SPHINX

SPHINX
Heterogeneous Systems: Inverse Problems, Control and Stabilization, Simulation

Head of team

Non Permanent Members

PhD students
Mabrouk Ben Jaba
Blaise Colle
Anthony Gerber-Roth
Benjamin Florentin

Postdocs
Christophe Zhang

Topics
 
We investigate theoretical and numerical mathematical issues concerning heterogeneous physical systems. The heterogeneities we consider result from the fact that the studied systems involve subsystems of different physical nature. In this wide class of problems, we study two types of systems: fluid-structure interaction systems  and complex wave systems. In both situations, one has to develop specific methods to take the coupling between the subsystems into account.

Fluid-structure interaction systems appear in many applications: medicine (motion of the blood in veins and arteries), biology (animal locomotion in a fluid, such as swimming fishes or flapping birds but also locomotion of microorganisms, such as amoebas), civil engineering (design of bridges or any structure exposed to the wind or the flow of a river), naval architecture (design of boats and submarines, researching into new propulsion systems for underwater vehicles by imitating the locomotion of aquatic animals). FSIS can be studied by modeling their motions through Partial Differential Equations (PDE) and/or Ordinary Differential Equations (ODE), as is classical in fluid mechanics or in solid mechanics. This leads to the study of difficult nonlinear free boundary problems which have constituted a rich and active domain of research over the last decades.

Complex wave systems are involved in a large number of applications in several areas of science and engineering: medicine (breast cancer detection, kidney stone destruction, osteoporosis diagnosis, etc.), telecommunications (in urban or submarine environments, optical fibers, etc.), aeronautics (target detection, aircraft noise reduction, etc.) and, in the longer term, quantum supercomputers. For direct problems, most theoretical issues are now widely understood. However, substantial efforts remain to be undertaken concerning the simulation of wave propagation in complex media. Such situations include heterogeneous media with strong local variations of the physical properties (high frequency scattering, multiple scattering media) or quantum fluids (Bose-Einstein condensates). In the first case for instance, the numerical simulation of such direct problems is a hard task, as it generally requires solving ill-conditioned possibly indefinite large size problems, following from space or space-time discretizations of linear or nonlinear evolution PDE set on unbounded domains. For inverse problems, many questions are open at both the theoretical (identifiability, stability and robustness, etc.) and practical (reconstruction methods, approximation and convergence analysis, numerical algorithms, etc.) levels. 

1200px-Centre_national_de_la_recherche_scientifique.svg