Assume here that 0 < σ < d
2 − 4

p−1 . For β > 0 and ε > 0, take κ = β−1+2ε

and η = ε, so that β + η − κ = 1 − ε < 1. Then (4.21) holds and
(4.24)

‖uapp(0)‖Hσ(Rd) ∼ ~
γ−σ+d/2 and ‖uapp(th)‖Hσ(Rd) ∼ ~

γ−(β+1−κ)ρ+d/2.

Define γ = σ − d/2 + ε, then

β = −p − 1

2
γ − 1 = −p − 1

2
(σ − d/2 + ε) − 1 > 0,

and

‖uapp(0)‖Hσ(Rd) −→ 0 when h −→ 0.

The second term in (4.24) tends to +∞ when

ρ > − γ + d/2

β + 1 − κ
=

σ + ε

2(1 − ε)
,

which concludes the proof, as ε > 0 is arbitrary.

A

Appendix

Here we reproduce a part of the work of P. Gérard [11].

Proposition A.1. — Let r > 0 be given by (2.49). Let vapp be the function
defined by (2.51), and let v be the solution of

{
ih∂sv + h2∆v = ω|v|p−1v, (s, z) ∈ R

1+d,

v(0, z) = vapp(0, z).

Then there exist s2 > 0, λ > 0 and δ2 > 0 such that v can be extended to a
continuous function on [0, s2], holomorphic-valued on

{
(|~z| < r) ∩ (|Im z| <

λ)
}
, and so that for all k ∈ N

(A.1)

sup
|s|<s2

sup
|Im z|<λ

‖(1 − h2∆)k/2(v − vapp)(s, · + iIm z)‖L2(B(0,r/~)) ≤ Cke
−δ2/h,

with Ck > 0.
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Proof. — Let

rh = −ih∂svapp − h2∆vapp + ω(vappvapp)
p−1
2 vapp.

Then f1 = v − vapp satisfies

(A.2) ih∂sf1 + h2∆f1 = F (s, z, f1, h) + rh,

where F stands for

F (s, z, f2, h) = ω
(
(vapp + f2)

p+1
2 (vapp + f2)

p−1
2 − (vappvapp)

p−1
2 vapp

)
,

with f(s, z) = f(s, z).
We now show, that for s2 > 0 and λ > 0 small enough, there exists a solution
f1 of (A.2) such that f(s, z) is continuous on [0, s2], holomorphic-valued on
|Im z| < λ, and exponentially decreasing in h: There exists δ > 0 so that for
all k ∈ N

sup
0≤s≤s2

sup
|Im z|<λ

‖(1 − h2∆)k/2f1(s, · + iIm z)‖L2(B(0,r/~)) ≤ Cke−δ/h.

This will be done thanks to a fixed point argument.
For 0 < λ < l and k > d/2, set

‖f‖h = sup
|Im z|<λ

‖(1 − h2∆)k/2f(· + iIm z)‖L2(B(0,r/~)).

Let s1 > 0 be given by Proposition 2.8. Let also δ > 0 and s2 ∈ [0, s1]. If
f = f(s, z) is continuous on [0, s1] and analytic on |Im z| < λ we set

Nh(f, s2) = sup
0≤s≤s2

eδ(1− s
2s2

)/h‖f(s)‖h.

By the Sobolev embeddings, we have

sup
s≤s2

sup
|Im z|<λ

|f(s, z)| . Nh(f, s2)e
− δ

4h .

By Proposition 2.10 we can choose δ > 0, λ > 0 and K > 0 so that
(A.3)

‖f1(0)‖h ≤ Ke−
δ
h , Nh(rh, s1) ≤ K, and sup

s≤s1

sup
|Im z|<λ

|vapp(s, z)| ≤ K.

Now use that

(A.4) ‖f g‖h . h−k‖f‖h‖g‖h, sup
s≤s2

‖f(s)‖h . e−
δ
2h Nh(f, s2),

to deduce that for all L > 0, there exists CL > 0 and hL > 0 so that if h < hL

and Nh(f, s2) ≤ L, the following estimates hold

(A.5) ‖F (s, ·, f(s), h)‖h ≤ CL‖f(s)‖h,

and

(A.6) ‖F (s, ·, f1(s), h) − F (s, ·, f2(s), h)‖h ≤ CL‖f1(s) − f2(s)‖h.



30 LAURENT THOMANN

Let L > 0 to be chosen and h < hL. For f such that Nh(f, s2) ≤ L, let w be
the solution of

(A.7)

{
ih∂tw + h2∆w = F (s, z, f, h) + rh,
w(0) = f1(0).

The usual L2-estimates for the Schrödinger equation and (A.4) yield

(A.8) ‖w(s)‖h ≤ ‖f1(0)‖h +
1

h

∫ s

0

(
CL‖f(τ)‖h + ‖rh(τ)‖h

)
dτ.

Now use the exponential decrease of the norms ‖ · ‖h to obtain

1

h

∫ s

0

‖f(τ)‖hdτ ≤ 2s2

ε
Nh(f, s2)e

δ(1− s
2s2

)/h.

Then, with (A.3), we deduce from (A.8)

(A.9) Nh(w, s2) ≤ K(1 +
2s2

ε
) +

2s2

ε
CLNh(f, s2).

Now fix L ≥ 4K and s2 ≤ min (s1, ε/2, ε/(4CL)), by (A.9) we obtain
Nh(w, s2) ≤ L.
We have proved that the application f 7→ w, induced by the equation (A.7),
maps the ball {f, Nh(f, s2) ≤ L} into itself. Finally use (A.6) to show that
this application is a contraction. Hence (A.2) admits a unique solution f1,
which satisfies the estimate (A.1).
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